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ABSTRACT: Experimental vibrational predissociation spectra of the magic NH4
+(H2O)20 clusters are close to those of the magic

H3O
+(H2O)20 clusters. It has been assumed that the geometric features of NH4

+(H2O)20 clusters might be close to those of
H3O

+(H2O)20 clusters, in which H3O
+ resides on the surface. Car�Parrinello molecular dynamics simulations in conjunction with

density functional theory calculations are performed to generate the infrared spectra of the magic NH4
+(H2O)20 clusters. In

comparison with the experimental vibrational predissociation spectra of NH4
+(H2O)20, we find that NH4

+ is inside the cage
structure of NH4

+(H2O)20 as opposed to on the surface structure. This shows a clear distinction between the structures of
NH4

+(H2O)20 and H3O
+(H2O)20 as well as between the hydration phenomena of NH4

+ and H3O
+.

’ INTRODUCTION

Since solvated ions play a pivotal role in the chemical and
physical properties of chemical and biological systems1,2 and in
the environment of the upper atmosphere,3 diverse experimental
and theoretical approaches have been carried out to understand
the intriguing phenomena of interactions between ions and
solvent molecules. Useful information has been gained from
studies of the solvation of cations4�10 and anions11�19 in the gas
phase as well as water clusters.20�28

Solvated ammonium (NH4
+) cations have been intensively

studied experimentally29�34 and theoretically35�43 due to their
similarity to the solvated hydronium (H3O

+) in that both clusters
have an excess proton. The similarity and difference between
H3O

+(H2O)n and NH4
+(H2O)n could shed light on the intri-

guing role of how protonated water systems are related to proton
transfer in aqueous chemistry and biology.44�49 One interesting
experimental IR spectrum of NH4

+(H2O)4�6 showed the peak
of NHd stretching clearly in the range of 2900�3450 cm�1,
where NHd indicates a dangling NH bond.34,35 For theoretical
interpretation of the experimental IR spectra, some low-lying struc-
tures were identified to show a dangling NHd appearance.39

The global minimum structures of NH4
+(H2O)4�6 for the com-

plete basis set (CBS) limit at the CCSD(T) level of theory have
no dangling NHd since NH4

+ is fully solvated in the global mini-
mum isomers. Hence, several low-lying structures would be re-
quired for interpretation of the experimental IR spectra.

The experimental IR spectra for larger clusters of NH4
+-

(H2O)n (n > 8) did not show the peak of NHd stretching near
2900�3450 cm�1.32,34,35 Furthermore, vibrational predissoci-
ation spectra of the magic NH4

+(H2O)20 clusters in 2500�
3900 cm�1 are close to those of themagicH3O

+(H2O)20 clusters.
It has been assumed that the geometric features of NH4

+(H2O)20
clusters might be the same as those of H3O

+(H2O)20 clusters, in
which H3O

+ prefers to be on the surface of clusters. Diken et al.

suggested several “handmade” structures of NH4
+(H2O)20, in

which the isomer with NH4
+ on the surface of clusters was lower

in internal energy than that with the fully solvated NH4
+.32 On

the basis of their “handmade” structures, they discussed that the
experimental vibrational spectra failed to display the dangled
NHd stretch near 3450 cm�1 since its peak might overlap with
OHd stretching transitions, where OHd indicates a dangling OH
bond of water. Since Brutschy and co-workers8 reported the
intriguing mass spectra of the magic clusters of NH4

+(H2O)20,
K+(H2O)20, and Cs+(H2O)20, we briefly addressed that, for
NH4

+(H2O)20, the structure with the NH4
+ ion inside the cage

is more stable than that on the surface of the cage by about
2 kcal/mol, and K+(H2O)20 and Cs

+(H2O)20 also show internal
structures.49 Then, Douady et al.40 studied low-lying isomers of
NH4

+(H2O)n (n e 24). They confirmed that NH4
+ is fully sol-

vated in the globalminimum structures for clusters NH4
+(H2O)n

(n g 6). In addition, the isomers NH4
+(H2O)20 with the fully

solvated NH4
+ were lower in internal energy by 1�4 kcal/mol

than the isomers with a dangling NHd of NH4
+ residing on their

surfaces. In this letter, we present a study of low-lying isomers of
NH4

+(H2O)20 and calculations of their infrared (IR) spectra to
compare them with the experimental spectra.

’COMPUTATIONAL APPROACH

Global Search of NH4
+(H2O)20. We searched for low-lying

energy structures using the density-functional tight bind-
ing theory (DFTB).50 The basin-hopping global optimization
method51,52 was used to search for the geometries of low-lying
isomers. A key idea of the basin-hopping method is to generate
the transformed potential-energy surface (PES) ~U using the
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following mapping equation

~UðN , r1, r2, :::, rNÞ ¼ minfUðN , r1, r2, :::, rNÞg
where min denotes the energy minimization with starting con-
figuration of {r1, ..., rN} and U is the PES. This transformed PES
~U removes the potential well existing in PES U and allows the
system “hop” directly between different local minima at each step.
Since DFTB is much less reliable in determining the relative

stability between isomers, the following three steps were employed
to seek possible low-lying isomers: (1) The database of the top
∼100 low-lying isomers from the global search with DFTB was
categorized into distinct structural families according to their dif-
ferent pentagonal dodecahedron (H2O)20 clusters. Note that the
low-lying isomers with the fully solvatedNH4

+ have the pentagonal
dodecahedron (H2O)20 clusters. (2) The geometries within each
different structural family furthermore were optimized using the
Becke�3�Lee�Yang�Parr (B3LYP) hybrid functional53,54 to
screen the top 10 low-lying isomers. (3) Finally, the resolution of
identity MP2 (RIMP2) calculations were performed for more-
accurate energies and to determine the reliable low-lying isomers.55

DFT calculations with the B3LYP hybrid functional were mainly
used as a screening tool since it can yield more reliable energy
rankings than DFTB. Recently, it has been reported that the
dispersion interaction correction should be included into DFT to
accurately predict thermochemical properties, electronic excita-
tions, infrared vibrational spectra, and solvent effects.56�59 Hence,
we employed the M06-2X functional in order to include the
corrected dispersion interactions into the potential energy calcula-
tions.59 Thresholds of 10�6 au (convergence of the potential
energy) and 0.001 au/bohr (convergence of the gradient) were
used during the geometry optimizations. The geometry optimiza-
tion and vibrational frequency calculations were carried out at the
level of B3LYP/aug-cc-pVDZ0 (aVDZ0)60,61 (in which 0 denotes
that the diffuse basis function of the hydrogen atomwas removed)
and M06-2X/aug-cc-pVDZ (aVDZ) theories using the Gaussian 03
suite of programs.62 TURBOMOLE63 was used for geometry
optimization at the level of RIMP2/aVDZ theory.
Simulated Infrared spectrum.WeperformedCar�Parrinello

molecular dynamics (CP-MD) simulations64,65 at a temperature
of 125 K to generate the simulated infrared spectra. The CP-
MD simulations were carried out at the level of the plane-wave-
pseudopotential density functional theory with the Becke ex-
change53 and Lee�Yang�Parr correlation54 (BLYP) functionals.
The core�valence interactionwas described by a norm-conserving
Troullier�Martins pseudopotential,66 and the wave function
energy cutoff value was 90 Ry. A fictitious electron mass of
600 au and an integration step of dt = 0.1 fs were used. A Nose�
Hoover thermostat was employed to generate the canonical en-
semble (constant volume and constant temperature). During the
simulations of 10 ps, we kept the molecules at the center of
isolated cubic boxes of side lengths L = 15 Å for NH4

+(H2O)20.
From the last 6 ps trajectory of the CP-MD simulations, we
evaluated the time correlation function to investigate the spectra
of the clusters in the equilibrium state. During NVT simulations,
we monitored whether other isomers would be sampled, con-
firming that the hydrogen bond network of isomers remained.
The Fourier transform of dipole moment autocorrelation func-
tions was carried out. The infrared absorption spectrum can be
computed from FT-DACF as

IðωÞ ¼ ðpβ=2πÞω2
Z

dt e�iωtÆμð0Þ μðtÞæ

Here, the symbols are used to denote intensity (I), frequency
(ω), Plank constant (p = h/2π), inverse of the Boltzmann
constant multiplied by temperature (β = 1/kT), time (t), and
dipole moment (μ), which is the total dipole moment of the
clusters rather than the dipole moment of each molecule. For
computational and interpretative purposes, it is more convenient
to compute the autocorrelation function of the time derivative of
the dipole moment:

IðωÞ ¼ ðpβ=2πÞ
Z

dt e�iωtÆμ_ð0Þ μ_ðtÞæ

as discussed by Schmitt and Voth.67 Hence, this method was
employed in our calculations.

’RESULTS AND DISCUSSION

Even though the basin-hopping method is a very efficient
global search method, there is a limitation in searching for the
global minimum structures using the basin-hopping method
coupled with DFTB since the number of possible isomers of
NH4

+(H2O)n increases dramatically with the increase of n (the
number of water molecules) and DFTB is not as fast as the
empirical water potentials with regard to the computational
speed of the energy calculation. Since DFTB is much less reliable
in determining the relative stability between isomers, we do not
claim that we sampled the true global minimum energy structure
of NH4

+(H2O)20 within the top ∼100 low-lying isomers from
the global search with DFTB. Instead, we present low-lying ene-
rgy structures at RIMP2/aVDZ in comparison with previously
reported low-lying energy structures as the most likely candidate
for the global minimum energy structure.

The selected low-lying isomers for the calculation of IR spec-
tra are shown in Figure 1. Structures 1�6 are low-lying energy
isomers with fully solvated NH4

+. Isomers 1�6 have different
pentagonal dodecahedron (H2O)20 clusters. Isomer 7 has NH4

+

residing on the surface, as suggested by Diken et al.32 Relative
energies (ΔEe andΔE0 in kcal/mol) of the B3LYP, M06-2X, and
RIMP2 calculations are listed in Table 1. The effect of harmonic
zero-point energies (ZPE) at the M06-2X/aVDZ level of theory

Figure 1. Possible low-lying isomers of NH4
+(H2O)20 optimized at

RIMP2/aVDZ. Atoms of O, N, and H are highlighted in red, blue, and
white, respectively. Six isomers with the fully solvated NH4

+ are labeled
as 1�6. The isomer labeled 7 has one dangling NHd due to NH4

+

residing on the surface.32 Isomer 3 was suggested by Douady et al.40
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was added to the RIMP2/aVDZ relative energetics (ΔE0). The
DFT with the B3LYP hybrid functional gave the isomer 7 as the
lowest-energy isomer, while M06-2X and RIMP2 gave the high-
est energy among the given 7 structures (Figure 1). Furthermore,
the geometries optimized at B3LYP/aVDZ0 were quite different
from those optimized at M06-2X/aVDZ and RIMP2/aVDZ
(these optimized geometries are provided in the Supporting In-
formation). In detail, the former prefers to form a four-hydrogen-
bond network of NH4

+ with the pentagonal dodecahedron
(H2O)20 cages, while the latter prefers a five- or more hydro-
gen-bond network. This wide deviation in the relative energies of
the B3LYP functional from the RIMP2 level of theory is mainly
due to underestimation of the dispersion interaction in DFT.56�59

Hence, the M06-2X functional with the corrected dispersion
interaction gives a highly improved description for both poten-
tial energies and geometric features of NH4

+(H2O)20 clusters.
We confirmed that isomer 7 has much higher energy than the

solvated NH4
+ clusters (isomers 1�6) at the level of RIMP2/

aVDZ. In order to make sure that isomer 1 is one candidate for
the lowest isomer, we performed geometry optimization at the
level of RIMP2/aVDZ for the low-lying isomer (isomer 3 in
Table 1) suggested by Douady et al.40 and computed its relative
energy of ΔEe = 0.13 kcal/mol and ΔE0 = 0.4 kcal/mol. In
summary, isomers 1, 2, 3, and 4 with fully solvated NH4

+ are
nearly isoenergetic lowest-energy structures.

Since the simulated vibrational spectra can give insight into the
origin of the “no peaks” of NHd stretching of the vibrational
spectra of NH4

+(H2O)20, we performed Car�Parrinello molec-
ular dynamics (CP-MD) simulations64,65 at a temperature of 125
K for the seven low-lying isomers shown in Figure 1. Note that
the CP-MD IR spectra are more realistic, being closer to the
experimental data since the CP-MD IR spectra reflect both the
anharmonic potential surfaces and the contribution of tempera-
ture. Figure 2 shows the simulated vibrational spectrum in the
broad range 3200�3800 cm�1 for two isomers 1 and 7. The
dangling AAD-type OHd peak appears at ∼3700 cm�1, indicat-
ing that both isomers 1 and 7 have the AAD-type OHd on the
water cages of NH4

+(H2O)20. Note that the AAD-type OHd

peak from NH4
+(H2O)20 is also shown in the IR spectra of

H3
+O(H2O)20.

49 Both NH4
+(H2O)20 and H3

+O(H2O)20 have
the water cage with the dangling OHd on their cage surface.
In comparison with isomer 1, the additional IR peak near
∼3430 cm�1 appears in isomer 7. This additional peak is mainly
due to the dangling NHd stretching of NH4

+, which was
confirmed in the vibrational spectra of smaller clusters of NH4

+-
(H2O)n (n < 8).34 Hence, the NHd peak near ∼3430 cm�1

becomes the unique peak to identify whether NH4
+ is fully sol-

vated in water clusters. The experimental vibrational spectrum32

of NH4
+(H2O)20 did not show the danglingNHd stretching peak

near 3430 cm�1. We suggest that the absence of the experimental
peak of NHd near 3430 cm

�1 in NH4
+(H2O)20 indicates clearly

that the ammonium cation NH4
+ is fully solvated in most struc-

tures of NH4
+(H2O)20.

Why is the ammonium cation NH4
+ fully solvated in NH4

+-
(H2O)n (ng 6)? And why can the hydronium cation H3O

+ not
be fully solvated in H3O

+(H2O)20? All hydrogen atoms of NH4
+

have a favorable hydrogen bonding interaction with the oxygen
atom of a water molecule. Thus, its solubility is similar to that of
alkali cations (Na+, K+, and Cs+). In contrast, the oxygen atom of
H3O

+ is hydrophobic, as in our previous work,68 since it is no
longer a good electron donor or proton acceptor for the forma-
tion of a hydrogen bonding interaction. Hence, the hydronium
shows an amphiphilic behavior. The H3O

+ ion favors the surface
to maximize the polarization-driven binding energy, as shown in
amphiphilic species such as lipids. Though the H atoms in H3O

+

are involved in the H bonding, the O atom is not involved in the
H bonding. Thus, the H3O

+ remains on the surface of the cluster
with three H bonds by three H atoms, while there is no H bond
by the O atom. On the other hand, the NH4

+ prefers the internal
structure forming a five or more H-bond network with the penta-
gonal dodecahedron (H2O)20 cages.

In summary, we performed the CP-MD simulations at 125 K
in conjunction with DFT calculations to generate the simulated
IR spectra of NH4

+(H2O)20. When the experimental vibrational
spectrum of NH4

+(H2O)20 was compared with those of 1 and 7,
the simulated spectrum of 1 (the isomer with fully solvated NH4

+)
was consistent with the experimental vibrational spectra. This
result indicates that in experimentally measured structures of
NH4

+(H2O)20 the ammonium cation NH4
+ is fully solvated

Figure 2. Simulated infrared (IR) spectra of NH4
+(H2O)20 (frequen-

cies scaled by 1.049). The AAD-type OHd peak appears at∼3700 cm�1.
The AAD-type OHd peak is from the water molecules on the surface.
The cluster 1 and <1�6> with fully solvated NH4

+ have no NHd peak,
while the cluster 7 with NH4

+ on the surface shows the NHd peak at
∼3430 cm�1. Here, <1�6> indicates the average spectra from six
isomers of 1�6.

Table 1. Relative Energies (in kcal/mol) without (ΔEe) and
with (ΔE0) Harmonic Zero-Point Energy (ZPE) Corrections
for the Low-Lying Isomers of NH4

+(H2O)20 Shown in
Figure 1a

B3LYP/aVDZ0 M06-2X/aVDZ RIMP2/aVDZ

Isomer ΔEe ΔE0 ΔEe ΔE0 ΔEe ΔE0

1 1.20 0.40 0.71 0.41 0.00 0.00

2 0.85 0.08 1.85 1.36 0.51 0.32

3 1.21 0.19 0.26 0.22 0.13 0.40

4 1.41 0.45 0.00 0.00 0.18 0.48

5 2.39 1.29 0.97 0.31 1.26 0.91

6 2.26 1.35 1.71 1.72 1.33 1.65

7 0.00 0.00 6.67 6.21 3.51 3.36
a Isomers 3 and 7 were suggested by Douady et al.40 and Diken et al.,32

respectively. The boldface energies denote the lowest-lying isomer. The
ZPE-corrected relative energies (ΔE0) at the RIMP2/aVDZ level were
obtained using harmonic ZPE estimates at the M06-2X/aVDZ level of
theory.
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inside the cage structure of (H2O)20 against on the surface struc-
ture. Even though the experimental vibrational spectra of NH4

+-
(H2O)20 are no different from those of H3O

+(H2O)20 in the
broad range 3200�3800 cm�1, the geometric features of NH4

+-
(H2O)20 are very different from those of H3O

+(H2O)20.
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ABSTRACT:We present two extensions of the recently published S66 data set [�Rez�a�c, Riley, Hobza; DOI: 10.1021/ct2002946].
Interaction energies for the equilibrium geometry complexes have been recalculated using a triple-ζ basis set for the CCSD(T) term
in the CCSD(T)/CBS scheme. This allows for the extrapolation of this term to the complete basis set limit, improving accuracy by
almost 1 order of magnitude compared to the scheme previously used for the S66 set. Now, we estimate the largest error in the set to
be about 1%. Validation of several methods against the new data indicates the exceptional robustness and accuracy of the SCS-MI-
CCSD method. The second extension improves the coverage of nonequilibrium geometries. We introduce a new data set, S66a8,
that samples intermolecular angular degrees of freedom in the S66 complexes. For each of the 66 complexes, eight displaced
geometries have been constructed, systematically sampling possible rotations of the monomers. Interaction energies in this set are
calculated at the CCSD(T)/CBS level consistently with the earlier introduced S66x8 data set that samples the intermolecular
distance.

’ INTRODUCTION

The importance of accurate ab initio calculations for evalua-
tion of the performance of more approximate methods is now
widely recognized. One of the fields where such calculations
serve as very important benchmarks is the study of noncovalent
interactions. Multiple databases of reference data covering this
topic have been published in the past decade.1�5 Recently, we
introduced the S66 data set,6 which was designed to overcome
multiple limitations of the previously available sets. The most
important improvements are the increased size of the set and
more balanced coverage of different types of interactions, which
was achieved by careful selection of the complexes. The interac-
tion energies of these complexes were calculated consistently at
the CCSD(T) level and extrapolated to the complete basis set
limit (CBS). For a more detailed description of the S66 set, we
refer the reader to the original paper.6

If these complexes are used as a model for interaction between
atomic groups in large molecular systems, it is also necessary to
consider nonequilibrium geometries. Although the interaction is
strongest in equilibrium, there are much greater numbers of
weaker interactions acting over longer distances in large con-
densed systems. To address this, we have published dissociation
curves for all of the 66 complexes of the S66 data set, also
calculated at the CCSD(T)/CBS level.6

In this work, we present two extensions of the S66 data set.
First, we have recalculated the interaction energies in the S66 set
using a larger basis set in order to improve the accuracy toward
the complete basis set limit. The new benchmark interaction
energies are based on extrapolation of the CCSD(T) term from
double- and triple-ζ basis sets with diffuse functions on first row

atoms, improving the accuracy over the previously published
results by almost 1 order of magnitude. Second, we introduce the
S66a8 data set, which samples the intermolecular angular degrees
of freedom in all of the 66 complexes. Together with the S66x8
set, sampling intermolecular distances, our results represent the
largest body of accurate data available for nonequilibrium
structures of molecular complexes, calculated consistently at
the same level.

We use the new results as a reference for assessment of the
accuracy of more approximate methods. We focus on two
methods that have been shown in our previous paper to have
very good performance to cost ratios, MP2.57 and SCS-MI-
CCSD.8 A comparison of results calculated with different basis
sets allows us to discuss the transferability of the parameters used
in these methods.

’METHODS

Basis Sets. Throughout this work, we use the correlation
consistent basis sets of Dunning.9 The full names of the basis sets,
cc-pVXZ (X = D,T,Q) and aug-cc-pVXZ (augmented with
diffuse functions10), are abbreviated as XZ and aXZ in this work.
Benchmark Calculations. The CCSD(T)/CBS interaction

energy is obtained as a sum of the Hartree�Fock (HF) interaction
energy, the MP2 correlation energy extrapolated to CBS from
large basis sets, and a ΔCCSD(T) correction (ΔECCSD(T) �
ΔEMP2) calculated with a smaller basis set. For the large set of
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angular displacement calculations, we use the same scheme as for
the original S66 and S88x8 sets. The MP2 term is extrapolated
from the aTZ and aQZ basis sets, and theΔCCSD(T) correction
is calculated with the aDZ basis set. Extrapolations to the CBS
limit are done using the formula of Helgaker et al.11 All
interaction energy calculations presented here are corrected for
the basis set superposition error using the counterpoise scheme.
Here, we have recalculated the S66 binding energies using a

more accurate scheme, in which the ΔCCSD(T) correction is
extrapolated to the CBS from two calculations. Because the
calculation of the largest systems in the set using the aTZ basis set
is not possible with our current resources, we use a smaller basis
set that still retains most of the qualities of the aTZ basis set,
combining the TZ basis for hydrogens and aTZ for all other
atoms.12 This basis set is often referred to as the heavy-augmen-
ted basis, and we use the abbreviation haTZ. Recently, it has also
been published under the name jul-cc-pVTZ.13 An analogously
constructed haDZ basis set is used along with haTZ to extra-
polate theΔCCSD(T) correction. This scheme achieves binding
energy values close to the most accurate results available for the
S22 set,14 where aDZ and aTZ basis sets were used for the
extrapolation of ΔCCSD(T).
To assess the improvement brought by this approach, we

compare these two schemes, along with other possible combina-
tions of basis sets, on a set of small model systems introduced
earlier.15 Description and geometries of these complexes are
available in the original paper.
S66a8 Geometries. The angular-displaced geometries have

been prepared from the S66 geometries in the following way: For
each complex, the principal plane of the monomers was identi-
fied. In simple cases, these are defined by symmetry; in more
complex molecules, the definition was only approximate but
reflects the shape of the molecule. Eight geometries are built for
each system: each of the monomers is rotated in both directions
(() in themolecular plane (coordinate y) and perpendicular to it
(coordinate z) by 30�. In order to sample the angular displace-
ments but not the nonequilibrium intermolecular distances
(already covered by the S66x8 set), the intermolecular distances
in the S66a8 complexes are optimized at the RI-MP2/TZ level,
with the counterpoise correction, while all other degrees of
freedom are kept fixed. An example of the displaced geometries
obtained by the rotation of one monomer is shown in Figure 1.
We do not explore rotation around the intermolecular axis, the
interaction energy is not sensitive to such a change of the

geometry in most of the studied complexes. No symmetry is
assumed in the generation of the displaced geometries; therefore,
the complete set contains several pairs of structures built from
symmetrical minima that are equivalent in energy. For simplicity,
we provide the complete set of geometries, but identical results
can be achieved by eliminating the duplicates and setting the
weight of the results to two in the statistical analysis.
Methods Tested. There are two methods that we investigate

in this work in greater detail; these have been parametrized to
describe noncovalent interactions. MP2.57 is a variant of MP3
where the third-order contribution is scaled by one-half. SCS-
MI-CCSD8 is a spin-component-scaled CCSD method opti-
mized specifically for noncovalent interactions.
Several other methods have been tested on the S66a8 set. In

addition to the ones described above, these are MP2 in multi-
ple basis sets, spin-component-scaled MP216 (SCS-MP2) and
its reparameterization for noncovalent interactions SCS-MI-
MP2,17 dispersion weighted MP218 (DW-MP2), MP3, CCSD,
and the original version of spin-component-scaled CCSD19

(SCS-CCSD). Details on these methods and values of the
parameters used can be found in the original paper on the S66
data set.6

To extrapolate all of these methods to the CBS limit, we
employ a scheme analogous to the CCSD(T)/CBS calculations;
the result is built from accurate extrapolation of the MP2 energy
and a higher order correction (e.g., ΔESCS‑MI‑CCSD � ΔEMP2)
calculated in a smaller basis set or extrapolated independently,
using the same basis set(s) as the benchmark in the given data set.
Computational Details. Optimization of the intermolecular

distance in the S66a8 set was carried out in Turbomole 6.2.20 All
interaction energy calculations were performed using theMolpro
2010 package,21 using density fitting for the MP2 calculations.

’RESULTS AND DISCUSSION � S66 DATA SET

CCSD(T)/CBS Extrapolation. In the set of 10 model
complexes,15 we compare the effect of the basis sets and
extrapolation schemes applicable to the calculation of the
ΔCCSD(T) correction in the S66 set (Table 1). The results
are compared to our best estimates of the CCSD(T)/CBS
interaction energies directly extrapolated from the aTZ and
aQZ basis sets. First, to justify the use of the heavy-augmented
basis sets, we discuss the differences between the TZ, aTZ, and
haTZ basis sets, also including aDZ for comparison. It is clear
that the heavy-augmented basis set yields results close to the fully
augmented ones and that the improvement over the TZ basis set
with no diffuse functions is substantial. These results are sup-
ported by previous studies of this basis set.12,13

Figure 1. Angular-displaced geometries obtained by rotating one of the
monomers (in gray), compared to the original geometry of the complex
(in color).

Table 1. Accuracy of the CCSD(T)/CBS Scheme with Dif-
ferent Basis Sets Used for the Calculation of the ΔCCSD(T)
Term,Measured As the RootMean Square Error in a Set of 10
Small Complexes for Which Accurate Estimates of the
CCSD(T)/CBS Interaction Energies Are Available

ΔCCSD(T) basis set(s) RMSE (kcal/mol)

aDZ 0.080

aTZ 0.020

TZ 0.107

haTZ 0.033

haDZ f haTZ extrapolation 0.009
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To improve the accuracy of the final CBS estimate further, it is
now possible to extrapolate the ΔCCSD(T) from the haDZ/
haTZ series. This scheme yields a root-mean-square error
(RMSE) of only 0.009 kcal/mol for the model complexes,
lowering the error by almost 1 order of magnitude compared
to the scheme used previously (using the aDZ basis set, RMSE
0.080 kcal/mol). The improvement obtained by the extrapola-
tion of the ΔCCSD(T) term, compared to the use of a single
calculation in the haTZ basis set, is also substantial. We find this
to be the most accurate approach practically applicable even to
the largest complexes in the S66 set. Therefore, we consider these
results to be the new benchmark for the S66 set.
The largest error in the set of model complexes is 0.7%,

compared to 2.5% in the previously used scheme. Therefore, we
estimate that the largest errors in the S66 set are lower than 1%.
Benchmark Results. Interaction energies in the S66 data set

obtained using the new, more accurate CCSD(T)/CBS extra-
polation are listed in Table 2. These results are also available
online through the BEGDB database.22

Table 3. Errors of the MP2.5 and SCS-MI-CCSD Methods
with Higher Order Terms Calculated in Different Basis Sets
Compared to the CCSD(T)/CBS Reference withΔCCSD(T)
Term Calculated in aDZ Basis Set and Extrapolated from
haDZ and haTZ Basis Sets

ΔCCSD(T) basis

set in reference aDZ haDZfhaTZ

method basis set RMSE (kcal/mol) RMSE (kcal/mol)

MP2.5 aDZ 0.16 0.21

MP2.5 aDZfaTZ 0.16 0.22

SCS-MI-CCSD aDZ 0.08 0.14

SCS-MI-CCSD haDZfhaTZ 0.14 0.07

SCS-MI-CCSD aDZfaTZ 0.14 0.07

Table 2. New, More Accurate CCSD(T)/CBS Interaction
Energies (in kcal/mol) for the Complexes in the S66Data Seta

hydrogen bonds ΔE

1 water 3 3 3water �5.01

2 water 3 3 3MeOH �5.70

3 water 3 3 3MeNH2 �7.04

4 water 3 3 3 peptide �8.22

5 MeOH 3 3 3MeOH �5.85

6 MeOH 3 3 3MeNH2 �7.67

7 MeOH 3 3 3 peptide �8.34

8 MeOH 3 3 3water �5.09

9 MeNH2 3 3 3MeOH �3.11

10 MeNH2 3 3 3MeNH2 �4.22

11 MeNH2 3 3 3 peptide �5.48

12 MeNH2 3 3 3water �7.40

13 peptide 3 3 3MeOH �6.28

14 Peptide 3 3 3MeNH2 �7.56

15 peptide 3 3 3 peptide �8.72

16 peptide 3 3 3water �5.20

17 uracil 3 3 3 uracil (BP) �17.45

18 water 3 3 3 pyridine �6.97

19 MeOH 3 3 3 pyridine �7.51

20 AcOH 3 3 3AcOH �19.41

21 AcNH2 3 3 3AcNH2 �16.52

22 AcOH 3 3 3 uracil �19.78

23 AcNH 3 3 3 uracil �19.47

dispersion ΔE

24 benzene 3 3 3 benzene (π�π) �2.72

25 pyridine 3 3 3 pyridine (π�π) �3.80

26 uracil 3 3 3 uracil (π�π �9.75

27 benzene 3 3 3 pyridine (π�π) �3.34

28 benzene 3 3 3 uracil (π�π) �5.59

29 pyridine 3 3 3 uracil (π�π) �6.70

30 benzene 3 3 3 ethene �1.36

31 uracil 3 3 3 ethene �3.33

32 uracil 3 3 3 ethyne �3.69

33 pyridine 3 3 3 ethene �1.80

34 pentane 3 3 3 pentane �3.76

35 neopentane 3 3 3 pentane �2.60

36 neopentane 3 3 3 neopentane �1.76

37 cyclopentane 3 3 3 neopentane �2.40

38 cyclopentane 3 3 3 cyclopentane �2.99

39 benzene 3 3 3 cyclopentane �3.51

40 benzene 3 3 3 neopentane �2.85

41 uracil 3 3 3 pentane �4.81

42 uracil 3 3 3 cyclopentane �4.09

43 uracil 3 3 3 neopentane �3.69

44 ethene 3 3 3 pentane �1.99

45 ethyne 3 3 3 pentane �1.72

46 peptide 3 3 3 pentane �4.26

others ΔE

47 benzene 3 3 3 benzene (TS) �2.83

48 pyridine 3 3 3 pyridine (TS) �3.51

49 benzene 3 3 3 pyridine (TS) �3.29

Table 2. Continued
others ΔE

50 benzene 3 3 3 ethyne (CH 3 3 3π) �2.86

51 ethyne 3 3 3 ethyne (TS) �1.54

52 benzene 3 3 3AcOH (OH 3 3 3 π) �4.73

53 benzene 3 3 3AcNH2 (NH 3 3 3π) �4.40

54 benzene 3 3 3water (OH 3 3 3 π.) �3.29

55 benzene 3 3 3MeOH (OH 3 3 3π) �4.17

56 benzene 3 3 3MeNH2 (NH 3 3 3π) �3.20

57 benzene 3 3 3 peptide (NH 3 3 3π) �5.26

58 pyridine 3 3 3 pyridine (CH 3 3 3N) �4.24

59 ethyne 3 3 3water (CH 3 3 3O) �2.93

60 ethyne 3 3 3AcOH (OH 3 3 3π) �4.97

61 pentane 3 3 3AcOH �2.91

62 pentane 3 3 3AcNH2 �3.53

63 benzene 3 3 3AcOH �3.75

64 peptide 3 3 3 ethene �3.00

65 pyridine 3 3 3 ethyne �4.10

66 MeNH2 3 3 3 pyridine �3.97
aThe CCSD(T)/CBS is based on extrapolation of the MP2 correlation
energy from the aTZ and aQZ basis sets with theΔCCSD(T) correction
extrapolated from the haDZ and haTZ basis sets.
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Comparing the CCSD(T)/CBS scheme using the aDZ basis
set for the ΔCCSD(T) term used previously with the new
results, we find an average unsigned error of 0.08 kcal/mol
(1.5%) and a RMSE of 0.10 kcal/mol. The strength of hydrogen
bonds had been systematically underestimated, while dispersion
and mixed-type interactions had been overestimated. This
reflects the sign of the ΔCCSD(T) term, whose magnitude is
smaller in the unsaturated basis set.
Methods Tested. The overall performance of the methods

originally tested on the S66 set does not change significantly
when the new, more accurate benchmark is used. Here, we will
focus only on the effect of the basis set (used for the higher-order
correction in the CBS scheme) on two methods found to be the
most accurate in their categories, MP2.5 and SCS-MI-CCSD.
Table 3 lists RMS errors in the S66 set for multiple combinations
of basis sets, both in the studied method and in the reference.
The performance of MP2.5 is slightly worse when the more

accurate reference is used, regardless of the basis set used for the
MP2.5 calculation. This indicates that the source of the error
comes from the approximations in the method itself and not the
basis set. Some improvement can be achieved by optimization of
the scaling factor, discussed in detail in a separate paper.23

The behavior of SCS-MI-CCSD is surprisingly consistent.
This method is able to accurately reproduce the CCSD(T)
results calculated using the same basis set or extrapolation
scheme (RMSE 0.08 and 0.07 kcal/mol for aDZ and CBS
extrapolation). When compared crosswise, the error of the
method combined with the difference between the references,
the RMSE is larger (0.14 kcal/mol). On the basis of these results,
it is obvious that the SCS-MI-CCSD method is very robust and
provides results very close to CCSD(T) in a given basis set.

’RESULTS AND DISCUSSION � S66A8 DATA SET

Benchmark Results. The complete set of S66a8 geometries,
benchmark interaction energies, and results from the tested
methods are available online in the BEGDB database,22 where
it is possible to browse, plot, and download the data.
The most important information that can be derived from

these data is how the magnitude of the interaction in a given
complex decreases when the geometry is displaced. We list the
average interaction energy per complex as a percentage of the

interaction energy in equilibrium for the individual groups of
complexes of the S66 set: hydrogen bonds, 77%; dispersion-
dominated complexes, 67%; others, 77%. It seems counter-
intuitive that hydrogen bonds, which are known to be sensitive
to the mutual orientation of the interacting molecules, do not
exhibit the largest decrease. On the other hand, the hydrogen
bonding motif is conserved rather well upon rotation by 30�,
while the rotation of larger molecules in the dispersion-
dominated complexes leads to a large decrease of the contact
surface that determines the strength of the interaction. Disper-
sion interactions also decay with interatomic distance faster than
electrostatic interactions.
Methods Tested.We used the S66a8 data set to test the same

set of methods studied on the S66x8 set. The results, plotted in
Figure 2 and listed in Table S1 in the Supporting Information, are
very similar. Therefore, we refer the reader to the discussion of the
performance of individual methods in the original paper.6 In
general, the errors in the S66a8 set are slightly lower even when
the relative error (with respect to average interaction energy in the
set) is considered. Themajor source of this discrepancy stems from
the shorter than equilibrium geometries in the S66x8 set, where the
errors are larger than at (or above) equilibrium distances.
However, the similarity of the results presented here does not

make the S66a8 set redundant. It is not surprising that high-level
QM methods describe the entire potential energy surface
similarly. The main reason for building the S66a8 set was to
aid in the development and testing of more approximate
methods, such as DFT-D, semiempirical QM methods, or force
fields, where significant differences can be expected.

’CONCLUSIONS

We present new benchmark interaction energies for the S66
data set. Using the extrapolation of the ΔCCSD(T) correction
from haDZ and haTZ basis sets, we have improved the average
accuracy by almost 1 order of magnitude. On the basis of small
model calculations, we estimate the largest error in the S66 set to
be approximately 1% of the interaction energy when compared to
CCSD(T) complete basis set limit.

The SCS-MI-CCSD method was found to be very robust, as
the scaling coefficients are transferable between different basis
sets. For a given basis set or extrapolation scheme, the results
reproduce reference CCSD(T) calculations using the same basis
sets with high accuracy.

Extension of the S66 set to nonequilibrium geometries obtained
by rotation of the monomers in the complex, the S66a8 set, is also
presented. Here, the high-level QM methods tested yield errors
similar to those in the S66x8 data set, but we expect the S66a8 set to
be useful for development and validation of more approximate
methods where larger differences can be found. When the S66x8
and S66a8 sets are combined, they constitute 1056 points covering
the most important coordinates of the intermolecular potential
energy surface of the complexes in the S66 set.

Geometries of the complexes, the benchmark CCSD(T)/CBS
interaction energies, and results from the other methods dis-
cussed in the paper are freely available in the online database at
www.begdb.com.22

’ASSOCIATED CONTENT

bS Supporting Information. Table S1, listing errors of all of
the methods tested on S66a8 and S66x8 sets and geometries and

Figure 2. Root mean square error of selected methods in the S66x8
(dissociation curves) and S66a8 (angular displacements) data sets.
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benchmark interaction energies for the data sets featured in this
paper are provided. This material is available free of charge via the
Internet at http://pubs.acs.org.
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ABSTRACT:We compare aromatic π interactions with aliphatic π interactions of double- and triple-bonded π systems and non-π
stacking interactions of single-bonded σ systems. The model dimer systems of acetylene (C2H2)2, ethylene (C2H4)2, ethane
(C2H6)2, benzene (C6H6)2, and cyclohexane (C6H12)2 are investigated. The ethylene dimer has large dispersion energy, while the
acetylene dimer has strong electrostatic energy. The aromatic π interactions are strong with particularly large dispersion and
electrostatic energies, which would explain why aromatic compounds are frequently found in crystal packing and molecular self-
engineering. It should be noted that the difference in binding energy between the benzene dimer (aromatic�aromatic interactions)
and the cyclohexane dimer (aliphatic�aliphatic interactions) is not properly described in most density functionals.

Given that the interactions involved in π systems1�5 are
very important in molecular/biomolecular recognition,6�9

assembly,10�12 and engineering,13,14 there have been numerous
studies on π interactions.15�53 One might speculate if there are
significant differences in dispersion energies between aromatic π
interactions and aliphatic π interactions54 or non-π stacking
interactions and between single, double, and triple-bonded π
systems. In this regard, it is necessary to compare the inter-
molecular interaction energies for dimers of acetylene HCtCH
(triple bond; t-), ethylene H2CdCH2 (double bond; d-), ethane
H3C�CH3 (single bond; s-), benzene (

...CH...CH...)3 (aromatic
bond; a-), and cyclohexane (�CH2�CH2�)3 (cyclic single
bond; h-). To this end, we need to focus our attention on the
dimerization energy at high levels of theory and its energy
decomposition. Since the dispersion energy is very important
in π interactions, this study requires the complete basis set
(CBS) limit binding energies at the level of coupled cluster
theory with single, double, and perturbative triple excitations
[CCSD(T)]. The strength of theπ-interactions is determined by
the combined effect of attractive forces (electrostatic, dispersive,
and inductive) and repulsive forces (electrostatic, exchange
repulsion). Each of these components shows distinctive differ-
ences in physical origin, magnitude, and directionality of the
molecular interaction. This investigation is done by using
symmetry adapted perturbation theory (SAPT) calculations.
On the basis of the above calculations, we show the importance
of aromatic π interactions in crystal packing and molecular self-
engineering. In addition, since all of these results are very useful
to test the reliability of various functionals for density functional
theory (DFT), their validity for π-interactions along with their
strength and weakness is assessed.

To search for the lowest energy structures of acetylene,
ethylene, ethane, benzene, and cyclohexane dimers, we investi-
gated diverse topologically different conformers using a few
different types of DFT calculations. To confirm the minimum
energy structures for the acetylene, ethylene, and ethane dimers,

Figure 1. Low energy structures of the acetylene(t-) dimer, the
ethylene(d-) dimer, and the ethane(s-) dimer; (t-, triple bonded; d-,
double bonded; s-, single bonded).

Received: August 21, 2011
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frequency calculations were carried out at the DFT and Mol-
ler�Plesset second order perturbation (MP2) theory levels.
Then, the low-lying energy structures were optimized with the
basis set superposition error (BSSE) correction at the MP2 level
using the aug-cc-pVDZ (aVDZ) and aug-cc-pVTZ (aVTZ) basis

sets for the acetylene, ethylene, and ethane dimers and at the
resolution of identity approximation (RI) of MP2 (RI-MP2)/
aVDZ level for the benzene and cyclohexane dimers. Single-point
MP2/aug-cc-pVQZ(aVQZ) calculations were performed to es-
timate the CBS limit binding energies. The estimated CBS limit
values were evaluated on the basis of the extrapolation method
exploiting the fact that the basis set error in the electron corre-
lation energy is proportional to N�3 for the aug-cc-pVNZ
(aVNZ) basis set (ECBS = [EN*N

3 � EN�1(N � 1)3]/[N3 �
(N� 1)3]).55,56 We also carried out CCSD(T)/aVDZ optimiza-
tion and single point BSSE-corrected CCSD(T)/aVDZ and
CCSD(T)/aVTZ calculations on the CCSD(T)/aVDZ geome-
tries. However, in the case of cyclohexane dimer, we carried out
the same calculations on the BSSE-corrected MP2/aVDZ
(RIMP2) geometries. Given that the difference in binding energy
between MP2/aVNZ and CCSD(T)/aVNZ does not change
significantly with increasing basis set size, we obtained the
estimated CCSD(T)/CBS energies by assuming that the differ-
ence in binding energies between MP2/aVDZ and MP2/CBS
calculations is similar to that between CCSD(T)/aVDZ and
CCSD(T)/CBS calculations (ECCSD(T)/CBS = ECCSD(T)/aVDZ +
(EMP2/CBS � EMP2/aVDZ)).

56�58 However, the CCSD(T)/CBS
values are also obtained from the extrapolation based on the
CCSD(T)/aVDZ and CCSD(T)/aVTZ values. Since the MP2
dispersion energy corrections are not so reliable, the latter
extrapolation method could be a better choice. The BLYP/
TZVP, B97-D/TZVP,59 B3LYP-D/aVTZ,60 BLYP-D3/TZVPP,

Figure 2. Low energy structures of the benzene(a-) dimer and the
cyclohexane(h-) dimer (a-, aromatic bonded; h-, cyclohexane single
bonded).

Table 1. DFT, MP2/CBS, and CCSD(T)/CBS Binding Energies (-ΔEe in kcal/mol) for Low Energy Structures of the
Triple-Bonded Acetylene (t-), Double-Bonded Ethylene (d-), Single-Bonded Ethane (s-), Aromatic-Bonded Benzene (a-)
and Cyclic Single-Bonded Cyclohexane (h-) Dimersa

M06-2X/aVDZ M06-2X/DIDZ MPWB1K/aVDZ BLYP/TZVP B97-D/TZV2P B3LYP-D/aVTZ MP2/CBS CCSD(T) /CBSb

t-D-C2h 1.57(+0.20) 1.31(�0.06) 1.13(�0.24) 1.31(�0.6) 1.39(+0.02) 1.44(+0.07) 1.51(+0.14) 1.37[1.33]

t-T-C2v 1.68(+0.13) 1.49(�0.06) 1.37(�0.18) 1.65(+0.10) 1.70(+0.15) 1.79(+0.24) 1.63(+0.08) 1.55[1.45]

d-X-D2d 2.13(+0.73) 1.63(+0.23) 1.12(�0.28) 1.65(+0.25) 1.57(+0.17) 1.98(+0.58) 1.54(+0.14) 1.40[1.41]

d-T-C2v 1.34(+0.36) 1.07(+0.09) 0.57(�0.41) 1.13(+0.15) 1.18(+0.20) 1.24(+0.26) 1.25(+0.27) 0.98[1.00]

s-S-C2 2.25(+0.82) 1.61(+0.18) 0.90(�0.53) 1.71(+0.28) 1.57(+0.14) 2.09(+0.62) 1.37(+0.06) 1.43[1.33]

a-D-C2h 3.96(+1.23) 3.09(+0.36) 1.90(�0.83) 2.33(�0.40) 2.78(+0.05) 2.50(�0.23) 4.93(+2.18) 2.73[2.66]

a-T-Cs 3.59(+0.75) 2.90(+0.06) 1.58(�1.26) 2.89(+0.05) 3.08(+0.24) 3.12(+0.28) 3.72(+0.88) 2.84[2.81]

h-L-C1 3.30(+0.68) 2.21(�0.41) 1.02(�1.60) 4.15(+1.53) 3.98(+1.36) 4.38(+1.76) 2.76(+0.14) [2.62]

MADc 0.61 0.18 0.67 0.42 0.29 0.50 0.48

BLYP-D3/TZVPP PBE-D3/TZVPP TPSS/LP wB97XD/aVDZ wB97XD/6-311+G** M06HF/aVDZ M06HF/MG3S

t-D-C2h 1.35(�0.02) 1.63(+0.26) 1.43(+0.06) 1.70(+0.33) 1.59(+0.22) 1.55(+0.18) 1.39(+0.02)

t-T-C2v 1.58(+0.03) 1.59(+0.04) 1.54(�0.01) 1.85(+0.30) 1.64(+0.09) 1.76(+0.21) 1.32(�0.23)

d-X-D2d 1.47(+0.07) 1.61(+0.21) 1.82(+0.42) 2.12(+0.70) 1.90(+0.50) 1.59(+0.19) 1.33(�0.07)

d-T-C2v 1.13(+0.15) 1.44(+0.46) 1.19(+0.21) 1.52(+0.54) 1.41(+0.43) 1.19(+0.21) 0.83(�0.15)

s-S-C2 1.24(�0.19) 1.25(�0.18) 1.90(+0.47) 2.34(+0.91) 2.02(+0.59) 1.56(+0.13) 1.05(�0.38)

a-D-C2h 2.49(�0.24) 2.51(�0.22) 3.38(+0.65) 4.42(+1.69) 4.10(+1.37) 4.42(+1.69) 3.39(+0.66)

a-T-Cs 2.42(�0.42) 2.38(�0.46) 2.79(�0.05) 3.99(+1.15) 3.66(+0.82) 4.11(+1.27) 2.94(+0.10)

h-L-C1 2.95(+0.33) 3.22(+0.60) 3.75(+1.13) 4.99(+2.37) 4.51(+1.89) 2.10(�0.52) 1.57(�1.05)

MADc 0.18 0.30 0.38 1.00 0.74 0.55 0.33
aWhile the geometries for MP2/CBS and CCSD(T)/CBS were optimized at theMP2/aVDZ and CCSD(T)/aVDZ levels of theory, respectively, those
for all other methods were optimized at each given calculation method. For the CCSD(T)/CBS value of the cyclohexane dimer, the intermolecular
distance of the MP2/aVDZ optimized geometry was optimized at the CCSD(T)/aVDZ level. The values in parentheses are the differences of the
theoretical method-dependent binding energies from the CCSD(T)/CBS values. The bold characters indicate the largest upper and the smallest lower
binding energy differences with respect to the CCSD(T)/CBS values. bCCSD(T)/CBS values are obtained from the extrapolation by using the
CCSD(T)/aVDZ and CCSD(T)/aVTZ values. In the brackets, the values are obtained by assuming that the difference in binding energies between
MP2/aVDZ and MP2/CBS calculations is similar to that between CCSD(T)/aVDZ and CCSD(T)/CBS calculations.56�58 Since the MP2 dispersion
energy corrections are not so reliable, the former extrapolation method could be a better choice. cMAD is mean absolute deviation.
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PBE-D3/TZVPP, and TPSS/LP calculations were performed
with the Turbomol 5.10 suite of programs.61 In the case of the
TPSS functional, we used the 6-311++G**(3df,3dp) basis set
(which will be abbreviated as Large Pople’s (LP) basis set)
because the empirical dispersion is specially parametrized for this
particular basis set. The suitable basis set for M06-2X method is
the DIDZ basis set in that the results are basis set dependent. The
M06-2X,62 MPWB1K,63 wB97XD, M06HF, and MP2 calcula-
tions were carried out with the Gaussian 09 suite of programs.64

The CCSD(T) calculations were done with the MOLPRO suite.65

Themolecular structures were drawn with the POSMOL package.66

By using SAPT calculations,67�76 the total interaction energy
(Etot) is decomposed into electrostatic (Ees), effective induction
(Ein), effective dispersion (Edp), and effective exchange repulsion
(Ex) energies, as in our earlier work77,78 and others.67�76 Here,
Ein and Edp include the exchange-induction term and exchange-
dispersion term, respectively, while Ex excludes these terms from
the exchange term. The coupled Hartree�Fock response term
(δint,resp

HF) is added to Ein, since it tends to be more related to
the induction than other terms. DFT-SAPT calculations were
performed with the PBE0 functional79 and aVDZ basis set.

Using the DFT level of theory, we investigated many low-
energy structures for each dimer. Then, important low-energy
structures (Figures 1 and 2) were further investigated by using

MP2 and CCSD(T) calculations. The dimers are named as
“group-shape-sym-index”. Here, “group” denoted as “s/d/t/a/h”
indicates “single/double/triple/aromatic/cyclohexane-single”-
bonded; “type” as “S/D/X/T/L” indicates “stacked/displaced-
stacked/cross-stacked/T-shaped/overlayered”; “sym” denotes
the point group symmetry of molecular cluster; “index” as “/b/
c...” distinguishes each isomer from the lowest energy structure
for more than two isomers. The predicted binding energies for
the important dimer structures at various DFT, MP2/CBS, and
CCSD(T)/CBS levels are in Table 1. The binding energies in
the literature are reported in Table S5, Supporting Informa-
tion and the differences in binding energies of DFT andMP2/
CBS from the CCSD(T)/CBS values are in Figure 3. Our
discussion will be based on the CCSD(T)/CBS results unless
otherwise specified, because these results are considered to be
very reliable.

First, we briefly discuss the most stable structures of acetylene,
ethylene, ethane, benzene, and cyclohexane and their competing
stable structures. Although the geometrical search was carried
out using various DFT and MP2 methods, these results are not
quite consistent with the CCSD(T) results. Thus, we discuss the
low energy conformers on the basis of the CCSD(T) results, and
then the assessment of other methods will be given in compar-
ison with the CCSD(T) results.

We begin with the discussion on the structures of the various
types of dimers in terms of the energies (ΔEe) on the Born�
Oppenheimer potential surface at the level of CCSD(T)/CBS.
Themost stable stacked structures of acetylene, ethylene, ethane,
benzene, and cyclohexane dimers are t-D-C2h, d-X-D2d, s-S-C2,
a-D-C2h, and h-L-C1, respectively. Against these structures, there
are competing stable T-shaped structures of acetylene, ethylene,
and benzene, which are t-T-C2v, d-T-C2v, and a-T-Cs, respec-
tively. In most cases, the stacked or displaced-stacked structures
are more stable, except for the cases of the acetylene dimer and
the benzene dimer for which the T-shaped structures are slightly
more stable. In the case of the acetylene dimer, the zero point
energy (ZPE) correction makes both t-T-C2v and t-D-C2h nearly
isoenergetic, resulting in the quantum probabilistic structure
spanning both T-shaped and displaced-stacked structures80,81

(see the Supporting Information).
Now, we compare various DFT results and MP2 results with

the CCSD(T)/CBS results for a few important cases. For the
acetylene dimer and the ethylene dimer, the BLYP-D3/TZVPP
results are better than other DFT methods. Both BLYP-D3/
TZVPP and MP2/CBS results are in reasonable agreement with
the CCSD(T)/CBS results. The intermolecular distance be-
tween the centers of mass of two ethylene monomers is 3.82 Å
at BLYP-D3/TZVPP and MP2/aVTZ, as compared with 3.78 Å
at CCSD(T)/aVDZ. Among the DFT methods, BLYP-D3/
TZVPP is in good agreementwithCCSD(T)/CBS, though slightly
overestimated. The MP2/CBS results are also in good agreement
with the CCSD(T)/CBS results.

In the case of the benzene dimer, at the DFT level, the
displaced-stacked structures are more stable at the M06-2X,
MPWB1K, BLYP-D3, PBE-D3, TPSS, wB97XD, and M06HF
levels, while the T-shaped isomers are more stable at the BLYP/
TZVP, B97-D/TZVP, and B3LYP-D/aVTZ levels. At the MP2/
CBS level, the displaced-stacked structure is far more stable
than the T-shaped structure, which is the weakest point of the
MP2 level of theory on the π�π interaction.

For the cyclohexane dimer, against the CCSD(T)/CBS bind-
ing energy of 2.62 kcal/mol for the isomer h-L-C1, we note

Figure 3. Difference of the binding energies of DFT and MP2/CBS
from the CCSD(T)/CBS values.
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substantial energy differences between different methods. The
binding energy is 1.02 kcal/mol atMPWB1K/TZVPP, 3.30 kcal/
mol at M06-2X/aVDZ, 3.98 kcal/mol at B97-D/TZV2P, 4.15
kcal/mol at BLYP/TZVP, 2.95 kcal/mol at BLYP-D3/TZVPP,
and 4.38 kcal/mol at B3LYP-D/aVTZ. Among the DFT meth-
ods, only the BLYP-D3/TZVPP method gives a reasonable
value. The MP2/CBS value (2.76 kcal/mol) is in good agree-
ment with the CCSD(T)/CBS. The intermolecular distance
between two centers of mass of the two monomer units is 4.51
Å at BLYP-D3, 4.62 Å at RIMP2/aVTZ, and 4.77 Å at the BBSE-
corrected CCSD(T)/aVDZ.

When various DFT and MP2/CBS binding energies are
compared with the CCSD(T)/CBS binding energies for t-D-
C2h, d-X-D2d, s-S-C2, a-D-C2h/ a-T-Cs, and h-L-C1, there are
significant discrepancies in certain cases. For example, M06-2X/
aVDZ, wB97XD/6-311+G**, wB97XD/aVDZ, and MP2/CBS
overestimate the binding energy of a-D-C2h (by 1.2, 1.4, 1.7, and
2.2 kcal/mol, respectively), while MPWB1K/aVDZ underesti-
mates it (by 0.8 kcal/mol). B3LYP-D/aVTZ, BLYP/TZVP, and
B97-D/TZV2P overestimate that of a-L-C1 (by 1.7, 1.5, and 1.3
kcal/mol, respectively), while MPWB1K/aVDZ underestimates
it (by 1.6 kcal/mol). The BLYP-D3/TZVPP binding energies

Table 2. Center-to-Center Distance of the Low Energy Structures of the Acetylene(t-), Ethylene(d-), Ethane(s-), Benzene(a-),
and Cyclohexane(h-) Dimersa

M06-2X/DIDZ MPWB1K/aVDZ BLYP/TZVP B97-D/TZV2P B3LYP-D/aVTZ MP2/aVTZ CCSD(T)/aVDZ CCSD(T)/aVTZ

Center-to-Center Distance

t-D-C2h 4.17(�0.15) 4.27(�0.05) 4.27(�0.05) 4.29(�0.03) 4.09(�0.23) 4.18(�0.14) 4.32 4.26

t-T-C2v 4.33(�0.12) 4.42(�0.03) 4.29(�0.16) 4.33(�0.12) 4.27(�0.18) 4.35(�0.10) 4.45 4.40

d-X-D2d 3.59(�0.19) 3.84(+0.06) 3.55(�0.23) 3.65(�0.13) 3.51(�0.27) 3.82(+0.04) 3.78 3.73

d-T-C2v 3.73(�0.23) 3.86(�0.10) 3.64(�0.32) 3.77(�0.19) 3.63(�0.33) 3.79(�0.17) 3.96 3.91

s-S-C2 3.52(�0.33) 3.73(�0.12) 3.46(�0.39) 3.60(�0.25) 3.40(�0.45) 3.70(�0.15) 3.85 3.80

a-D-C2h 3.80(�0.24) 3.92(�0.12) 3.87(�0.17) 3.93(�0.11) 3.84(�0.20) 3.69(�0.35) 4.04 3.97

a-T-Cs 4.85(+0.18) 5.18(+0.15) 4.82(�0.21) 4.87(�0.16) 4.79(�0.24) 4.85(�0.18) 5.03 4.97

h-L-C1 4.44(�0.18) 4.64(+0.02) 4.20(�0.42) 4.26(�0.36) 4.22(�0.55) 4.62(�0.15) 4.77

Vertical Distance

t-D-C2h 2.84(�0.09) 2.90(�0.03) 2.90(�0.03) 2.90(�0.03) 2.79(�0.14) 2.77(�0.16) 2.93 2.83

t-T-C2v 2.66(�0.09) 2.75(0.00) 2.62(�0.13) 2.66(�0.09) 2.60(�0.15) 2.68(�0.07) 2.75 2.70

d-X-D2d 1.74(�0.17) 1.99(+0.08) 1.69(�0.22) 1.79(�0.12) 1.66(�0.25) 1.95(+0.04) 1.91 1.86

d-T-C2v 2.85(�0.22) 2.98(�0.09) 2.76(�0.31) 2.89(�0.18) 2.76(�0.31) 2.91(�0.16) 3.07 2.98

s-S-C2 1.76(�0.31) 2.00(�0.07) 1.69�0.38) 1.84(�0.23) 1.64(�0.43) 1.94(�0.13) 2.07 2.02

a-D-C2h 3.33(�0.29) 3.57(�0.05) 3.39(�0.23) 3.47(�0.15) 3.37(�0.25) 3.34(�0.28) 3.62 3.56

a-T-Cs 2.49(�0.08) 2.74(+0.17) 2.46(�0.11) 2.48(�0.09) 2.46(�0.11) 2.42(�0.15) 2.57 2.50

h-L-C1 1.78(�0.26) 1.99(�0.05) 1.54(�0.50) 1.60(�0.44) 1.57(�0.47) 1.94(�0.10) 2.04

BLYP-D3/TZVPP PBE-D3/TZVPP TPSS/LP wB97XD/aVDZ wB97XD/6-311+G** M06HF/aVDZ M06HF/MG3S

Center-to-Center Distance

t-D-C2h 4.27(�0.05) 4.27(�0.05) 4.32(0.00) 4.16(�0.16) 4.18(�0.14) 4.14(�0.18) 4.16(�0.16)

t-T-C2v 4.42(�0.03) 4.42(�0.03) 4.52(0.07) 4.34(�0.11) 4.38(�0.07) 4.35(�0.10) 4.41(�0.04)

d-X-D2d 3.82(0.04) 3.82(0.04) 3.73(�0.05) 3.65(�0.13) 3.65(�0.13) 3.71(�0.07) 3.65(�0.13)

d-T-C2v 3.80(�0.16) 3.80(�0.16) 3.89(�0.07) 3.74(�0.22) 3.74(�0.22) 3.78(�0.18) 3.89(�0.07)

s-S-C2 3.67(�0.18) 3.88(0.03) 3.67(�0.18) 3.56(�0.29) 3.59(�0.26) 3.60(�0.25) 3.57(�0.28)

a-D-C2h 3.77(�0.27) 3.97(0.07) 3.85(�0.19) 3.82(�0.22) 3.81(�0.23) 3.75(�0.29) 3.74(�0.30)

a-T-Cs 5.13(.10) 5.18(.15) 5.14(.11) 4.87(�0.16) 4.89(�0.14) 4.75(�0.28) 4.82(�0.21)

h-L-C1 4.51(�0.26) 4.59(�0.18) 4.45(�0.32) 4.30(�0.47) 4.31(�0.46) 4.47(�0.30) 4.51(�0.26)

Vertical Distance

t-D-C2h 2.89(�0.04) 2.90(�0.03) 2.90(�0.03) 2.85(�0.08) 2.85(�0.08) 2.77(�0.15) 2.88(�0.05)

t-T-C2v 2.74(�0.01) 2.74(�0.01) 2.85(0.10) 2.66(�0.09) 2.71(�0.04) 2.68(�0.07) 2.75(.00)

d-X-D2d 1.97(0.06) 1.96(0.05) 1.89(0.02) 1.80(�0.11) 2.73(�0.18) 1.79(�0.12) 1.81(�0.10)

d-T-C2v 2.87(�0.20) 2.86(�0.21) 2.96(�0.11) 2.80(�0.27) 2.81(�0.26) 2.85(�0.22) 2.97(�0.10)

s-S-C2 1.94(�0.13) 2.06(�0.01) 1.90(�0.17) 1.80(�0.27) 1.88(�0.19) 2.78(�0.29) 1.83(�0.24)

a-D-C2h 3.43(�0.19) 3.64(0.02) 3.55(�0.07) 3.47(�0.15) 3.45(�0.17) 3.28(�0.44) 3.27(�0.35)

a-T-Cs 2.80(.23) 2.86(.29) 2.82(.25) 2.54(�0.3) 2.57(.00) 2.27(�0.30) 2.42(�0.15)

h-L-C1 1.85(�0.19) 1.92(0.12) 1.80(�0.24) 1.64(�0.40) 1.67(�0.37) 1.80(�0.24) 1.86(�0.20)
aThe bold characters indicate the largest upper and the smallest lower distance differences with respect to the CCSD(T)/aVDZ values, which are close
to the CCSD(T)/aVTZ values (t-, triple bonded; d-, double bonded; s-, single bonded; a-, aromatic bonded; h-, cyclohexane single bonded).
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agree with the CCSD(T)/CBS energies within 0.4 kcal/mol, but
the a-D-C2h/a-T-Cs is underestimated by 0.2/0.4 kcal/mol, while
the h-L-C1 is overestimated by 0.3 kcal/mol. This results in a
substantial binding energy difference (0.75 kcal/mol) between
the two cases (i.e., benzene and cyclohexane) as compared with
an insignificant binding energy difference between the two
(0.1�0.2 kcal/mol) in CCSD(T)/CBS. Among various DFT
methods, the M06-2X/DIDZ, B97-D/TZV2P, MP2/CBS, and
M06HF/aVDZ methods are better for the ethane dimer. In the
case of the T-shaped ethylene dimer, M06-2X/DIDZ, BLYP/
TZVP, BLYP-D3/TZVPP, and M06HF/MG3S are better, while
for the X-shaped ethylene dimer, MP2/CBS, BLYP-D3/TZVPP,
and M06HF/MG3S are better. The M06-2X/DIDZ, BLYP/
TZVP, B97-D/TZVPP, BLYP-D3/TZVPP, and TPSS/LP
methods are better for the acetylene dimer. The M06-2X/DIDZ,
BLYP/TZVP, and TPSS/LP methods are better for the
T-shaped benzene dimer, while B97-D/TZVPP is better for
the displaced stacked structure. The BLYP-D3/TZVPP and
MP2/CBS methods are better for the cyclohexane dimer. Over-
all, BLYP-D3/TZVPP and M06-2X/DIDZ calculations properly
reproduce the CCSD(T)/CBS binding energies as compared
with other methods. However, we believe that the DFT func-
tionals need to be further improved to describe the difference in
binding energy between the benzene dimer and the cyclohexane
dimer. M06-2X/DIDZ, BLYP/TZVP, B97-D/TZVPP, and
BLYP-D3/TZVPP are working well, except for the cyclohexane
dimer. Overall, M06-2X/DIDZ and BLYP-D3/TZVPP are
working well. Its mean unsigned relative error or mean absolute
deviation (MAD) is 0.18 kcal/mol. Such deviations in the center-
to-center distances and vertical distances for the dimer structures
(in particular, significantly shortened distances for the cyclohex-
ane dimer) are also noted in the above DFT calculation methods
(Table 2).

The energy components based on the SAPT/DFT are listed in
Tables 3 and 4. The total interaction energies for the stacked
structures of acetylene, ethylene, ethane, benzene(displaced-
stacked/T-shaped), and cyclohexane dimers are �1.40, �1.29,
�1.08, �2.67/�2.51, and �2.32 kcal/mol, respectively. As
compared with the CCSD(T)/CBS energies, the SAPT/DFT
energies of the T-shaped benzene dimer and the cyclohexane
dimer are somewhat underestimated by 0.3 kcal/mol, while other
cases are close to the CCSD(T) energies. The corresponding Edp
values of the above dimers are �1.52, �2.56, �3.17, �8.68/
�5.01, and�5.54 kcal/mol, respectively, and the corresponding
electrostatic energies (Ees) are �1.82, �1.18. �0.84, �2.64/
�1.99, and �1.27 kcal/mol, respectively. Although the total
interaction energies for acetylene, ethylene, and ethane dimers
are similar, the CtC has much weaker dispersion energy than
the CdC, which is again weaker than the C�C (for which the
dispersion would arise from the interaction between C and H).
On the other hand, the electrostatic energy is large for the
acetylene dimer (because of significantly positive charge of H
atoms in acetylene, qH: 0.225 au) but small for the ethane dimer
(Figure 4). Again, although the total interaction energies of
the dimers for benzene and cyclohexane are similar, the
(...C...C...)cyclic case has much stronger dispersion and electrostatic
energies than the (�C�C�)cyclic case.Despite that the dispersion
energy tends to be correlated with the number of valence
electrons participating in the interaction between the molecules
(acetylene, 20; ethylene, 22; ethane, 24; benzene, 60; cyclohex-
ane, 66), one can note that the stacked ethane dimer and the
displaced-stacked benzene dimer show particularly large dispersion
energies. In the case of the benzene dimer, the electrostatic
interaction energy (due to the quadrupole moments of benzene)
is also large. This result would thus explain why aromatic com-
pounds are easily found in crystals and self-assembled systems.

To obtain insight into these noncovalent interactions, the
second order perturbation theory approximately gives the dis-
persion energies between two 1s electrons (1s�1s), between two
2s electrons (2s�2s), between two 2pz electrons (2pz�2pz), and
between 2p1 electrons (2p1�2p1) for two hydrogenic atoms,
which are separated by distance R along the z axis. These four
values in units of (e4/R6)(ao/Zeff)

4 are estimated to be ∼6
(1s�1s), ∼1176 (2s�2s), ∼1368 (2pz�2pz), and ∼432
(2p1�2p1), where e is the electron charge, ao is 1 Bohr, and Zeff
is the effective nuclear charge of the hydrogenic atom (Zeff is 1 for
H, 3.22 for C(2s), and 3.14 for C(2p)). The dispersion energy
between 1s(H) and 2s(C) electrons is estimated to be∼84 (e4/
R6)(ao

4/Zeff
2). In general, two closely contacted nonbonded

carbon atoms are separated by R = ∼3.5 Å, while the closely
contacted nonbonded distance between H and C is R = ∼2.5 Å.
Then, the C 3 3 3H dispersion energy is also strong. What is

Table 4. SAPT-DFT Interaction Energy Components (kcal/mol) of the Stacked Conformers of Acetylene, Ethylene, and Benzene
Dimers, As in Table 3 (t-, triple bonded; d-, double bonded; s-, single bonded; a-, aromatic bonded; h-, cyclohexane single bonded)

CCSD(T)/aVDZopt interplane distance interplane distance 3.41 Å interplane distance 3.7 Å

DFT-SAPT t-S-C2h d-S-D2h a-S-D6h t�S-C2h d-S-D2h a-S-D6h t�S-C2h d-S-D2h a-S-D6h

Etot 0.18 0.00 �1.18 1.67 1.31 0.49 0.71 0.36 �1.18

Ees 0.42 0.31 �0.46 �0.01 �0.88 �2.91 0.45 �0.03 �0.46

Eid �0.02 �0.06 �0.30 �0.24 �0.33 �0.52 �0.12 �0.17 �0.30

Edp �0.33 �0.89 �6.70 �2.32 �3.23 �10.74 �1.38 �1.95 �6.70

Ex 0.12 0.63 6.28 4.23 5.75 14.66 1.76 2.51 6.28

Table 3. SAPT-DFT Interaction Energy Components (kcal/
mol) for Important Conformers of the Acetylene, Ethylene,
Ethane, Benzene, and Cyclohexane Dimersa

t-D-C2h t-T-C2v d-X-D2d d-T-C2v s-S-C2 a-D-C2h a-T-Cs h-L-C1

Etot �1.40 �1.56 �1.29 �1.03 �1.08 �2.67 �2.51 �2.32

Ees �1.82 �2.22 �1.18 �1.04 �0.84 �2.64 �1.99 �1.27

Eid �0.36 �0.72 �0.23 �0.38 �0.19 �0.89 �0.60 �0.38

Edp �1.52 �1.65 �2.56 �2.41 �3.17 �8.68 �5.01 �5.54

Ex 2.30 3.04 2.68 2.81 3.13 9.54 5.09 4.88
a PBE0 functional and aVDZ basis set are employed (t-, triple bonded;
d-, double bonded; s-, single bonded; a-, aromatic bonded; h-, cyclo-
hexane single bonded).
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interesting is that the dispersion energy for the 2pz�2pz electrons is
stronger than that for the 2s�2s electrons, which is much stronger
than that for the 2p1�2p1 electrons. Similarly, in the accurate
calculations of the dispersion energy between all electrons of twoO
atoms, one can note that the van der Waals coefficients of the
3P1�3P1 interaction and the 3P0�3P0 interaction are 18.0 and
16.7 au, respectively.82 In this regard, we expect that the dispersion
energy for 2pz�2pz electrons would favor the maximally over-
lapped stacked conformation, while the electrostatic energy would
disfavor this overlapping. In the ethene andbenzene, the gain by the
dispersion energy for 2pz�2pz electrons is substantial due to their
planar conformation, while in the ethane and cyclohexane, the
dispersion energy between 1s(H) and 2s(C) electrons is signifi-
cant. The present results including the competition and coopera-
tion between dispersion and electrostatic energies are very
important for investigating the reliability of density functionals in
predicting diverse molecular interaction energies.

In summary, we have studied the structural isomers and
interaction energy of triple-bonded acetylene, double-bonded
ethylene, single-bonded ethane, aromatic benzene, and cyclic
single-bonded cyclohexane dimers. In the case of the ethylene
dimer, ethane dimer, benzene dimer, and cyclohexane dimer, the
dispersion energy is dominant, while in the case of acetylene
dimer, the electrostatic energy is dominant. The aromatic π
interactions have particularly large dispersion and electrostatic
energies among various types of π interactions. This phenom-
enon would be related to the fact that aromatic compounds are
easily found in crystals, which is indeed very important for crystal
packing and molecular self-engineering.
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ABSTRACT: In a previous study (J. Chem. Phys. 2008, 129, 094701) it was shown that for a largemolecule, with a total energymuch
greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical
Rice�Ramsperger�Kassel�Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become
equivalent. Using this relationship, a molecule’s unimolecular rate constants versus temperature may be determined from chemical
dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the
molecule’s unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the
thermal decomposition of CH3�NH�CHdCH�CH3, an important constituent in the polymer of cross-linked epoxy resins.
Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical
ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good
agreement with the TST Arrhenius parameters for theMP2/6-31+G* potential energy surface. The simulation method applied here
may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be
difficult to determine and have structures that are not readily obvious.

1. INTRODUCTION

Computational chemistry is an important tool for studying
unimolecular reactions.1,2 To understand the dynamics and
kinetics of a unimolecular reaction, it is necessary to know the
atomic-level mechanism(s) by which a molecule dissociates.3

Electronic structure calculations4 are often used to identify the
important unimolecular pathways and transition states (TSs). A
classical trajectory chemical dynamics simulation5 may be per-
formed to investigate the molecule’s atomistic intramolecular
and unimolecular dynamics.1,2 The potential energy surface
(PES) for this simulation may be an analytic potential energy
function,6,7 or the simulation may be performed by direct
dynamics,8,9 in which the gradient and potential energy for
calculating the trajectory is obtained directly from an electronic
structure theory.

For large molecules and/or high energies (e.g., hyper-
thermal),10�12 identifying reaction pathways and TS properties
by electronic structure calculations becomes less practical and
more challenging. This is because the important decomposition
pathways may become less identifiable, and there is the possibi-
lity of a multitude of pathways.13,14 Such effects are found when
protonated peptide ions collide with hydrocarbon surfaces.15,16

For collisions of protonated diglycine with the diamond {111}
surface, at a collision energy of 100 eV, 88 different fragmentation
pathways of the peptide ion are observed.15 Similarly, protonated
octaglycine dissociates via 304 pathways when it collides with the
diamond {111} surface at 100 eV.16 Identifying TSs for all of
these pathways would be a formidable task and may also be
impractical.

In this article a classical trajectory direct chemical dynamics
simulation procedure is described and applied for determining
the reaction pathways of a molecule undergoing unimolecular
decomposition at temperatureT. Furthermore, by calculating the

unimolecular constants ki(T) for the individual paths versus T,
the Arrhenius parameters A and Ea for the paths may be
determined. The unimolecular reactions investigated are those
for decomposition of CH3�NH�CHdCH�CH3 (Figure 1),
which represents an important constituent in the polymer of
cross-linked epoxy resins.17,18 This molecule is small enough that
the ab initio TSs may be determined, and thus, Arrhenius
parameters may be determined for these TSs using transition-
state theory (TST) and compared with the simulation values.
This provides a test of the simulation methodology. In the
following, the theoretical model and the computational metho-
dology are first described, followed by a presentation of the
computational results.

2. THEORETICAL MODEL

The theoretical approach used here is based on the recent
finding19 that for a molecule consisting of s harmonic oscillators
the classical Rice�Ramsperger�Kassel�Marcus (RRKM) rate
constant:

kðEÞ ¼ ν
E� Eo

E

� �s � 1

ð1Þ

and classical TST rate constant:

kðTÞ ¼ ν expð � Eo=kBTÞ ð2Þ
become equivalent for large E with Eo/E, 1 and large s≈ s� 1.
For s classical harmonic oscillators, the energy and the tempera-
ture are related by E = skBT. Thus, a simulation of the
unimolecular decomposition of a microcanonical ensemble at

Received: July 2, 2011
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energy Emay be used to determine the thermal unimolecular rate
constant k(T). This relationship is consistent with the under-
standing that, for a molecule with large s and large E, the
populations of the vibrational states of the individual oscillators
are given by a Boltzmann distribution20 and that the fluctuations
of the energy of a grand canonical ensemble are negligible,
making it similar to a microcanonical ensemble.21 If anharmonic
effects are important, they may be included by multiplying the
expressions in eqs 1 and 2 by an anharmonic correction factor,19

which accounts for anharmonicity in both the reactant molecule
and TS.

The trajectories comprising this microcanonical ensemble are
integrated until a unimolecular reaction occurs or up to a
maximum time tmax. The reactions observed are those important
for the molecule at temperature T. The total rate constant k for
unimolecular decomposition of the molecule may be found by
fitting the number of molecules remaining versus time:

NðtÞ=Nð0Þ ¼ expð � ktÞ ð3Þ
where N(0) is the number of trajectories for the initial micro-
canonical ensemble at t = 0 or more approximately from the
number of trajectories remaining at tmax, i.e.:

NðtmaxÞ=Nð0Þ ¼ expð � ktmaxÞ ð4Þ
The total number of products formed at tmax is P(tmax) =N(0)�
N (tmax). The total unimolecular rate constant is a sum of the rate
constants for the individual unimolecular pathways, i.e., k = ∑ki,
and the rate constant for an individual pathway is simply:

ki ¼ ½PiðtmaxÞ=PðtmaxÞ�k ð5Þ
where Pi(tmax) is the number of sets of products formed for path i
at tmax. The Arrhenius parameters Ai and Ea,i for path i are found
from the Arrhenius equation ki (T) = Ai exp(�Ea,i/kBT) by
determining ki as a function of T.

The above theoretical model assumes the unimolecular dy-
namics are intrinsically RRKM,22 so that a microcanonical
ensemble of states is maintained as the molecule decomposes.
As shown by the simulation results, these dynamics are observed
for the molecule studied here CH3�NH�CHdCH�CH3.

3. COMPUTATIONAL METHODOLOGY

3.1. Direct Dynamics Simulations. The simulations are
performed using direct dynamics8,9 in which the technology of
classical trajectory calculations is coupled with electronic struc-
ture theory. In this manner, the gradient, energy, and possibly
Hessian23,24 needed to calculate the trajectory come directly
from an electronic structure theory, without the need for an
analytic potential energy function. To initialize the trajectories,
the phase space of the reactant molecule is excited randomly at

fixed energy E to form a microcanonical emsemble.25 The
temperature associated with this energy may be identified from
the average kinetic energy of the molecule’s N atoms, i.e.:

∑
N

i¼ 1
mi < ν

2
i > =2 ¼ 3NkBT=2 ð6Þ

or by equating E to the average thermal energy of the molecule’s
s = 3N � 6 classical oscillators, i.e., E = skBT. Procedures for
forming this microcanonical ensemble are well established.22,25�29

The simulations of CH3�NH�CHdCH�CH3 unimolecu-
lar decomposition were performed by exciting microcanonical
ensembles of molecules so that their temperatures (E = skBT)
were 3500, 4000, 4500, 5000, and 5500 K. The software package
consisting of the chemical dynamics computer program
VENUS30,31 interfaced with the NWChem32 electronic structure
computer program was used for the simulations. A total of 100
trajectories were calculated for each temperature. The simula-
tions were performed by direct dynamics using the MP2/6-31
+G* electronic structure theory. The trajectories with T of
3500�5000 K were integrated for tmax of 5.1 ps or until a
unimolecular reaction occurred. The 5500 K trajectories were
integrated with tmax = 3.3 ps. The reported uncertainties for the
rate constants and the Arrhenius parameters are standard devia-
tions. The temperatures of the simulations were determined
from E = skBT.
3.2. PES and TST Calculations. The model PES for the direct

dynamics simulations is given by MP2/6-31+G* theory. It is
recognized that MP2 is quite approximate for homolytic bond
rupture reactions,33 due to the shortcomings of Hartree�Fock
theory.34 As discussed below, the most important decomposition
pathway found here for CH3�NH�CHdCH�CH3 is dissocia-
tion to 3CH3 + 3NH�CHdCH�CH3. The MP2 potential
energy curve for this dissociation is given in Figure 2. The
potential energy varies from 87.76 kcal/mol at rC�N= 3.06 Å
to 87.78 kcal/mol at rC�N= 3.14 Å, with a maximum of 87.83
kcal/mol at 3.11 Å. This dissociation energy is similar to the
experimental value of 85.1 kcal/mol for CH3�NH2.

35 The
CH3�NH dissociation energy, for the molecule studied here,
is expected to be slightly lower than the value for CH3�NH2,
since replacing one of the H-atoms of�NH2 by a C-atom lowers
the bond energy.35

The TS for CH3�NH�CHdCH�CH3 f 3CH3 + 3NH�
CHdCH�CH3 dissociation is variational, and its structure is
determined by the shape of the potential energy curve.36�38 As
shown by earlier work,39 MP2 theory does not give the correct

Figure 1. Structure of CH3�NH�CHdCH�CH3, the molecule
investigated for the unimolecular decomposition studies.

Figure 2. MP2/6-31+G* potential energy curve (0) for CH3�
NH�CHdCH�CH3f 3CH3 + 3NH�CHdCH�CH3 dissociation.
The dashed line is the Morse potential energy curve.
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potential energy curve for such a dissociation. Using the MP2
dissociation energy of 87.83 kcal/mol and MP2 quadratic force
constant for C�N stretching of 5.20 mdyn/Å, the Morse
potential energy curve, V = D{1 � exp�[β(r � ro)]}

2, is given
in Figure 2, where it is compared with the MP2 potential energy
curve. (This C�N stretching force constant is only slightly larger
than the experimental value of 5.12 mdyn/Å for CH3NH2.)

35

The MP2 curve rises more steeply and may be fit by a r-
dependent Morse β parameter.40,41 Such a curve has been
referred to as a “stiff” Morse potential.40,41 The variational
TS42 for a stiff Morse potential is at a much shorter bond length
than for the standardMorse potential, resulting in amuch “tighter”
TS.42 This leads to a significantly smaller A factor for the stiff
Morse potential. For CH4fH+CH3 dissociation, the A factor is
an order of magnitude smaller for the stiff Morse potential.40�42

The Morse potential more accurately models the actual potential
energy curve than does the “stiff” Morse potential.39 Thus, the
MP2 direct dynamics is expected to give an A factor for
CH3�NH�CHdCH�CH3f 3CH3 + 3NH�CHdCH�CH3

dissociation, which is significantly smaller than the assumed
experimental value of 1016�1017 s�1.43

Classical TST calculations were performed to calculate Ar-
rhenius parameters for the MP2/6-31+G* PES, to compare with
the Arrhenius parameters determined from the MP2/6-31+G*
direct dynamics simulations. As discussed below, three pathways
were considered for this comparison, i.e., the decomposition to

3CH3 + 3NH�CHdCH�CH3 and two isomerization reactions.
For the harmonic oscillator model, the classical TST rate
constant in eq 2 is given by

kðTÞ ¼
Qs
i¼ 1

νi

Qs � 1

i¼ 1
ν6¼i

expð � Eo=kBTÞ ð7Þ

where the νi are the vibrational frequencies for the unimolecular
reaction, the νi

6¼ the vibrational frequencies for the TS, and Eo
the classical potential energy barrier for the MP2 PES. The ratio
of the products of vibrational frequencies is the Arrhenius A
factor and Eo is the activation energy.
The above harmonic oscillator model is expected to be

applicable for the two isomerization reactions, which have “tight”
transition-state structures located at the isomerization barriers.
As discussed above, the C�N dissociation reaction to form

3CH3 + 3NH�CHdCH�CH3 has a variational TS located at
the minimum in k(T) along the dissociation path.37,38 For bond
dissociations, such as CH4 f H + CH3, a harmonic oscillator
variational TST model is accurate,44�46 and this model is used
here for C�N bond dissociation. Vibrational frequencies and
potential energies are found along the intrinsic reaction coordi-
nate (IRC),47,48 and this information is used to find the mini-
mum in k(T), i.e., eq 7. These calculations were performed with
the GAMESS computer program.49

The IRC frequency for the CH3 torsion about the C�N bond
was found to be unstable, and its value was found by interpolation
between the frequency of 208 cm�1 at the CH3�NH�CHd
CH�CH3 potential energy minimum to 29.8 cm�1 at the energy
maximum at RC�N = 3.11 Å (see above). In previous work, the
frequency for such a mode was found to decay approximately
exponentially as the bond ruptures.39�51 This exponential inter-
polation, as well as linear interpolation, was considered here and
found to give similar results.

A more accurate representation of the C�N dissociation
reactionmay require a flexible variational TSTmodel52�54 which
treats the transitional vibrational modes, that are transformed
into product rotations, as hindered rotational degrees of free-
dom. An important property of the model is that it includes
anharmonicity for the transitional modes.55,56 A possible short-
coming is the assumed separability between the transitional and
remaining modes, which becomes more approximate as the
length of the rupturing bond is shortened. This could be a
problem for the MP2/6-31+G* PES, which has a “stiff” Morse
potential for the C�N bond (see above). However, in future
analyses of this C�N bond dissociation, it would be of interest to
consider the flexible variational TST model.
The TST activation energies and A factors for the MP2/6-31

+G* PES were compared with these parameters found from the
chemical dynamics simulations. The TSs for the isomerization
reactions were placed at their potential barriers to give their Eo
values and the A factors were calculated from eq 7. For C�N
dissociation, both the bond dissociation energy and the potential
energy at the IRC variational TS were considered as possible
MP2 values for Eo. The dissociation A factor is that for the
variational TS.

Figure 3. Plots of ln N(t) for the number of excited CH3�NH�
CHdCH�CH3 molecules remaining versus time for simulations at
4500, 5000, and 5500 K. The fits are to eq 4. The unit for t is sec.
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4. SIMULATION RESULTS

A total of 100 trajectories were calculated for each of the
temperatures 3500, 4000, 4500, 5000, and 5500 K. The number
of trajectories which reacted within tmax for the respective
temperatures is 6, 19, 48, 84, and 100. A total of 33 different
primary and secondary decomposition pathways were observed,
and a mechanistic analyses of these pathways and their relation-
ship to experiment will be presented elsewhere.57Of interest here
is the kinetics analysis discussed in Section 2. The dominant
pathway is C�N bond rupture to form the radicals 3CH3 and

3NH�CHdCH�CH3. The isomerizations via H-atom transfer,
to form CH3�NdCH�CH2�CH3 and CH3�NH�CH2�
CHdCH2 are also important pathways. This bond rupture and
these isomerizations are considered here.

Using the number of dissociations which occurred within tmax,
eq 4, the rate constant k for decomposition of CH3�NH�CHd
CH�CH3 is (1.21 +0.49/�0.50)� 1010, (4.13 +0.93/�0.97)�
1010, (1.28 +0.18/�0.20) � 1011, and (3.59 +0.41/�0.51) �
1011 s�1 for T of 3500, 4000, 4500, and 5000 K, respectively.
Equation 4 may not be used to calculate a rate constant for
5500 K, since all the trajectories dissociated within tmax. For the
calculations at 4500, 5000, and 5500 K, there is a sufficient
number of reactions to find the rate constant from a plot of ln
N(t) versus t; i.e., eq 3. The plots are given in Figure 3, and the
fitted rate constants for the respective temperatures are 1.30 (
0.02 � 1011, 3.65 ( 0.05 � 1011, and 1.16 ( 0.03 � 1012 s�1.
Values for these rate constant found from nonlinear fits of eq 3
are nearly the same and 1.37 � 1010, 3.41 � 1011, and 9.75 �
1011 s�1, respectively. The rate constants from plots of ln N(t)
andN(t)/N(0) are in excellent agreement with those found from
the single pointN(tmax)/N(0). In the following analyses, the rate
constants for 3500�5000 K are from N(tmax)/N(0), while the
5500 K value is from the ln N(t) plot.
4.1. CH3�NH�CHdCH�CH3 f 3CH3 + 3NH�CHdCH�

CH3 Dissociation. The rate constant versus temperature for
C�Nbond rupture to form 3CH3 + 3NH�CHdCH�CH3was
determined using eq 5, the total rate constant versus temperature
and the Pi(tmax)/P(tmax) ratio for this decomposition pathway. The
resulting kd rate constants are given in Figure 4 as a plot of ln kd
versus 1/T. The linear fit to this plot gives Ea = 82.8( 4.3 kcal/mol
andA= 8.0 + 5.2/�3.2� 1014 s�1. TheEa value of 82.8 kcal/mol is
similar to but somewhat lower than theMP2 dissociation energy of
87.83 kcal/mol. This difference is expected from the variational

nature of the TS for the C�N bond dissociation pathway.37,38 As
the temperature is increased, the free energy barrier for C�Nbond
rupture moves to a shorter C�N bond length, resulting in
activation energies that are decreased as the temperature is
increased37,38 and are less than the dissociation energy. The direct
dynamics A factor of∼1015 s�1 is much smaller than the expected
experimental value of 1016�1017 s�1 for CH3 dissociation.42,43

Such a result is expected. The MP2/6-31+G* potential for C�N
bond rupture, Figure 2, is not sufficiently attractive and, thus, gives
rise to a variational TS structure that is “too tight”. The result is a
small A factor.
As discussed in Section 3.2, a harmonic oscillator model, based

on the IRC, was used to find a variational TS for C�N bond
rupture at 4000 K. The resulting TS is located at a C�N distance
of 2.41 Å, giving rise to a potential energy of 73 kcal/mol and a A
factor of 8 � 1014 s�1. The A factor is the same as the chemical
dynamics value, but the Eo is smaller than that from the dynamics.
The harmonic IRC variational TST rate constant is 8.5 � 1010

s�1 and ∼4 times larger than the dynamics value of 2.2 � 1010

s�1. Overall, the TST Arrhenius Eo and A parameters for the
MP2/6-31+G* PES are consistent with the values found from the
MP2/6-31+G* direct dynamics simulation.
It is worth noting that there are ambiguities in the above

variational TST calculation due to substantial changes in vibra-
tional modes as the C�N bond ruptures. The CH3 torsion about
this bond may be a vibration for the reactant, but for a sufficient
bond extension, it will become a free rotor. Here it is treated as a
vibration for both the reactant and the variational TS. The
torsion’s partition function at the minimum is 13.4 and 40.6 as
a vibration and free rotor, respectively. For the C�N bond
dissociation maximum at 3.11 Å (Section 3.2), these respective
values are 93.3 and 42.3. Thus, treating the torsion as a free rotor
at the variational TS would decrease the TST rate constant. In
addition, there are four rocking/bending modes whose frequen-
cies go to zero as the C�N bond breaks. It may be better to treat
these modes as hindered rotors, instead of vibrations, as is done
by the flexible variational TST.52�56 However, there are approx-
imations in separating these modes from the remaining modes of
the dissociatingmolecule, and also, the uncertainty in treating the
CH3 torsion of the reactant remains.
4.2. CH3�NH�CHdCH�CH3 Isomerization Reactions.

Rate constants versus temperature were determined, as described
above, for the isomerization reactions to form the products

Figure 4. Plot of ln kd versus 1/T for CH3�NH�CHdCH�CH3 f

3CH3 + 3NH�CHdCHdCH3 dissociation. The linear fit yields the
Arrhenius parameters Ea = 82.8 ( 4.3 kcal/mol and A = 8.01 + 5.24/
�3.17 � 1014 s�1. The kd is in units of s�1, and T is in K.

Figure 5. Plot of ln kisom versus 1/T for forming the isomerization
products CH3�NdCH�CH2�CH3 and CH3�NH�CH2�CHd
CH2. The linear fit yields the Arrhenius parameters Ea = 64.9 (
7.0 kcal/mol and A = 5.2 + 4.5/�2.8� 1013 s�1. The kisom is in units
of s�1, and T is in K.
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CH3�NdCH�CH2�CH3 and CH3�NH�CH2�CHdCH2.
To obtain better statistics, the rate constants for these two
pathways were combined to give a total isomerization rate
constant kisom versus T. The resulting Arrhenius plot of ln kisom
versus 1/T is given in Figure 5. The fitted Ea and A are 64.9 (
7.01 kcal/mol and 5.2 + 4.5/�2.8� 1013 s�1.
To compare with these fitted Arrhenius parameters, the ab

initio TSs were found for these two isomerizations. Their
structures and energies are given in Figure 6. The fitted Ea is
intermediate of the two ab initio barrier heights but more akin to
Eo = 63.2 kcal/mol for the CH3�NdCH�CH2�CH3 product.
The classical TST A factor, calculated from the reactant molecule
and TSs’ vibrational frequencies, is 8.8 � 1013 s�1 for the
CH3�NdCH�CH2�CH3 product and 6.9 � 1013 s�1 for
CH3�NH�CH2�CHdCH2 product (the latter pathway has a
reaction path degeneracy of 3). The fitted A factor is similar to
these values. To make a direct comparison with the fitted Ea and
A from the chemical dynamics simulation, the classical TST rate
constants for the two isomerization paths were summed at each
temperature to give a composite rate constant and plotted as ln
kisom versus 1/T. The resulting plot gives Ea = 62.8 kcal/mol and
A = 9.2 � 1013 s�1, values in overall good agreement with those
from the chemical dynamics simulation. That the composite A
and Ea are closer to those for the CH3�NdCH�CH2�CH3

product is consistent with the lower Ea and larger A for this
product.
The smaller A factor found from the simulations, as compared

to the harmonic TST value, may be the result of anharmonic
effects for the chemical dynamics on the MP2/6-31+G* PES.
This is consistent with the smaller simulation total isomerization
rate constants as compared to those for the TST calculations. For

the T of 3500, 4000, 4500, 5000, and 5500 K, the respective
simulation rate constants are 5.2 � 109, 1.9 � 1010, 5.0 � 1010,
1.2 � 1011, and 1.5 � 1011 s�1. The TST values are approxi-
mately a factor of 2 larger and 1.1� 1010, 3.4� 1010, 8.2� 1010,
1.7 � 1011, and 3.0 � 1011 s�1.

5. CONCLUSIONS

For the work presented here a classical trajectory direct
chemical dynamics simulation approach is described for deter-
mining unimolecular reaction paths and Arrhenius parameters.
This method is expected to be particularly useful for large
molecules with many decomposition paths and whose TSs may
be difficult to determine by standard electronic structure theory
methods. The simulations are performed by coupling the metho-
dology of chemical dynamics simulations with electronic structure
theory8,9 and involve studying the unimolecular decomposition of
microcanonical ensembles of molecules.

Themolecule studied here is CH3�NH�CHdCH�CH3, an
important constituent in the polymer of cross-linked epoxy
resins.17,18 This epoxy resin is a component in flame resistant
nanocomposites,17,58 and it is important to understand its
decomposition kinetics at high temperatures, as is done here.
Arrhenius parameters for decomposition of CH3�NH�CHd
CH�CH3 to 3CH3 + 3NH�CHdCH�CH3 and isomerization
to CH3�NdCH�CH2�CH3 and CH3�NH�CH2�CHd
CH2 were determined from direct dynamics simulations at the
MP2/6-31+G* level of theory. The Arrhenius activation energies
determined from the simulation are in good agreement with the
isomerization potential energy barriers and C�N bond dissocia-
tion energy for the MP2/6-31+G* PES. TST is used to calculate
Arrhenius A factors for the MP2/6-31+G* PES, and they are in
good agreement with the values found from the simulations.
Overall, the TST Arrhenius parameters for the MP2/6-31+G*
PES are consistent with the values obtained from the MP2/
6-31+G* direct dynamics simulation.

It is pointed out that there are uncertainties and ambiguities in
the TST calculations as a result of anharmonic effects and the
treatment of modes in the variational TST calculations for C�N
bond rupture. A strength of a direct dynamic simulation is that
these effects are accurately represented in determining the
Arrhenius parameters.

Additional applications and tests of the computational chemistry
approach described and applied here, for determining unimole-
cular decomposition pathways and Arrhenius parameters, are
expected. It may be particularly useful for studying nanomaterials
and biological molecules.
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ABSTRACT: In this work we present a method for calculating the stationary state wave functions and reaction probabilities of a
multidimensional reactive scattering system. Our approach builds upon the counter-propagating wave methodology (CPWM)
developed by Poirier and co-workers for calculating one-dimensional stationary state wave functions. The method involves the
formulation of a bipolar decomposition for multidimensional stationary scattering wave functions within the context of a reaction
path Hamiltonian, so we refer to this work as the bipolar reaction path Hamiltonian (BRPH) approach. Benchmark calculations are
presented for several 2Dmodel scattering systems with linear reaction coordinates.We show that the BRPH approach is competitive
with conventional calculations based on discrete variable representation (DVR) methods.

1. INTRODUCTION

In this work we formulate a computational approach for
calculating the stationary state wave functions and state-to-state
reaction probabilities of a multidimensional (multi-D) reactive
scattering system.1 For such problems, the total energy is a con-
tinuous quantity and the system exhibits some unbound motion
along at least one spatial coordinate. By definition, the stationary
state wave functions of the system must simultaneously satisfy
both the time-dependent Schr€odinger equation (TDSE)

ip
∂ΦE

∂t
¼ ĤΦ ð1Þ

and the time-independent Schr€odinger equation (TISE)

ĤΦE ¼ EΦE ð2Þ
where Ĥ is the Hamiltonian operator corresponding to the total
energy of the system andΦE is a wave function representing the
stationary scattering state with energy E. The spatial and tem-
poral components of ΦE are formally factorizable. For example,
in one-dimensional (1D) space we have

ΦEðx, tÞ ¼ ϕEðxÞe�iEt=p ð3Þ
where ϕE(x) is an amplitude that depends only on the system’s
spatial coordinate x and also satisfies the TISE.2 For unbound
motion, it is well-known that stationary state wave functions are
not square-integrable, and therefore, may not represent a physi-
cally realizable state.3 Nevertheless, stationary scattering states
are conceptually important as a formal tool for constructing nor-
malizable wave packets, and they are a useful idealization for the
limiting case of a wave packet that has a very narrow profile in
momentum space and a spatial width that is much larger than the
dimensions of the scattering problem.

In the context of chemical reactions, the “scattering coordinate”
(or “reaction coordinate”) represents a set of pathways through
the molecular configuration space that yield a transformation from
reactants to products. The “reaction path” then refers to one such

pathway, generally the minimum energy pathway, which con-
nects asymptotic minima in the reactant and product potential
valleys via a saddle point corresponding to the transition state.
Due to coupling with the other “perpendicular” coordinates or
degrees of freedom, motion along the reaction coordinate leads
to the rearrangement of chemical bonds and to the many ways
in which the internal energy of the system can be redistributed
among rotational, vibrational, and electronic degrees of freedom
of the reactants and products, thus complicating the details of the
scattering process. This is especially true for problems with many
atoms and low-lying excited electronic states. At the same time,
however, when all is said and done, and the quantum reactive
scattering event is completed, there remains the fundamental
concept that the molecular collision can be represented by a
superposition of incident, transmitted, and reflected waves along
the reaction coordinate. Moreover, the amplitude of the trans-
mitted wave is directly related to the reaction probability for a
particular scattering channel, which is defined by the asymptotic
perpendicular quantum states of the reactants and products. In
turn, the amplitudes associated with all energetically accessible
channels are related to the reaction cross-section and, ultimately,
the overall reaction rate.4,5

To compute the various reactive scattering quantities above in
accurate quantum dynamical detail, the use of discrete variable
representations (DVRs)6�9 with absorbing boundary conditions
(ABCs),10,11 i.e., complex absorbing potentials, has over the years
proven to be a very effective, general approach.12,13 Variations of
the DVR-ABC method have been applied to reactive scatter-
ing,14�17 electron scattering,18 isomerization reactions,19 photo-
reactions,20�24 nonadiabatic systems,25 and molecule-surface
scattering.26 Though robust and accurate, the DVR-ABC methods
suffer from the well-known limitation of exponential scaling
of computational effort with system size, thus limiting such
calculations in practice to small molecules. Another major
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difficulty is associated with ABCs, in particular, which necessarily
expand the required reaction coordinate ranges substantially,
especially in the vicinity of the channel threshold energies. By now,
ABCs have been well-developed for the purpose of truncating
the computational domain of a given problem as much as possi-
ble;27�29 however, it can still be a nontrivial task to minimize
artificial reflections, especially at energies just above threshold.

In this paper, we develop an exact computational method for
determining the stationary states and reaction probabilities for a
certain class of multi-D reactive scattering problems with linear
and quasilinear reaction coordinates (future work will address the
curvilinear case). As we shall see, this method naturally incorpo-
rates the boundary conditions of the physical scattering problem,
so that there is no need for ABCs and the attendant expansion of
reaction coordinate space. The method is also designed to scale
well with increasing system size, provided some approximations
(albeit fairly minor and reasonable) are introduced. Our approach
builds upon the bipolar counter-propagating wave methodology
(CPWM) of Poirier and co-workers, which for scattering pro-
blems involves the decomposition of stationary states into so-
called “bipolar” traveling wave components. Over the last several
years, various CPWM schemes have been developed and applied
to bound stationary states,30 scattering states in 1D,31�33 non-
adiabatic dynamics,34 multi-D scattering,35 and nonstationary
state dynamics.36�38 Although these represent a great improve-
ment over traditional unipolar quantum trajectory methods39 and
have enabled the first-ever accurate synthetic quantum trajectory
calculations to be performed for a system with substantial reflec-
tion interference,37,38 they still can exhibit certain practical
difficulties when applied to real molecular systems, such as
occasional numerical instabilities or inaccuracies, thus moti-
vating the development of new bipolar approaches.

The present work involves the formulation of a bipolar
CPWM for multi-D systems in terms of adiabatic vibrational
eigenstates associated with bound motion in the perpendicular
degrees of freedom and a corresponding Hamiltonian that varies
parametrically along a suitably defined reaction path. Some time
ago, Miller and co-workers developed an approximate represen-
tation for the molecular Hamiltonian along the reaction path of a
reactive system that could be constructed using a reasonable
number of accurate electronic structure calculations.40 By now,
the reaction path Hamiltonian (RPH) approach is essentially a
cornerstone of both classical and quantummechanical theories of
kinetic rates constants, and extensions of the basic RPH notion
continue to be actively developed.41�44 The RPH is sufficiently
general that it can be applied within the context of many different
computational schemes, such as self-consistent field calcula-
tions45,46 and, in a more recent example, diffusion Monte
Carlo.47 In our work, we apply the bipolar CPWM approach to
scattering problems within a framework that will be suitable for
the RPH approximation; hence, we refer to this method as the
bipolar reaction path Hamiltonian (BRPH) approach.

The organization of the rest of this paper is as follows. In
section 2 we highlight some key points of bipolar CPWMs for 1D
scattering problems. This background information is important
for understanding the theoretical and numerical developments
associated with the BRPH approach that are described in section
3. Some additional theoretical details are provided in Appendices
A and B. We present and discuss several benchmark numerical
calculations in section 4, where the state-to-state reaction prob-
abilities are determined for model problems involving scattering
motion across Eckart-type barriers with coupling to harmonic

vibrational motion. The BRPH results for these problems are
quantitatively compared with analytical theory and correspond-
ing DVR-ABC calculations. Appendix C describes our imple-
mentation of the DVR-ABC method. Finally, in section 5 we
conclude with a brief summary and outlook for future studies
involving more realistic problems with curvilinear reaction co-
ordinates and larger dimensionalities.

2. THE 1D COUNTER-PROPAGATING WAVE
METHODOLOGY (CPWM)

A thorough discussion of the CPWM for scattering problems
can be found in the literature,31�33,35 and we will not repeat all of
those details here. However, we must summarize a few key con-
cepts that are necessary to understand the new developments
presented in section 3 for multi-D scattering problems. In 1D
scattering problems, the Hamiltonian is given by

Ĥ ¼ � p2

2m
d2

dx2
þ VðxÞ ð4Þ

where x represents the scattering coordinate for a particle with
massm that traverses the barrier potentialV. Furthermore, we take
V to be an asymptotically convergent function, i.e., V(xf(∞) =
constant(s).48

In the CPWM approach, the stationary scattering states of
the system are represented by an appropriate superposition of
counter-propagating traveling waves, such as

Φðx, tÞ ¼ Φþðx, tÞ þ Φ�ðx, tÞ ð5Þ

We refer to this as a bipolar decomposition, and Φ( are the
bipolar components. Note that we have now omitted the explicit
reference to E in our notation for Φ and Φ(; henceforth, this
energy dependence is implied. If we assume a left-incident scat-
tering convention, then theΦ+ component represents a traveling
wave that moves with positive momentum (to the right) and
asymptotically corresponds to the incident and transmitted plane
wave portions of the total wave function. Conversely, the Φ�
component moves with negative momentum (to the left) and is
associated with a reflected plane wave in the left asymptote and
approaches zero in the right asymptote. The interference be-
tween the two bipolar components determines the form of the
total stationary state wave function.

For the 1D scattering problems described above, the bipolar
components may be expressed as

Φ(ðx, tÞ ¼ α(ðxÞ exp (
i
p

Z
pðxÞ dx� i

p
Et

� �
ð6Þ

whereα( are a pair of amplitudes that vary over the same region of
space as the scattering potential. Asymptotically, these amplitudes
should become constant and will be related to the overall
transmission and reflection probabilities at a given energy. In
eq 6, notice that the α( amplitudes have been formally separated
from the oscillatory parts of the wave function, which are repre-
sented by the complex exponential factors. The integral term in the
exponent represents the classical action of a particle with momen-
tum p = (2m(E � Veff))

1/2 moving in an effective potential field
Veff(x). Different bipolar decompositions may be specified by
choosing different forms for Veff, provided that E > Veff(x) for all
x and that Veff(x f(∞) = V(xf(∞). Aside from these
constraints, which guarantee thatΦ( have the correct asymptotic
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behavior, the effective potential is more or less arbitrary.49 Note
that the requirements on Veff(x) do not imply that the true
potential, V(x), must be less than the energy; i.e., tunneling, even
deep tunneling, is in principle allowed and treated exactly.

Even for a given Veff, the bipolar decomposition described
above does not provide a unique specification of theΦ(, although
the allowed form of these is greatly constrained. To obtain a
unique decomposition, leading to slowly varying α((x), we must
impose an additional relation

Φ0 ¼ � p0

2p
Φ þ i

p
pðΦþ �Φ�Þ ð7Þ

which was originally introduced by Fr€oman and Fr€oman (FF) in
the context of a generalized semiclassical theory for tunneling
phenomena.50 In eq 7 and hereafter we use a prime to denote the
derivative of a 1D function with respect to the scattering coordi-
nate, e.g., f 0 = df(x)/dx.

Starting from an essentially arbitrary initial guess for Φ(, the
exact FF decomposition solution Φ( are obtained in the long-
time limit by solving a pair of time-dependent equations of
motion (see eq 10 below), involving the total (hydrodynamic)
time derivatives of the bipolar components

dtΦ( ¼ ∂tΦ( (
p
m
Φ0

( ð8Þ
The notation dt signifies the total time derivative and implies

thatΦ( are evolving on a pair of counter-propagating Lagrangian-
type reference frames x((t) that satisfy the following auxiliary
equations of motion, defining the left- and right-traveling
trajectories

dtx( ¼ (
p
m

ð9Þ
Using the FF condition and the TISE to expand the convective

term Φ0
( leads to the following coupled equations of motion

dtΦ( ¼ F(Φ( þ GðΦþ þ Φ�Þ ð10Þ
where the factors F( and G depend on Veff according to

F( ¼ i
p

E� 2Veff -
ipV 0

effffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mðE� Veff Þ

p
 !

ð11aÞ

G ¼ � i
p

V � Veff � p2

8m
V 00
eff

E� Veff
þ 5

4
V 0
eff

E� Veff

� �2
" # !

ð11bÞ
The solutions of eq 10 are subject to the boundary conditions

Φþðx f �∞, tÞ ¼ exp
i
p

Z
p dx� i

p
Et

� �
ð12aÞ

Φ�ðx f þ ∞, tÞ ¼ 0 ð12bÞ
that serve to reinforce the left-incident scattering convention.
Given an initial guess for Φ((x,t=0), the dynamics that follows
from eq 10 can be viewed as a pseudo-time-dependent relaxation
brought about through the cooperative influence of G, which
couples the evolution ofΦ(, and the application of the boundary
conditions.

To help illustrate this, we suppose that the “initial” (t = 0)
bipolar components are represented by a Φ+ plane-wave with

constant positive momentum p0 = (2m(E� V(�∞)))1/2, and a
Φ� reflected wave with zero amplitude:

Φþðx, t ¼ 0Þ ¼ exp
i
p
p0x

� �
ð13aÞ

Φ�ðx, t ¼ 0Þ ¼ 0 ð13bÞ
Clearly, the superposition of these components is not a

stationary state solution of the TISE for V(x) 6¼ 0. Asymptoti-
cally, G is negligible, and the coupling between the bipolar com-
ponents vanishes; therefore, Φ( evolve like free-particle wave
functions in those regions. This evolution is enforced by the
boundary conditions and the motion of the counter-propagating
reference frames, which carry the Φ( amplitude away from the
interaction region in opposite directions. Within the interaction
region, however, where G 6¼ 0, there is coupling that leads to a
transfer of amplitude between the Φ( components, and over
time a nonzero reflected wave builds up. Eventually a steady-state
is reached between the flux associated with the boundary con-
ditions and the flux induced by the coupling. The long-time limit
solutions of the CPWM equations of motion provide a pair of
bipolar components whose superposition is the desired station-
ary scattering state wave function.

Figures 1 and 2 illustrate typical CPWM results for the case of
a particle with mass m = 2000 au scattering across a 1D Eckart
barrier defined by

VðxÞ ¼ V0 sech
2ðαxÞ ð14Þ

where V0 = 0.0018 hartree and α = 3.0 b�1. This parametrization
of the Eckart potential has been referred to as the Eckart A barrier
in previous work.32,33 The potential is plotted in Figure 1a as a
function of x in units of V0, and the area beneath the curve has
been shaded.

We have numerically integrated the so-called “constant velo-
city” form of the CPWM equations,31�33 where Veff(x) = 0 for all
x, starting from the initial conditions given in eq 13. The bipolar
solutions are represented on a grid of equally spaced points
with grid spacing Δx, and the time step is defined by Δt =
Δx(m/2E)1/2. The solutions are propagated in time using a
second-order Runge�Kutta method until the probability den-
sities of the bipolar components F( = |Φ(|

2 are essentially fully
converged. For this work, we have calculated the bipolar compo-
nents usingΔx = 0.02, 0.01, 0.005, and 0.0025 b for 20 stationary
states with energies in the range of 10�200% of the barrier height.

The F( densities for the stationary state with energy E = V0
(and Δx = 0.0025 b) are plotted as the solid and dashed lines
in Figure 1a along with the total probability density F = |Φ|2 =
|Φ+ +Φ�|

2, which is represented by the dotted line. Clearly, the
F( densities are constant in the asymptotic regions and vary
more or less smoothly across the range of the potential barrier.
The total density F oscillates in the region to the left of the barrier
because of interference between the Φ( components. On the
right-side of the barrier the reflected wave vanishes and there is
no interference. Here, the value F+(xf∞) is related to the trans-
mission probability PT, and the value F�(xf�∞) is related
to the reflection probability PR. In practice, these quantities are
estimated at the edges of the numerical grid (x = (3.085 b in
this case). In principle, the 1D CPWM above is exact, so these
quantities as well asΦ(may be computed to arbitrary precision,
via a suitable choice of the numerical parameters (grid edges, grid
spacing, time step, etc.).
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In Figure 1b we plot the calculated PT and PR (circles and
squares, respectively) as a function of energy in units of the barrier
height, and the solid lines correspond with analytical results.51 As
expected, PT increases (PR decreases) with increasing energy, and
qualitatively, there is good agreement between the presentCPWM
results and exact theory. In Figure 2a we show the fractional error
in PT as a function of energy for several values of the CPWM grid
spacing. This error is computed according to the formula

ðPTÞerror ¼
1
PT

jPcalcT � PTj ð15Þ

where PT
calc is the calculated transmission probability and PT is the

corresponding exact result. The error is generally larger at lower
energies, where the time steps are are also larger, and the spo-
radically low errors, e.g., at E = 0.5V0, are likely due to a fortuitous
cancellation that can occur when the error changes sign. The frac-
tional errors in PT are less than 0.1% across the given energy range
for all grid spacings, and at a given energy, the error is reduced by
about half an order of magnitude asΔx is decreased by a factor of
one-half.

One advantage of working with stationary scattering states is
that the asymptotic form of the wave functions and the energy of
the system are known in advance. This fact can be used in dif-
ferent ways to estimate the numerical error in calculations for
which analytical results are unavailable. Panels b�d of Figure 2
illustrate three additional fractional error measures as a function
of energy for different grid spacings. If the exact values of PT are
not known, then the error can be estimated by calculating PT and
PR from F+(xmax) and F�(xmin), respectively, and comparing
with the exact relationship PT + PR = 1. The normalization errors
for the present calculations are shown in Figure 2b, where it is
seen that this error estimate increases very regularly with increas-
ing energy. Also, the normalization error for this problem drops
by a full order of magnitude as the grid spacing decreases by a
factor of one-half.

For the second error estimate, we note that the bipolar
superposition should constitute a solution of the TISE, and we can
use an independent numerical method to compute the expectation

value of the energy from the CPWM stationary state. The points
shown in Figure 2c represent the error associated with the energy
expectation value for different grid spacings. These errors are
computed according to the formula

Ĥ
� �

error ¼
1
E

					E�
Z

Φ
�ðxÞĤΦðxÞ dx

Z
Φ

�ðxÞΦðxÞ dx

					 ð16Þ

where the operation of theHamiltonian is evaluated using fourth-
order finite difference derivatives for the kinetic energy term and
Boole’s method for the numerical integrations.52 In this way,
the error estimate is averaged over the entire stationary state via
numerical integration. These calculations do introduce additional
errors; however, because the grid spacings are relatively small,
such errors are expected to be less significant than the error in the
CPWM calculations. For the given energy range, we see that the
fractional error is less than 0.1% and decreases with the grid
spacing in the same fashion as the fractional error in PT. For the
third error estimate, we note that the FF condition must also be
satisfied at long times. Equation 7 can be rearranged and com-
bined with p = (2mE)1/2 to solve for the system’s energy, and this
provides another independent method to estimate the error. The
points shown in Figure 2d represent the error associated with
how well the FF condition is satisfied according to the equation

FFerror ¼ 1
E

					E þ p2

2m

					

Z
ΦðxÞΦ0ðxÞ dx

Z
Φ

�ðxÞðΦþðxÞ �Φ�ðxÞÞ dx

					
2					
ð17Þ

where we have used finite differences and numerical integration
to perform the error calculation. These fractional errors follow
the same trend as the error in the energy expectation value;
however, these results show that the calculated bipolar CPWM
solutions are internally consistent with the FF condition.

Figure 1. (a) The (solid) F+, (dashed) F�, and (dotted) F probability densities corresponding to the E = V0 stationary scattering state of the 1D Eckart
barrier are plotted as a function of position x in units of bohr. The barrier height is V0 = 0.0018 hartree, and the shaded area shows the potential function
in units of V0. (b) Benchmark CPWM results for the transmission (PT, circles) and reflectance (PR, squares) probabilities as a function of energy for
20 stationary states of the 1D Eckart barrier. The grid spacing for these results isΔx = 0.0025 b. The solid curves corresponds to the exact result for this
problem.



3488 dx.doi.org/10.1021/ct200566s |J. Chem. Theory Comput. 2011, 7, 3484–3504

Journal of Chemical Theory and Computation ARTICLE

Finally, we note that all of these errors can be reduced by
employing a wider grid, smaller grid-point spacings, or smaller
time steps in order to achieve higher accuracy, and it is not neces-
sary to adjust these in a nonlinear way to improve the conver-
gence. This is not the case for ABCs, where there are subtleties
associated with finessing the onset of the absorbing potential, its
width, height, and general shape. Also, of course, the coordinate
range needed here for a given level of accuracy is always much
smaller than if an ABC were used.

3. THE BIPOLAR REACTION PATH HAMILTONIAN
(BRPH) APPROACH

In this section we formulate the BRPH approach for the
simplest class of multi-D reactive scattering problems; namely, a
2D system with a linear reaction coordinate. We also present a
discussion of our numerical implementation for the calculation of
stationary state wave functions involving multiple scattering
channels and state-to-state reaction probabilities, i.e., the prob-
abilities associated with elements of the scattering matrix
(S-matrix). Our general strategy is to transform the 2D scattering
problem into a corresponding 1D multichannel scattering

problem, involving individual channel scattering amplitudes
defined along a suitably chosen linear reaction path. We invoke
a bipolar representation for each channel scattering amplitude,
and this leads to a set of coupled equations of motion that are
formally similar to the 1D CPWM equations described in section
2. Hence, we can then exploit the same numerical algorithms for
1D scattering problems to determine the stationary state wave
functions of the 2D problem.
3.1. Theory. We consider a two-dimensional (2D) scattering

problem described in some appropriately chosen mass-weighted
Cartesian (MWC) coordinate system. In this case, the Hamiltonian
operator has the form

Ĥ ¼ � p2

2m
∂
2

∂x2
þ ∂

2

∂y2

 !
þ Vðx, yÞ ð18Þ

where m is the reduced mass and V is a 2D potential energy
surface. For realistic problems, such as the collinear A + B�Cf
A�B + C exchange reaction, the potential will necessarily exhibit
a bend in the MWC space.5 However, in the present work, we
limit our consideration to the simplified case, where the reaction

Figure 2. Various fractional error measures for the 1D Eckart A problem as a function of energy and for several different CPWM grid spacings Δx:
(circles) 0.02, (squares) 0.01, (diamonds) 0.005, and (up-triangles) 0.0025 in units of bohr. (a) Fractional error measure in the calculated transmission
probability PT. (b) Fractional error associated with the normalization condition PT + PR = 1. (c) Fractional error estimate associated with the expectation
value of the Hamiltonian. (d) Fractional error estimate associated with the FF condition.
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path is both linear and parallel to the x-axis. The x (reaction)
coordinate is then directly associated with some unbound scat-
tering motion across a potential barrier, and the y (perpendi-
cular) coordinate is associated with bound vibrational motion.
Also, we must require that V approach a function that is indepen-
dent of x in each asymptotic limit, and we further assume (for this
paper) that this scattering potential is asymptotically symmetric,
i.e., V(xf(∞,y) = Vasymp(y). As discussed in section 2 and
below, the latter assumption allows us to utilize the constant
velocity CPWM approach (where Veff = 0), which leads to amore
natural approach for the benchmark problems described in
section 4. Extension of the following formulation to the more
general case of an asymptotically asymmetric problem is rela-
tively straightforward but involves details that have already been
addressed in previous work.33

Next, we introduce a set of vibrational states that vary slowly,
i.e., adiabatically, along the reaction coordinate. Note that this
does not imply that we are assuming that the vibrational quantum
number of the stationary state be conserved as a function of x.
The adiabatic vibrational states are the solutions of a correspond-
ing adiabatic TISE

� p2

2m
∂
2

∂y2
þ Vðx, yÞ

" #
ϕiðx, yÞ ¼ εiðxÞ ϕiðx, yÞ ð19Þ

where both the eigenvalues εi and the wave functions ϕi depend
parametrically on x.53 Our assumptions on the 2D potential
imply that εi(x)f Ei as xf(∞, where Ei are the eigenenergies
of the asymptotic system with potential energy Vasymp. It is
further assumed that these adiabatic eigenstates can be deter-
mined exactly or by some appropriate approximation, and it is this
last point where we can make a connection to the RPH method.
For example, if only the potential energy, force, andHessian were
known along the reaction path, then the adiabatic eigenstates
could be approximately represented with harmonic oscillator
wave functions.
The key ansatz within the BRPH approach is that the total

stationary scattering state for a given energy E can be written as
an infinite sum over the adiabatic eigenfunctions

Φðx, y, tÞ ¼ ∑
∞

i
aiðx, tÞ ϕiðx, yÞ ð20Þ

and we refer to the set of 1D functions ai as channel scattering
amplitudes. Each channel scattering amplitude is then expressed
as a superposition of bipolar components:

aiðx, tÞ ¼ aiþðx, tÞ þ ai�ðx, tÞ ð21Þ
where ai( take the form of traveling waves that move in opposite
directions along the reaction coordinate x. If the potential energy
meets the criteria discussed above, then it is sensible to setVeff = 0
and invoke the constant velocity form for the bipolar com-
ponents

ai(ðx, tÞ ¼ αi(ðxÞ exp i
p
ð( pix� EtÞ

� �
ð22Þ

where pi = (2m(E � Ei))
1/2 is the momentum of a particle with

mass m and kinetic energy E � Ei. Similar to the 1D case, the
oscillatory components of eq 22 are formally separated from
the αi( amplitudes, and these are expected to vary over the

interaction region and asymptotically converge to values that
may then be related to the elements of the S-matrix.
There are several points here that merit further discussion.

First, we have presumed that the adiabatic energy eigenvalues
form a discrete spectrum; however, the adiabatic Hamiltonian
may also possess states corresponding to a continuous range of
eigenenergies if the perpendicular degrees of freedom are semi-
bound. Such considerations will be saved for our future work, and
here we will only consider the discrete case. Second, in practice,
we cannot numerically represent an infinite number of adiabatic
states, so we will have to truncate the sum in eq 20 at some point
in order to carry out feasible calculations. We expect the number
of terms included will affect both the computational effort and
the convergence associated with numerical results and that this
may lead to various approximation strategies for different types of
scattering problems. Finally, for a given total energy E, both open
channel Ei < E and closed channel Ei > E scattering amplitudes
contribute to the sum in eq 20. For open channels, the momenta
pi are real-valued and the bipolar components ai( contain com-
plex exponentials that oscillate with respect to position. For
closed channels the pi are imaginary and ai( contain real-valued
exponentials. Both cases must be included if the total stationary
state is to be represented exactly, and it is clear that the spatial
amplitudes αi( must vanish asymptotically for closed channels.
Next, we develop the equations of motion for the bipolar com-
ponents of the channel scattering amplitudes.
First, the FF condition is applied as a separate condition for

each channel scattering amplitude

a0i ¼
i
p
piðaiþ � ai�Þ ð23Þ

which along with the TISE, provide the necessary relationships to
develop a set of coupled time-dependent equations of motion
for the bipolar components. To accomplish this, we appeal to an
adiabatic representation of the 2D Hamiltonian. The details of
the derivation are provided in Appendix A and the resulting
equations of motion are given by

dtai( ¼ Fiai( þ Giai þ Hi ð24Þ
Before discussing the individual terms here, we consider the

general structure of these equations, and in particular, the total
time derivative:

dtai( ¼ ∂tai( (
pi
m
a0i( ð25Þ

Like the 1DCPWM equations, this expression implies that the
bipolar components ai( are evolving within a set of correspond-
ing Lagrangian reference frames xi((t) that satisfy the ancillary
equations of motion

dtxi( ¼ (
pi
m

ð26Þ

whose solutions move in opposite directions for the ( com-
ponents and with different constant velocities vi = pi/m =
(2(E � Ei)/m)

1/2 for different channel scattering amplitudes.
For open channels, the Lagrangian dynamics is more or less
similar to the 1D case. For the closed channels, however, where
Ei > E, there is an apparent problem that the velocities are
imaginary. The solutions of eq 26 for the closed channel com-
ponents can be expressed as

xi(ðtÞ ¼ xi(ð0Þ ( ijvijt ð27Þ
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which are complex for real values of t. This may be avoided,
however, if we impose the requirement that the closed channel
components evolve in imaginary time, i.e., if t = �i|t|, then the
closed channel trajectories will be real provided that the initial
conditions xi((0) are also real. This and other important issues
will be discussed further in section 3.2, where our numerical
strategy is described in detail. A similar strategy was employed,
and justified, in a previous study.31 For now, we will continue
with an analysis of the terms in eq 24.
The various factors in the BRPH equations of motion are given

by

Fi ¼ i
p
ðE� 2EiÞ ð28aÞ

Gi ¼ � i
p
ðεi � EiÞ ð28bÞ

Hi ¼ ip
2m∑j

Ið1Þij a0j þ Ið0Þij aj ð28cÞ

The Fi terms are associated with free particle motion and
provide a flux of amplitude both into and out of the scattering
region. The Gi terms also play a role in determining how the
bipolar components evolve within the scattering region. Most
importantly, they provide a coupling between left- and right-
traveling components of a given scattering channel, i, leading to
intrachannel reflection. This coupling becomes significant in the
region of space where the εi(x) deviates significantly from Ei.
Finally, the Hi terms provide nonadiabatic coupling across dif-
ferent scattering channels, leading to the redistribution of vibra-
tional energy along the scattering coordinate. Analogous terms
are found within certain implementations of the 1D CPWM for
applications to scattering systems involving multiple diabatic
electronic states.34 The nonadiabatic coupling terms presented
here involve the functions

Ið1Þij ðxÞ ¼ 2
Z

ϕi�ðx, yÞ ϕð1, 0Þj ðx, yÞ dy ð29aÞ

Ið0Þij ðxÞ ¼
Z

ϕi�ðx, yÞ ϕð2, 0Þj ðx, yÞ dy ð29bÞ

that depend on various overlap integrals between the adiabatic
wave functions and their spatial derivatives with respect to the
reaction coordinate.Within the integrands, the notation ϕj

(m,n)(x,y)
represents a mixed partial derivative with respect to x and y

ϕ
ðm, nÞ
j ðx, yÞ ¼ ∂

m

∂xm
∂
nϕjðx, yÞ
∂yn

 !

x

2
4

3
5

0
@

1
A

y

ð30Þ

and the integrals are labeled with superscripts according to a
correspondent spatial derivative of the channel scattering ampli-
tudes. For example, in eq 28c the Iij

(1) factor is pairedwith a0j and the
Iij
(0) factor is paired with aj. These integrals are significant in
regions of space where the adiabatic eigenfunctions (but not
necessarily eigenenergies) are changing, i.e., regions where motion
along x and y are strongly coupled through the scattering potential,
V(x,y).
There are several important and interesting limiting cases to

consider. The first of these involves the asymptotic behavior of
the BRPH equations and the boundary conditions for the bipolar

components. For a given energy E, there will be imax open scat-
tering channels that satisfy E > Ei, and therefore a total of imax
degenerate left-incident solutions, i.e., one per open channel.
The numerical solution for each such degenerate state requires
a separate BRPH calculation with distinct initial and boundary
conditions. For the solution left-incident on channel n, the boun-
dary conditions are given by

aiþðx f �∞, tÞ ¼ δin exp
i
p
ðpnx� EtÞ

� �
ð31aÞ

ai�ðx f þ ∞, tÞ ¼ 0 ð31bÞ
and a set of working initial conditions may be defined as

aiþðx, t ¼ 0Þ ¼ δin expðipnx=pÞ ð32aÞ

ai�ðx, t ¼ 0Þ ¼ 0 ð32bÞ
As x f (∞, the adiabatic eigenenergies and eigenfunctions,

by definition, become constant with respect to x. Hence, the Gi

and Hi terms will vanish, and the resulting equations of motion
in x, i.e., eq 24, are consistent with free-particle evolution. In the
long-time limit, the ai( solutions reach a steady state, and the
S-matrix elements can be calculated from the asymptotic values.
The transmission probability from state n to state j (state-to-state
reaction probability) is given by

Pn f j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ej
E� En

r
jajþðx f þ ∞Þj2 ð33Þ

Partially state resolved and cumulative reaction probabilities can
be calculated by taking different summations of the state-to-state
reaction probabilities.
A second interesting limit involves the reduction of the system

from a 2D problem to a 1D problem, such as for the case where
the system becomes highly confined along y. Here, the adiabatic
eigenenergies will be vastly separated from one another so that
the only open scattering channel will be the ground state (i = 0)
of the asymptotic system. The asymptotic zero-point energy E0
is an arbitrary quantity and may be set to zero without conse-
quence, and the asymptotic excited state energies become in-
finite by comparison Ei6¼0 f ∞. The closed channel scattering
amplitudes have imaginary momenta pi6¼0 = i|pi|, where |pi6¼0| =
(2m|E� Ei|)

1/2 f∞ in the highly confined limit. According to
eq 22, ai6¼0,+f 0 for all x, and the ai6¼0,�will either be divergent if
αi6¼0,� 6¼ 0 or vanish if αi6¼0,� = 0. The former case is unphysical;
therefore, all closed channel scattering amplitudes must vanish as
the system is reduced to 1D. In this case, the nonadiabatic term
H0 also reduces to

H0 ¼ ip
2m

Ið1Þ00 a
0
i þ Ið0Þ00 ai ð34Þ

By expanding the adiabatic eigenfunctions in eq 29a using any
complete and orthonormal set of 1D basis functions along y, it
can be shown in general that the function Iii

(1) = 0, for all i and
for all x; however, the function Iii

(0) is generally nonzero. The
quantity ε0 � I00

(0) takes the role of a 1D scattering potential, and
the BRPH equations reduce to

dta0( ¼ � i
p
Ea0( � i

p
ðεi � Ið0Þ00 Þa0 ð35Þ

which are formally equivalent to the 1D constant velocity
CPWM equations.
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A third interesting limit is that of a separable potential, V(x,y) =
Vx(x) + Vy(y), for which the adiabatic eigenfunctions, ϕi(x,y), are
independent of x, but the eigenenergies, εi(x) = Ei + Vx(x), need
not be. In this case, theHi terms obviously vanish completely, so
there are no nonadiabatic transitions, as is appropriate.
3.2. Numerical Implementation. Next we present our nu-

merical implementation of the BRPH approach. Before solving
the BRPH equations, we must first determine the eigenenergies
and eigenfunctions of the adiabatic Hamiltonian as a function of
the reaction path. For model problems, such as the harmonic
and Morse oscillators, this can be done analytically, and relevant
formulas for the harmonic case are given in Appendix B. For
more general problems, however, one must resort to approxi-
mations or numerical calculations. In our development work we
have employed DVRs to calculate eigenstate wave functions of
the adiabatic Hamiltonian. Here a set of grid points is defined
along the reaction path x and we use Colbert and Miller’s
“universal DVR” with equally spaced grid points to define the
matrix elements of the kinetic energy operator for motion along
the y-coordinate

TðyÞ
αβ ¼ ð� 1Þα � β

2mΔy2

π2

3
α ¼ β

2

ðα� βÞ2 α 6¼ β

8>>><
>>>:

ð36Þ

where Δy is the grid spacing and the indices α and β run over
interior DVR grid points.54 The potential energy is approximated
as a diagonal matrix over the DVR grid points Vαβ

(y) = V(x,yα)δαβ
and varies parametrically with the reaction coordinate. For each
grid point along x the perpendicular DVR Hamiltonian, with
elements Hαβ

(y) = Tαβ
(y) + Vαβ

(y), is diagonalized to give a finite set of
eigenvalues εi andDVR eigenvectors ϕi

DVR. To obtain the desired
eigenfunctions, the eigenvectors are multiplied by the appro-
priate weights, which in this case are related to the grid spacing

ϕiðx, yαÞ ¼ ½ϕDVRi �αffiffiffiffiffiffi
Δy

p ð37Þ

Numerically speaking, the sign of the DVR eigenvectors is
irrelevant, such that (ϕi

DVR are equivalent, and typical numeric
algorithms will give results with arbitrary sign at different points
along the reaction coordinate. We must be careful to correct this
sign mismatch before postprocessing these quantities. The integ-
rands of eq 29 involve the first and second derivative of the adia-
batic wave functions with respect to x. These can be efficiently
calculated using the DVR representation of the appropriate deri-
vative operators and the inherent quadrature properties of the
DVR approach or by using finite difference derivatives and com-
mon numerical integration formulas.
The BRPH solutions are represented over a uniform spatial

grid with spacing that covers the range over which the scattering
potential is numerically significant. This grid should be large
enough that the calculated reaction probabilities are converged,
and the grid spacing Δx should be small enough to achieve the
desired accuracy. This is also important for calculating the spatial
derivatives in the nonadiabatic coupling term Hi. Notably, these
derivatives involve the total channel scattering amplitudes a0i =
a0i+ + a0 i�, which can be evaluated using either finite differences
or the FF conditions. We have implemented both strategies and
found that using the FF conditions leads to a more stable con-
vergence of the BRPH solutions compared to finite differences,

especially for energy values close to the onset of a channel thresh-
old. For the results discussed in section 4 we have used the FF
conditions to evaluate the derivative terms in Hi.
As we have noted, the BRPH equations of motion are expres-

sed in a Lagrangian reference frame, and this means that theΦi(
components are moving in opposite directions and with different
velocities vi = (2(E � Ei)/m)

1/2 for different channels. The grid
points over which these functions are represented move with the
flow of the BRPH components so that at different times the grid
points for different ai( will no longer be coincident with one
another. Moreover, for closed channel amplitudes, the velocity
is imaginary and we must invoke imaginary time propagation to
keep the associated reference frames on the real axis. For an arbi-
trary universal time step Δt (and � i|Δt|), we would need to
employ interpolationmethods to properly evaluate the Lagrangian
time derivatives for each component. Such methods have pre-
viously been implemented for 1DCPWMnumerical algorithms,33

and have also been carried out for 1D problems involving multi-
ple diabatic potential surfaces.34 Certainly this scheme is a viable
approach here and we note that this would offer much greater
control over the time step and accuracy of the BRPH calcula-
tions. However, the interpolation codes are somewhat awkward
to work with and create some extra computational overhead. At
the present stage of development we have avoided the interpola-
tion issue by using a unique time step for each channel

Δti ¼ Δx
vi

¼ Δx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ðE� EiÞ

r
ð38Þ

so that the + (or �) BRPH grid points associated with the dif-
ferent channels will be coincident with one another after each
time step. This choice automatically yields imaginary time steps
for the closed channel amplitudes. Of course, this then implies that
the solutions will not be coincident with respect to time, and we
will come back to this important pointmomentarily. For individual
time steps, we employ a second-order Runge�Kutta integration
scheme,55 where the BRPH solutions are propagated using the
formula

ai(ðx ( Δx, t þ ΔtiÞ ¼ ai(ðx, tÞ þ Kð2Þ
i( ð39Þ

where

Kð1Þ
i( ¼ Δtidtðai(ðx, tÞÞ ð40aÞ

Kð2Þ
i( ¼ Δtidtðai(ðx, tÞ þ Kð1Þ

i( =2Þ ð40bÞ
The factor enclosed by parentheses in eq 40b represents a first-
order half-step, i.e.,Δti/2, while eq 39 is the second-order full-step.
The error for each Runge�Kutta step is third-order in |Δti|, which
is different for different channel amplitudes, and the cumulative
error is second-order.
Note that in the application of eqs 39 and 40 we must take

care of the fact that ( grid points at the half-step will be offset
from one another. This can be efficiently handled by applying a
shift function, as necessary, to evaluate all of theΦi( components
at the same point in space. For example, consider a discrete nu-
merical representation of the channel scattering amplitudes:

ai(ðtÞ ¼ fai(ðx1Þ, :::, ai(ðxk�1Þ, ai(ðxkÞ, ai(ðxkþ1Þ, :::, ai(ðxNÞg
ð41Þ
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where the set of points {x1, ..., xN} are the numerical grid points
along the reaction coordinate. Note that xi+1 = xi + Δx, so
that after a full first-order time step Δti, the components will be
given by

aiþðt þ ΔtiÞ ¼ faiþðx2Þ, :::, aiþðxkÞ, aiþðxkþ1Þ,
aiþðxkþ2Þ, :::, aiþðxNþ1Þg ð42aÞ

ai�ðt þ ΔtiÞ ¼ fai�ðx0Þ, :::, ai�ðxk�2Þ, ai�ðxk�1Þ,
ai�ðxkÞ, :::, ai�ðxN�1Þg ð42bÞ

where it is clear that ai( components are not properly aligned
with one another in space. Equation 42 is also valid for first-order
half-steps provided that we make the replacement xi f x0 i =
xi +Δx/2. To evaluate the time derivative of the components for
the next time step, the( components need to be calculated at the
same point in space, so we apply a pair of shift functions that yield

Shiftþ½aiþðt þ ΔtiÞ� ¼ faiþðxNþ1Þ, :::, aiþðxk�1Þ, aiþðxkÞ,
aiþðxkþ1Þ, :::, aiþðxNÞg ð43aÞ

Shift�½ai�ðt þ ΔtiÞ� ¼ fai�ðx1Þ, :::, ai�ðxk�1Þ, ai�ðxkÞ,
ai�ðxkþ1Þ, :::, ai�ðx0Þg ð43bÞ

Here the interior positions are now coincident in space and the
points at the edges of the BRPH grid are meaningless and poten-
tially dangerous. This is not a problem, however, because between
time steps the edge points are replaced with the appropriate
boundary conditions for the desired solutions

aiþðt þ ΔtiÞ ¼ fei=pðpix1 � EΔtiÞ, :::, aiþðxk�1Þ, aiþðxkÞ,
aiþðxkþ1Þ, :::, aiþðxNÞg ð44aÞ

ai�ðt þ ΔtiÞ ¼ fai�ðx1Þ, :::, ai�ðxk�1Þ, ai�ðxkÞ, ai�ðxkþ1Þ, :::, 0g
ð44bÞ

These shifts are applied after both the half and full time step so
that the BRPH solutions are always coincident in space, thus
eliminating the need for interpolation schemes.
Certainly, the mismatch in the treatment of time between

different scattering amplitudes is somewhat counterintuitive and
warrants some concern. To justify this, we must recognize that
the time-dependent dynamics encapsulated by both the CPWM
and BRPH equations do not represent the actual physical dyna-
mics in the deterministic sense. By this we mean that the BRPH
solutions at intermediate times have no physical importance
apart from the fact that the (exact FF solution) bipolar compo-
nents possess a dynamic phase factor, e�iEt/p, that is consistent
with the true stationary state. However, this time dependence is
clearly known a priori, and the value of t is completely arbitrary
for stationary states. In our numerical applications we have often
found that it is useful to reset the phase of the CPWM or BRPH
solutions between time steps Δti by applying a conjugate phase
factor of e+iEΔti/p. This works for both real and imaginary time
steps and has no consequential effect in the long-time limit,
changing only the intermediate-time dynamics, which are unim-
portant. Thus, neither the precise form of the initial conditions
for the BRPH propagation nor the slight phase shifts between
time-steps as discussed above prevent the method from reaching
the desired steady-state solution in the long-time limit, at least
not in principle.

That said, CPWM algorithms are somewhat similar to numer-
ical optimization problems, such as the Newton�Raphson
method, or other iterative methods for self-consistently solving
nonlinear equations, like the Hartree�Fock equations. Noncon-
vergent, or worse yet divergent, solutions will often occur when
the initial guess is too far removed, or perhaps even completely
isolated (in solution space) from the desired solution. We have
observed similar behavior in some BRPH calculations, especially
for energies very close to the onset of a scattering channel. From
experience, we expect to encounter difficulties with convergence
when the quantities E � Ei are small and the troublesome scat-
tering amplitude has a very broad de Broglie wavelength com-
pared to the other components and the size of the interaction
region. Related issues are also encountered in 1D applications, as
the kinetic energy approaches zero. The obvious solution is to
add points to the numerical grid. Ideally it would be desirable
to have enough grid points outside the interaction region to
guarantee that εi(x) and the adiabatic couplings are numerically
converged. At the same time, the grid spacing must be chosen to
accurately represent the scattering potential. At some point,
usually when the energy is an extremely small fraction of the
barrier height, one cannot afford to add enough points to main-
tain an adequate representation of both the potential and the
scattering state simultaneously. For multi-D calculations, the
problem is more serious because the same issues will occur over
an energy range where the S-matrix elements are nontrivial and
do exhibit interesting features. Note that this situation is not
unique to BRPH and is, in fact, problematic for virtually all accu-
rate quantum scattering methods (especially DVR-ABC). In any
case, it is clear that, like the 1D case, the BRPHwill ultimately fail
for some small enough value of E� Ei; however, we would like to
be able to push the method as far as possible.
In this context, there are several avenues that could lead to

enhanced numerical stability. One idea is to take the final BRPH
components from a presumably stable calculation at higher energy
and use these as the initial conditions for lower kinetic energies,
where stability is problematic. To compute the S-matrix as a func-
tion of energy, one would scan the energy backward from higher
to lower values. We could also mix different solutions from com-
pleted calculations above and below the channel onset. Another
approach may be to slowly “switch on” the nonadiabatic coupling
terms with an appropriately defined scaling factor. In our work we
have employed a very simple formula

ai(ðnewÞ ¼ ai(ðold, tÞ þ η½ai(ðold, t þ ΔtiÞ � ai(ðold, tÞ�
ð45Þ

which mixes the BRPH solutions between time steps, and the
mixing parameter η is a number between (0,1).56 We have found
that this does enhance numerical stability for some cases, but ulti-
mately fails as the energy gets even closer to the onset of a scattering
channel.

4. RESULTS

In this section we present benchmark BRPH results for several
simple 2D scattering problems. The first example involves the
trivial case of a separable system defined by an Eckart barrier
along x and a harmonic oscillator (HO) along y. We refer to this
system as the uncoupled Eckart+HO problem. Since there is
no coupling between x and y, the adiabatic eigenfunctions are
constant with respect to the reaction coordinate, such that the
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nonadiabatic coupling terms vanish and the interchannel reac-
tion probabilities Pnfi6¼n = 0 for all energies. Our results here will
serve as a reference for a nonseparable problem that we consider
later. The scattering potential for the uncoupled Eckart+HO
problem is given by

Vðx, yÞ ¼ V0 sech
2ðαxÞ þ 1

2
mω0

2y2 ð46Þ

where the parameters of the problem are given as follows:
m = 2000 au, V0 = pω0 = 0.0018 hartree, and α = 3 b�1.
Diagrams illustrating the 2D structure and various 1D slices of
the scattering potential are shown in Figure 3.

In Figure 4 we plot 1D probability densities for the channel
scattering square amplitudes, Fi = |ai|2, and corresponding BRPH
components, Fi( = |ai(|

2, for the two degenerate left-incident
stationary scattering state solutions of the uncoupled Eckart+HO
problem with energy E = 2V0. In each case, only a single channel is
involved, i.e., the incident channel, i = n, because there is no
nonadiabatic coupling. These functions are quite similar to the
1D example in section 2, except that there are multiple solutions
to consider when there is more than one open scattering channel.
Panels a and b show the densities for the n = 0 and n = 1 incident
states, respectively. Clearly, the n = 0 state has a larger kinetic
energy and the scattering amplitude exhibits a shorter wave-
length and greater transmission than the n = 1 state.

The BRPH components and scattering amplitudes can be
combined with the adiabatic eigenfunctions to generate 2D wave
functions and probability densities:

Fþðx, yÞ ¼
					∑i aiþðxÞ ϕiðx, yÞ

					
2

ð47aÞ

F�ðx, yÞ ¼
					∑i ai�ðxÞ ϕiðx, yÞ

					
2

ð47bÞ

Fðx, yÞ ¼
					∑i aiðxÞ ϕiðx, yÞ

					
2

ð47cÞ

where F+ represents the density of the total incident and trans-
mitted wave, F� is the density of the total reflected wave, and F is
the total probability density of the stationary state. In Figure 5, we
plot these densities for the two degenerate left-incident states at
E = 2V0. Because there is no interference between channels in
this case, the wave functions involved are simply the product of a
single 1D scattering wave function (single-channel scattering am-
plitude) and anHO eigenfunction. Consequently, these densities
are not particularly interesting for the uncoupled case; however,
they do serve as a useful point of reference.

For the uncoupled Eckart+HO problem, the intrachannel
reaction probabilities are identical to the transmission probability
for the 1D Eckart barrier. In Figure 6a we plot the intrachannel
reaction probabilities Pnfn as a function of energy for the first
three scattering channels with E < 3.5V0. The calculated values
for the n = 0, 1, and 2 channels are represented by circles, squares,
and diamonds, respectively. The vertical dashed lines in the figure
indicate the onset of a scattering channel, i.e., E = Ei, and the exact
results are shown as solid lines. We have calculated these results
for several different grid spacings; however, only themost accurate
results using Δx = 0.0025 b are presented. Figure 6b shows
the fractional error of the BRPH transmission probabilities.
These errors are all less than 0.1% across the energy range and
are quite similar compared to those for the 1D case; however, for
the 2D problem, we have degenerate states at higher energies,
and a separate error is given for each one. Generally, the error is
larger for states where the kinetic energy is small and the time
step is large. We note the anomalously low error in the data point
for the n = 2 channel at E = 2.6 V0. This is the most challenging
state for this set of calculations, and we suspect that there may be
a small unconverged error leading to a coincidental cancellation
in favor of a seemingly more accurate transmission probability.

The error estimates introduced in section 2 for CPWM cal-
culations can also be generalized for BRPH calculations. In panels
c and d of Figure 6 we plot the normalization error and ÆĤæerror,
respectively. For multi-D problems, we define the normalization
as the sum of the partially state resolved transmission and reflec-
tance probabilities, which should be unity for all open channels.
Themagnitude of both the normalization and energy expectation
errors is less than 0.1% across the given energy range and exhibit
similar trends with respect to the grid spacing (not shown) as

Figure 3. (a) Contour lines illustrating the 2D potential energy surface for the uncoupled Eckart+HO problem. The isovalues are reported in units of
the barrier height V0 = 0.0018 hartree. The dotted line corresponds to the minimum energy path. (b) Various 1D slices through the potential energy
surface are shown. The solid curve illustrates the Eckart barrier along the linear reaction path V(x,0). The dashed curves correspond to the asymptotic
harmonic oscillator potential V((∞,y) and its four lowest energy eigenvalues. The dotted curves are associated with the harmonic potential and
eigenvalues along the dividing surface V(0,y).
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compared to the CPWM results for the 1D Eckart A problem.
Interestingly, however, the energy dependence of the these
errors is quite different compared to the errors shown in Figure 2.
For the 1D problem, the errors increase regularly with energy,
whereas in panels c and d of Figure 6 they generally decrease,
although, the errors for the n = 0 incident channel do increase

with energy, but only after the total energy has exceeded the
n = 1 channel onset. We speculate that the difference between the
multi-D and 1D errors is related to the fact that the BRPH equa-
tions of motion contain constant terms, i.e., Ei, that are not pre-
sent in the 1D CPWM equations. Certainly this is an interesting,
although very subtle, feature of our results that we will continue

Figure 4. The BRPH densities for two degenerate stationary states of the uncoupled Eckart+HO problem are plotted as a function of the reaction coor-
dinate: (solid) Fn+, (dashed) Fn�, and (dotted) Fn. These states correspond to the two open scattering channels with E = 2V0. Panels a and b correspond
to the n = 0 and n = 1 incident channels, respectively.

Figure 5. Contour plots illustrating 2D BRPH densities for the two degenerate stationary states of the uncoupled Eckart+HO problem with E = 2V0.
For the n = 0 incident channel, we have (a) F+, (b) F�, and (c) F. Similarly, panels d�f are the corresponding densities for the n = 1 incident channel.
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to examine in future studies; however, the important point here is
that BRPH approach reproduces analytical results extremely well
for this uncoupled problem and that the error can be controllably
reduced to arbitrary precision by decreasing the grid spacing.

In the next example, we a consider a coupled Eckart+HO pro-
blem where the harmonic oscillator potential is displaced along
the reaction coordinate. The potential energy surface is defined by

Vðx, yÞ ¼ V0 sech
2ðαxÞ þ 1

2
mω0

2ðy� YðxÞÞ2 ð48Þ

where the function

YðxÞ ¼ Y0 sech
2ðαxÞ ð49Þ

provides a displacement that couples motion along the x and y
coordinates. The displacement is zero as x f (∞ and has a
maximum value of Y0 = 0.25 b at the dividing surface x = 0. In
principle, we could use this curve to define the reaction coordinate;
however, this is not necessarily required because the reactant and
product valleys of the potential are coincidentwith the x-axis. In this

sense, the problem is quasilinear andwewill take the x-axis to be the
reaction coordinate in our calculations. The other parameters of
the coupled problem are identical to those in the uncoupled Eckart
+HO example. Figure 7 shows the 2D potential energy surface and
several 1D slices for the coupled Eckart+HO problem.

The fact that we have included a displacement of the oscillator,
as opposed to varying only the harmonic frequency along the
reaction coordinate, is important. In the case of the coupled
Eckart+HO with no displacement35,57 (i.e., symmetric about y),
the nonadiabatic coupling between even and odd adiabatic
eigenstates vanishes due to symmetry, and one would need to
probe higher energies in order to observe nonzero state-to-state
transitions. However, the intrachannel reaction probabilities at
high energies will far outweigh the interchannel probabilities for
the symmetric Eckart+HO problem, i.e., P0f0 ≈ 1 . P0f2,
whichmakes it difficult to assess whether the nonadiabatic coupling
terms are treated correctly. Breaking the symmetry of the problem
by simply displacing the oscillator leads to much more obvious and
interesting nonadiabatic effects at lower energies, even without

Figure 6. Transmission probabilities and fractional error estimates as a function of energy in units of the barrier height V0 = 0.0018 hartree for the
uncoupled Eckart+HO problem. Circles, squares, and diamonds represent the n = 0, 1, and 2 incident channels, respectively. Vertical dashed lines
indicate the onset of a scattering channel. (a) Intrachannel transmission probabilities; solid lines are the corresponding exact results. (b) Fractional error
in the calculated transmission probabilities. (c) Fractional error of the normalization condition for the 2D stationary states. (d) Fractional error in the
energy expectation value of the stationary states.
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attenuating the harmonic frequency. In Appendix B we derive
expressions for the nonadiabatic BRPH integrals (eq 29) for the
case where the harmonic oscillator is both displaced and scaled
along the reaction coordinate. For the displaced only oscillator,
we have the following result

Ið1Þij ¼ � ffiffiffi
2

p
βY 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði þ 1Þ
p

δi, j�1 þ ffiffiffi
2

p
βY 0 ffiffiip

δi, jþ1 ð50aÞ

Ið0Þij ¼ 1
2
β2Y 02ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ

�
ffiffiffi
2

p

2
βY 00ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 1Þ

p
δi, j�1 �

ffiffi
i

p
δi, jþ1Þ � 1

2
β2Y 02ð2i þ 1Þδi, j

ð50bÞ
where β = (mω0/p)

1/2. These terms introduce coupling between
specific scattering channel amplitudes, and the magnitude of this
coupling is scaled by functions of the reaction coordinate that
depend on the derivatives of Y.

We have calculated the stationary states and reaction prob-
abilities for the coupled Eckart+HO problem over a range of
energies that includes up to three open scattering channels.
Recall that the BRPH ansatz (eq 20) involves an infinite sum over
both the open and closed scattering channels and that for coupled
problems this sum must be artificially truncated. We have per-
formed calculations including up to three additional closed chan-
nel amplitudes, and we found that with inclusion of only two
closed channel terms, the accuracy in the results shown below is
limited by the grid spacing, which is Δx = 0.0025 b for our most
accurate BRPH calculations. This is certainly not a general result,
and we expect that more terms will be required to achieve
convergence for different types of scattering problems, especially
those with significant nonadiabatic coupling and also anharmonic
character in the perpendicular degrees of freedom.

Figure 8 shows the BRPH densities as a function of x for
the two degenerate left-incident stationary state solutions with
energy E = 2V0. In each panel, the solid line corresponds to a Fi+
density, the dashed line to Fi�, and the dotted line to Fi. Panels a
and d show the incident channel densities corresponding to the
n = 0 and n = 1 incident channel stationary states, respectively.
Qualitatively, the curves are very similar to the uncoupled case;

however, the intrachannel transmission is decreased. The densities
shown in panels b and e are associated, respectively, with the non-
incident channels corresponding to panels a and d; these would be
formally zero if the problem were uncoupled. Thus, Figure 8b
illustrates the F1( and F1 densities for the n = 0 incident state, and
similarly, Figure 8d shows the F0( and F0 densities for the n = 1
incident state. In both cases Fi6¼n( f 0 as x f -∞, which is
consistent with the required boundary conditions. Panels c and f
show the closed channel densities F2( and F2 for the n = 0 and
n = 1 incident states, respectively. For both cases, the closed
channel densities all vanish as x f (∞, so that there is no net
transmission or reflectance probability associated with the closed
channel. While the magnitude of the closed channel densities are
smaller compared to the open channels, they are clearly not negli-
gible. The 2D densities F( and F for the degenerate states with E =
2V0 are shown in Figure 9. The patterns are similar to those for
the uncoupled case; however, there are distortions attributed to
the nonadiabatic coupling between scattering amplitudes. This is
most clearly seen in Figure 9c, where the irregularities in the total
F indicate the presence of nontrivial interference effects.

As we have discussed previously, the asymptotic values of the
open channel Fj+ as xf∞ for a given left-incident channel n are
related to the state-to-state transmission probabilities Pnfj. Also,
the cumulative reaction probability is given by the sum

NðEÞ ¼ ∑
n, j
Pn f jðEÞ ð51Þ

In Figure 10 we compare the calculated BRPH reaction prob-
abilities with those obtained using the DVR-ABCmethod.12�14,54

See Appendix C for a discussion of the latter calculations.
Figure 10a shows the state-to-state probabilities for the coupled
Eckart+HO problem on a logarithmic scale as a function of
energy. Note that the energy scale here is measured in units of the
barrier height V0 and that the vertical dashed lines indicate the
onset of a scattering channel. The BRPH probabilities for indi-
vidual transitions nf j are given by circles, squares, etc. and the
corresponding DVR-ABC results are indicated with the symbol�
for all transitions. At low energies, only the ground state (n = 0)
scattering channel is open. The BRPH 0 f 0 transmission
probabilities are represented by filled circles, and these increase
more or less steadily across the given energy range; however, there

Figure 7. (a) Contour lines illustrating the coupled Eckart+HO potential. The isovalues are reported in units of the barrier height V0 = 0.0018 hartree.
The dotted line corresponds to the minimum energy path. (b) Various 1D slices of the 2D potential are shown. The solid curve illustrates V(x,0). The
dashed curves correspond to V((∞,y) and the four lowest energy asymptotic eigenvalues Ei. The dotted curves represent V(0,y) and the four lowest
adiabatic eigenenergies εi(0). The maximum displacement of the oscillator is 0.25 b at the dividing surface.
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are subtle variations at higher energies, where interstate transitions
occur. The 1 f 1 and 2 f 2 transmission probabilities are
depicted as up-triangles and empty circles, respectively. These are
qualitatively similar to the 0 f 0 transmission, although the
variation at higher energies is visibly larger for the 1 f 1 trans-
mission probability compared to the 0f 0 case. This makes sense
in light of the fact that the scaling factors in eq 50 are proportional
to the incident state quantum number and the fact that the n = 0
incident state can only couple to higher energy scattering states,
whereas the n = 1 incident state is coupled to higher and lower
energy states. The filled squares, diamonds, and down-triangles in
Figure 10a represent the 0 f 1, 0 f 2, and 1 f 2 transmission
probabilities, respectively. These begin to increase after the onset
of their respective scattering channels. The 0 f 1 and 0 f 2
transmission probabilities are observed to decrease with increasing
energy, and we speculate the same behavior would also be ob-
served for 1 f 2 at higher energies.

Figure 10a shows that there is very good qualitative agreement
between the BRPH and DVR-ABC calculations. In Figure 10b
we plot the fractional (or relative) differences between the BRPH
and DVR-ABC transmission probabilities, which are calculated
according to the formula

fractional difference ¼ 2jPBRPH � PDVR j
jPBRPHj þ jPDVR j ð52Þ

Panel b illustrates that the two sets of calculations are also, gene-
rally, quantitatively consistent with one other across the given
energy range. Note that the largest differences, roughly 1% and
5%, are found for the two energy values just above the channel
thresholds at E = 1.5V0 and E = 2.5V0, respectively. For reasons
that we have discussed previously, it is difficult to obtain conver-
gence for states with very low kinetic energies, and we attribute
the larger differences here to this issue, which affects the accuracy
in both the BRPH andDVR-ABCmethods. Figure 10c compares
the cumulative reaction probability as a function of energy for our
BRPH and DVR-ABC calculations. Qualitatively speaking, the
agreement is excellent, and Figure 10d examines the fractional
differences between the two methods. Generally, the differences
are all much less than 0.1% over the given energy range with the
exception of just above the channel thresholds, where they are
roughly equal to 0.1%; i.e., there are at least two significant figures
in common, which is still fairly good. The convergence of the
cumulative reaction probability with respect to the grid para-
meters in our DVR calculations has been monitored closely, and
the differences here between the BRPH and DVR-ABC results
are of the same order of magnitude as the individual convergence
in these numbers with respect to the BRPH and DVR grid para-
meters; hence, we can conclude that the two methods are quan-
titatively consistent with one another.

As an independent assessment of the BRPH performance, we
also examine the fractional errors in the normalization and energy

Figure 8. BRPH densities as a function of x for two degenerate (E = 2V0) left-incident stationary states of the coupled Eckart+HO problem: (solid) Fi+,
(dashed) Fi�, and (dotted) Fi. Panels a and d show the intrachannel densities for the n = 0 and n = 1 incident scattering channels, respectively, while
panels b and e show the nonincident channel densities, i.e., i = 1 and i = 0, respectively. Panels c and f are the closed channel i = 2 scattering amplitudes
contributing to the n = 0 and n = 1 incident channels, respectively.



3498 dx.doi.org/10.1021/ct200566s |J. Chem. Theory Comput. 2011, 7, 3484–3504

Journal of Chemical Theory and Computation ARTICLE

expectation value, which are plotted in panels a and b of Figure 11,
respectively. Here each incident channel has its own error mea-
sure and there are up to three channels for the highest energy
values shown. Generally, the errors for the coupled problem are
comparable to those for the uncoupled Eckart+HO potential;
however, the energy dependence is qualitatively distinct. Of course,
we should expect some differences between the uncoupled and
coupled problems; the latter are nontrivial and it is reasonable to
expect larger errors. In any case, both fractional error measures
are less than 0.1% across the given energy range, so that we may
conclude the BRPH solutions for the coupled problem are also
quantitatively consistent with both the normalization require-
ments of the stationary states and the TISE.

Taken together, the differences and errors shown in Figures 10
and 11, respectively, suggest that the BRPH results are likely
more accurate than the DVR-ABC calculations at the energies just
above the scattering channel thresholds. One concrete indication
of this is that the energy expectation errors shown in Figure 11b are
on the order of 10�4 or better across the energy range; however,
the consistency between the BRPH and DVR-ABC calculations is
only 10�2 in the state-to-state probabilities near the channel thresh-
old and 10�4 or better away from threshold (see Figure 10b). As
discussed in Appendix C, the discrepancy can be attributed to the
fact that we could not fully converge our DVR-ABC calculations
with respect to the size and density of the DVR grid at the energies
just above the thresholds. This suggests that the BRPH approach
may offer a computational advantage over the DVR-ABC method
for calculating reaction probabilities at near-threshold energies.

The time complexity for both the DVR-ABC and BRPH approa-
ches scales as O(N3), where N is the total number of grid points
used in the calculations. For DVR-ABC, the value ofN required to
achieve a certain level of precision increases as the total energy gets
closer to a channel threshold, while for the BRPH, the precision is
more or less constant with respect to energy for a fixedN, assuming
a fixed number of scattering channels. This issue also affects the
memory requirements of the two methods, and it seems that
BRPH has an advantage near a channel threshold. We intend to
continue exploring these issues in future work.

5. BRIEF SUMMARY AND OUTLOOK

In this work we have described the development of a compu-
tational methodology, the BRPH approach, for the calculation of
multi-D stationary scattering state wave functions and reaction
probabilities in reactive scattering problems. We have presented
benchmark results for the simplest class of 2D scattering pro-
blems with linear reaction coordinates. The BRPH approach
utilizes an adiabatic representation of the system’s Hamiltonian
to recast the multi-D problem into a set of coupled 1D scattering
problems, andwe can then exploit the same numerical algorithms
used in 1D CPWM applications to calculate the stationary states
and state-to-state reaction probabilities of 2D problems. In our
numerical applications, we have demonstrated that BRPH calcu-
lations are both qualitatively and quantitatively consistent with
conventional methods based upon the DVR-ABC approach.
Importantly, the BRPHmethod does not require the use of ABCs

Figure 9. Contour plots illustrating 2D BRPH densities for the two degenerate stationary states (E = 2V0) of the coupled Eckart+HO problem. For the
n = 0 incident states, we have (a) F+, (b) F�, and (c) F. Similarly, panels d�f are the corresponding densities for the n = 1 incident state.
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so that the range of the computational grid needed in BRPH
calculations is much smaller than that for DVR-ABC.

In future work, we plan to extend the theoretical and numeri-
cal implementation of the BRPH approach to include asympto-
tically asymmetric potentials, larger dimensionalities, and curvi-
linear reaction paths. Asymptotically asymmetric problems do
not really present a major challenge, since we can exploit tech-
niques developed in previous work for dealing with such pro-
blems.33 Curvilinear reaction paths and higher dimensionalities,
on the other hand, present a much more interesting and chal-
lenging class of problems. To address the issue of curvature, in
2D for example, we speculate that the BRPH approach could be
applied within a set of orthogonal natural collision coordinates
s = s(x,y) and q = q(x,y), where the channel scattering amplitudes
ai(s) would be defined along some curved reaction path, which is
a function of MWC coordinates x and y. Likewise, the adiabatic
eigenfunctions would vary as ϕi(s,q), where q is associated with
bound motion perpendicular to the reaction coordinate, e.g., a
bead oscillating along a curved wire. Generally, the kinetic energy

operator expressed in terms of s and qwill not have a simple form,
so we expect that the adiabatic eigensystem will have to be repre-
sented numerically (possibly with 1D DVRs for bound states) in
order to obtain exact results. It is also expected that the BRPH
integrals will depend upon the metric tensor for the curvilinear
coordinate system, and the BRPH equations of motion and
the nonadiabatic coupling terms will be correspondingly more
complicated.

Another area of interest is how the BRPH approach, compared
with conventional methods, will scale with respect the number of
physical dimensions in the scattering problem. It is well-known
that the computational effort in DVR calculations, measured by
the size of the DVR grid, scales exponentially with the number of
degrees of freedom. In BRPH calculations the grid size scales
linearly with the number of scattering channels included in the
calculation; however, the number of channels also scales expo-
nentially with the number of dimensions. The question will then
be, can the BRPH offer a lower pre-exponential factor compared
to DVR? The present work indicates that BRPH is advantageous

Figure 10. Reaction probabilities and fractional differences as a function of energy in units of the barrier height V0 = 0.0018 for the coupled Eckart+HO
problem. Vertical lines represent the onset of a scattering channel. (a) The BRPH state-to-state transmission probabilities are represented as follows:
(filled circles) 0f 0, (squares) 0f 1, (diamonds) 0f 2, (up-triangles) 1f 1, (down-triangles) 1f 2, and (empty circles) 2f 2. The corresponding
DVR-ABC transmission probabilities are represented with the symbol � for all probabilities. (b) Fractional differences between the BRPH and DVR-
ABC state-to-state reaction probabilities. The differences for the various probabilities are represented according to the same scheme used in panel a for
the BRPH probabilities. (c) Comparison of (circles) BRPH and (�) DVR-ABC cumulative reaction probabilities. (d) Fractional difference between the
BRPH and DVR-ABC cumulative reaction probabilities.



3500 dx.doi.org/10.1021/ct200566s |J. Chem. Theory Comput. 2011, 7, 3484–3504

Journal of Chemical Theory and Computation ARTICLE

for energies near threshold, and it will be important to establish
whether this transfers to curvilinear problems. In any case,
however, the primary utility of the BRPH scheme is that it can
readily be used in tandem with various approximate methods for
describing the bound degrees of freedom. As dimensionality
increases, wemust ultimately invoke some level of approximation
for the solution of the adiabatic eigenvalue problem. These may
include harmonic or anharmonic model representations and per-
turbation theory. For more accurate work, we could also incor-
porate quantum Monte Carlo representations, supersymmetric
quantum mechanics,58�61 and massively parallel numerical
schemes.62�64 The most appropriate method will likely be dic-
tated by the details of the problem at hand, so it will useful to
carefully explore the benefits and limitations associated with a
variety of different approaches.

APPENDIX A. DERIVATION OF BRPH EQUATIONS OF
MOTION

In this section, we derive the BRPH equations of motion. We
begin by constructing the total time derivative of ai(:

dtai( ¼ ∂tai( (
pi
m
a0i( ð53Þ

The partial time derivative is simply given by

∂tai( ¼ � i
p
Eai( ð54Þ

The convective term contains a spatial derivative of the bipolar
components and is evaluated using the expression

a0i( ¼ 1
2
ða0iþ þ a0i�Þ (

1
2
ða0iþ � a0i�Þ ð55Þ

The first term is determined by the FF condition (eq 23). The
second term is found by taking the second derivative of the FF
condition to give

a00i ¼ i
p
piða0iþ � a0i�Þ ð56Þ

and then solving for the difference. Substituting these results
back into the total time derivative and rearranging leads to the

following equations of motion

dtai( ¼ i
p
ðE� 2EiÞai( � i

p
ðE� EiÞai þ i

p
� p2

2m
a00i

" #

ð57Þ
wherewe note that the last termnow contains the second derivative
of the scattering amplitude. We appeal to an adiabatic representa-
tion of the TISE to evaluate this term. The total stationary state is
then expressed as a vector of scattering amplitudes

ϕE ¼ fa1, a2, :::gT ð58Þ
and the TISE can be recast as matrix vector product Ĥ 3Φ = EΦ,
whose elements are given by

∑
j
Ĥijaj ¼ Eai ð59Þ

Thematrix elements of the Hamiltonian are functions of x and
are formally defined by

Ĥij ¼
Z

ϕi�ðx, yÞĤϕjðx, yÞ dy ð60Þ

To calculate these more explicitly, we first operate with Ĥ on
the quantity ϕj(x,y) a(x), where the function a(x) serves as a
book-keeping factor to help track the order of derivative opera-
tors. Applying the Hamiltonian operator and using the adiabatic
TISE (eq 19) we obtain

ĤðϕjaÞ ¼ � p2

2m
ðϕja00 þ 2ϕð1, 0Þj a0 þ ϕ

ð2, 0Þ
j aÞ þ εjϕja

ð61Þ
where we have used the product rule to expand the second
derivative in x. Next, we multiply both sides of the equation by
ϕ*i(x,y) and integrate over the y-coordinate to yield

Ĥija ¼ � p2

2m
½δija00 þ Ið1Þij a0 þ Ið0Þij a� þ δijεia ð62Þ

where we have used the fact that the adiabatic eigenstates are
orthonormal. The BRPH integrals Iij

(1) and Iij
(0) are defined in

Figure 11. Fractional error estimates for the coupled Eckart+HO problem. Circles, squares, and diamonds represent the n = 0, 1, and 2 incident channel
states, respectively. Vertical dashed lines indicate the onset of a scattering channel. (a) Fractional error associated with normalization of the partially
state-resolved transmission and reflectance probabilities. (b) Fractional error associated with the energy expectation value.
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eq 29. It is important to note that these quantities are functions of
the reaction coordinate that vanish as xf (∞. Similarly, εi are
functions of x that converge to a set of fixed eigenvalues that are
associated with the vibrational states of the asymptotic reactants
or products. Removing the book-keeping factor from the last
equation gives form for the matrix elements of the Hamiltonian:

Ĥij ¼ � p2

2m
δij

d2

dx2
þ Ið1Þij

d
dx

þ Ið0Þij

" #
þ εiδij ð63Þ

Substituting eq 63 into eq 59 and rearranging the expression
for a00i gives

� p2

2m
a00i ¼ ðE� εiÞai þ p2

2m∑j
ðIð1Þij a0j þ Ið0Þij ajÞ ð64Þ

Finally, substituting this last expression into eq 57 and rearran-
ging leads to the BRPH equations of motion given in eqs 24
and 28.

APPENDIX B. ANALYTIC FORMULAS FOR BRPH
INTEGRALS

In this section we derive analytic expressions for eq 29 in
the special case where the potential function V(x,y) along the
y-coordinate is described by a displaced and scaled harmonic
oscillator. Both the equilibrium position (with respect to the
reaction path y = 0) and the harmonic frequency (force constant)
may vary as a function of x. The potential energy function is given
by

Vðx, yÞ ¼ VscatterðxÞ þ 1
2
mωðxÞ2ðy� YðxÞÞ2 ð65Þ

whereVscatter is some 1D barrier potential that depends only on x,
m is the reduced mass of the oscillator, ω(x) is the harmonic
frequency, and Y(x) is the equilibrium position. It is assumed that
ω(x)f ω0 and Y(x)f 0 as xf(∞, such that the asymptotic
potential function is independent of the reaction coordinate. The
adiabatic eigenenergies will be given by

εiðxÞ ¼ VscatterðxÞ þ pωðxÞ i þ 1
2

� �
ð66Þ

and asymptotically we have εi(x f(∞) = Ei = pω0(i + 1/2).
The adiabatic eigenfunctions for this problem depend parame-

trically on x and are given by a set of Gauss�Hermite polynomials

ϕjðx, yÞ ¼ Aj

ffiffiffiffiffiffiffiffiffi
βðxÞ

p
Hjðuðx, yÞÞ Gðuðx, yÞÞ ð67Þ

where Aj = (2jj!)�1/2π�1/4 is a normalization factor, β(x) =
(mω(x)/p)1/2 is a function with units of inverse length, Hj(u) is
the jthHermite polynomial, andG(u) = exp(�u2/2) is a Gaussian
function. TheGauss�Hermite polynomials are expressed in terms
of the dimensionless function u(x,y) = β(x)(y � Y(x)).

Expressions for eq 29 are obtained by taking derivatives of
eq 67 with respect to x and using well-known results for the
moments of the harmonic oscillator eigenfunctions:65Z

ϕi�u0ϕn dy ¼ δi, n ð68aÞ

Z
ϕi�u1ϕn dy ¼

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
i þ 1

p
δi, n�1 þ ffiffi

i
p

δi, nþ1�
h

ð68bÞ

Z
ϕi�u2ϕn dy ¼ 1

2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, n�2

þ ð2i þ 1Þδi, n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, nþ2� ð68cÞ

Z
ϕi�u3ϕn dy ¼

ffiffiffi
2

p

4
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 3Þði þ 2Þði þ 1Þ

p
δi, n�3

þ ð3i þ 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 1Þ

p
δi, n�1 þ ð3iÞ ffiffi

i
p

δi, nþ1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þði� 2Þ

p
δi, nþ3� ð68dÞ

Z
ϕi�u4ϕn dy ¼ 1

4
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 4Þði þ 3Þði þ 2Þði þ 1Þ

p
δi, n�4

þ ð4i þ 6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, n�2 þ ð6i2 þ 6i þ 3Þδi, n

þ ð4i� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, nþ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þði� 2Þði� 3Þ

p
δi, nþ4�
ð68eÞ

Applying the chain rule to eq 67 and using the properties of
Gauss�Hermite polynomials one can show that

ϕ
ð1, 0Þ
j ¼ β0

β
� u2ϕj þ

1
2
ϕj þ

ffiffiffiffi
2j

p
uϕj�1

� �

þ βY 0ðuϕj �
ffiffiffiffi
2j

p
ϕj�1Þ ð69aÞ

ϕ
ð2, 0Þ
j ¼ β00

β
� u2ϕj þ

1
2
ϕj þ

ffiffiffiffi
2j

p
uϕj�1

� �

þ β02

β2
u4ϕj � 2u2ϕj �

1
4
ϕj �

ffiffiffiffi
8j

p
u3ϕj�1 þ ffiffiffiffi

2j
p

uϕj�1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jðj� 1Þ

q
u2ϕj�2

�
þ β2Y 02ðu2ϕj � ϕj �

ffiffiffiffi
8j

p
uϕj�1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jðj� 1Þ

q
ϕj�2Þ þ βY 00ðuϕj �

ffiffiffiffi
2j

p
ϕj�1Þ

þ β0Y 0ð � 2u3ϕj þ 5uϕj þ
ffiffiffiffiffiffi
32j

p
u2ϕj�1 �

ffiffiffiffiffiffi
18j

p
ϕj�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16jðj� 1Þ

q
uϕj�2Þ ð69bÞ

Substituting eq 69 into eq 29 and using eq 68 we find that

Ið1Þij ¼ β0

β
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ

� ffiffiffi
2

p
βY 0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 1Þ

p
δi, j�1 �

ffiffi
i

p
δi, jþ1Þ ð70aÞ

Ið0Þij ¼ 1
4
β02

β2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 4Þði þ 3Þði þ 2Þði þ 1Þ

p
δi, j�4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þði� 2Þði� 3Þ

p
δi, jþ4Þ þ 1

2
β00

β
� β02

β2

 !

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ

� 1
2
β02

β2
ði2 þ i þ 1Þδi, j þ 1

2
β2Y 02ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ �

ffiffiffi
2

p

2
βY 00ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 1Þ

p
δi, j�1 �

ffiffi
i

p
δi, jþ1Þ

� 1
2
β2Y 02ð2i þ 1Þδi, j �

ffiffiffi
2

p

2
β0Y 0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 3Þði þ 2Þði þ 1Þ

p
δi, j�3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þði� 2Þ

p
δi, jþ3Þ þ

ffiffiffi
2

p

2
β0Y 0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 1Þ

p
δi, j�1

þ ði þ 1Þ ffiffi
i

p
δi, jþ1Þ ð70bÞ
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There are two interesting subcases. First, if only the harmonic
frequency is scaled along the reaction coordinate, then the
integrals simplify to

Ið1Þij ¼ β0

β
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ ð71aÞ

Ið0Þij ¼ 1
4
β02

β2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 4Þði þ 3Þði þ 2Þði þ 1Þ

p
δi, j�4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þði� 2Þði� 3Þ

p
δi, jþ4Þ þ 1

2
β00

β
� β02

β2

 !

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ 2Þði þ 1Þ

p
δi, j�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði� 1Þ

p
δi, jþ2Þ

� 1
2
β02

β2
ði2 þ i þ 1Þδi, j ð71bÞ

where we note that there is no coupling between states with
different parity. If the oscillator is only displaced along the
reaction coordinate, then the integrals reduce to eq 50 of
section 4.

APPENDIX C. DVR-ABC CALCULATIONS

In this section, we describe our implementation of the DVR-
ABC approach. For the present work, we utilize the universal
DVR developed by Miller and Colbert.54 In 2D problems, this
involves a rectangular set of DVR grid points in x and y:

qα ¼ ðxα, yαÞ ¼ ðαxΔx,αyΔyÞ ð72Þ
where the index α = 1, 2, ..., runs over the total number of DVR
points and the two subindices αx = 0, (1, ..., and αy = 0, (1, ...,
are used to label the x and y components of the DVR points
within the respective x and y subspaces. It is assumed that the
problem is more or less centered around the point (x,y) = (0,0)
and, for simplicity, that the DVR grid is symmetric along x and
along y.

Miller and Seideman12,13 analyzed flux-correlation functions
to develop simple and very useful DVR expressions for comput-
ing the cumulative reaction probability and elements of the S-
matrix; see eqs 76 and 78 below. For a given energy E, these
formulas involve the system’s Greens function, which in the
DVR-ABC approach is constructed via a matrix inversion

G ¼ ðEI�H þ iðΓþ þ Γ�Þ=2Þ�1 ð73Þ

where I is an identity matrix over the DVR grid points and H is
the 2D DVR Hamiltonian:

Hαβ ¼ TðxÞ
αx , βx

þ TðyÞ
αy , βy

þ δαβVðxα, yαÞ ð74Þ
The DVR kinetic energy matrix elements for motion along y

are explicitly defined in eq 36, and the expression for x is similar.
The quantities Γ( in eq 73 define a pair of complex absorbing
potentials (CAPs) associated with the asymptotic regions of the
scattering system. Like the physical potential, the CAPs are
approximated by diagonal matrices over the DVR points. In
our work, we use a fourth-order polynomial form

ðΓ(Þαβ ¼ δαβ
Zðxα - X0Þ4=Wx

4 jxαj > X0

0 jxαj e X0

(
ð75Þ

where Z, Wx, and X0 are the CAP height, width, and onset,
respectively. Note that the total spatial extent of the DVR grid
along x is given by 2(X0 + Wx).

State-to-state reaction probabilities are calculated according to

Pn f j ¼ jSjnj2 ¼ 1

16p2
ðϕDVRj Þ� 3Γþ 3G 3Γ� 3 ϕ

DVR
n ð76Þ

where ϕj
DVR (and ϕn

DVR) is the DVR representation of the
asymptotic scattering state associated with channel j (and n).
The elements of these vectors are given by

ðϕDVRj Þα ¼ wα
1=2ðm=pjÞ1=2e i=pð ÞpjxαϕjðyαÞ ð77Þ

where wα =ΔxΔy is the 2DDVR weight, pj = (2m(E� Ej))
1/2 is

the momentum of a particle with kinetic energy E� Ej, and ϕj(y)
is a 1D eigenstate of the asymptotic system with eigenenergy Ej.
The cumulative reaction probability can be calculated by taking
the sum in eq 51 or by using the so-called “direct” expression

NðEÞ ¼ Tr½Γ� 3G 3Γþ 3G�� ð78Þ
We have used eqs 76 and 78 to the generate the DVR-ABC
results for comparison with our BRPH calculations.

DVR-ABC calculations involve a number of parameters that
affect the accuracy and convergence of the calculated reaction
probabilities. The CAP parameters Z, Wx, and X0 introduced
above are important, and ideally, these should be tuned to
completely absorb the outgoing flux over as short a length as
possible while minimizing artificial reflections. Similarly, the total
spatial extent of the DVR grid along y, which we introduce as the
length 2Wy, must be large enough so that Ej and ϕj(y) are
numerically well-represented. The DVR grid spacingsΔx andΔy
together with the spatial widths X0, Wx, and Wy determine the
number of DVR grid point and the computational effort of the
DVR-ABC calculations. The accuracy of the DVR-ABC calcula-
tion may be limited by any one or more of these parameters, and
it is generally useful to know the extent to which the calculated
reaction probabilities are converged.

To establish the precision of our results, we introduce a length
scale defined by the following de Broglie wavelength

λ ¼ h
p
¼ 2πpffiffiffiffiffiffiffiffiffi

2mE
p ð79Þ

Note that we are not implying that λ is associated with any
specific physical wave function; rather, we are using it as length
scale that can be loosely associated with both the bound and
scattering components of the true stationary state. Furthermore,
we use λ in different ways to set the 2D DVR grid and CAP
parameters. For example, we define the grid spacings as

Δx ¼ λ=nx ð80aÞ

Δy ¼ λ=ny ð80bÞ
where nx and ny are integers that give the number of points per de
Broglie wavelength. The total energy E represents an upper
bound for both the kinetic energy of the scattering component
and the eigenenergies of the bound states contributing to the true
stationary state. Consequently, λ is a lower bound on the physical
wavelengths of these components, and the spacings defined by eq
80 are quite useful because the appropriate energy dependence
needed to represent the various components is built in. The CAP
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parameters are determined by the formulas

X0 ¼ N0λ ð81aÞ

Wx ¼ Nxλ ð81bÞ

Z ¼ 10E ð81cÞ
where N0 and Nx are integers that determine the width of the
spatial grid along x in units of λ.

The spatial extent of the DVR grid along y should cover, at
least, the space between the classical turning points defined by
the minimum and maximum roots of V(x) = E. In fact, the grid
should be extended beyond these points to account for the tails of
the bound state wave functions associated with tunneling.
We have found that λ is not very well-suited for defining Wy;
λ is far too large at low energies and becomes much too small as
E increases. Instead, we use the following formula

Wy ¼ ycl þ NyA
�1=3 ð82aÞ

where Ny is an integer similar to Nx and ycl is the maximum
classical turning point along y. Note again, that we are assuming
the problem is symmetric about y; if it were not, then one would
have an analogous expression for the minimum classical turning
point. The parameter A comes from the approximate representa-
tion of a 1D wave function in the vicinity of the turning point:

ϕðyÞ≈Ai B þ Aðy� yclÞ
A2=3

� �
ð83Þ

where Ai is an Airy function, and the parameters A and B are
given by

A ¼ 2mV1=p
2 ð84aÞ

B ¼ 2mðV0 � EÞ=p2 ð84bÞ
Here, V0 and V1 are the values of the potential and its first
derivative, respectively, evaluated at ycl. The wave function in
eq 83 is the well-known solution for a particle evolving under the
influence of a linear potential,V(y) =V0 +V1(y� ycl). The length
scale A�1/3 is inversely proportional to V1; therefore, when the
force is weak, A�1/3 will be large, and the DVR grid will extend
further into the forbidden region.

We have established the integers nx, ny, Nx, Ny, and N0 as the
tunable parameters for controlling the accuracy of our DVR-ABC
calculations, and we have thoroughly investigated the conver-
gence of our DVR-ABC calculations for the Eckart+HO pro-
blem. The following protocol has been used to generate
converged reaction probabilities. One begins by calculatingN(E)
using the parameters nx = 3, ny = 3, Nx = 1, Ny = 1, and N0 = 0.
Typically, this gives a very inaccurate result for N(E); never-
theless, this value is saved as a reference. Next, one performs a set
of five distinct calculations for N(E), where each integer para-
meter is increased by 1. The relative difference between the
original N(E) and the five updated values is used to estimate the
convergence with respect to these parameters. For each para-
meter a decision is made as to whether to accept the new
parameter or continue with the original value. Once the updated
parameters are selected, the reference calculation is repeated
and the new N(E) is saved. The parameters are sequentially
updated again and the convergence is retested. This process is
repeated iteratively until the desired precision has been reached

or some maximum number of grid points, determined by the
computer system’s memory, has been exceeded.

In our work, we have set the convergence tolerance to 10�5

and the convergence iterations will stop once the reference
calculations exceed 4000 DVR points. For the results shown in
section 4, the cumulative reaction probabilities converged to a
relative difference of 10�5 with respect to the integer parameters.
The energy points just above the onset of the scattering channels
are the exception to this, and these calculations were stopped
before this level of convergence could be achieved.
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ABSTRACT: The issue of the symmetry of short, low-barrier hydrogen bonds in solution is addressed here with advanced ab initio
simulations of a hydrogen maleate anion in different environments, starting with the isolated anion, going through two crystal
structures (sodium and potassium salts), then to an aqueous solution, and finally in the presence of counterions. By Car�Parrinello
and path integral molecular dynamics simulations, it is demonstrated that the position of the proton in the intramolecular hydrogen
bond of an aqueous hydrogen maleate anion is entirely related to the solvation pattern around the oxygen atoms of the
intramolecular hydrogen bond. In particular, this anion has an asymmetric hydrogen bond, with the proton always located on the
oxygen atom that is less solvated, owing to the instantaneous solvation environment. Simulations of water solutions of hydrogen
maleate ion with two different counterions, K+ and Na+, surprisingly show that the intramolecular hydrogen-bond potential in the
case of the Na+ salt is always asymmetric, regardless of the hydrogen bonds to water, whereas for the K+ salt, the potential for H
motion depends on the location of the K+. It is proposed that repulsion by the larger and more hydrated K+ is weaker than that by
Na+ and competitive with solvation by water.

1. INTRODUCTION

Today no one will deny that hydrogen bonds (H-bonds) are a
key feature of molecular structure and reactivity.1�11 Despite the
fact that an enormous amount of experimental and theoretical
work has been devoted to unveiling their peculiar character in the
past decade, H-bonds are still a rich source of new and old
challenging, unsolved problems.

One of those problems is the symmetry of short, low-barrier
H-bonds in solution.12 For many years it was hoped that the
crystal structure would describe a molecule in solution. Yet
crystal structures of the same H-bond can differ. For example,
the potassium salt of hydrogen maleate (Hmaleate) shows a
centered hydrogen,13 whereas the hydrogen is asymmetrically
positioned in the corresponding sodium salt.14 Nevertheless,
NMR studies showed that those H-bonds are invariably
asymmetric in aqueous solution.15,16 It was initially proposed
that the asymmetry is a consequence of the polarity of water,
which stabilizes the localized negative charge of O�H 3 3 3O

� or
�O 3 3 3H�O more than the delocalized one of (O 3 3 3H 3 3 3O)

�.17

This rationale was supported by computer simulations.18 How-
ever, further NMR studies in nonpolar organic solvents contin-
ued to show asymmetric H-bonds,19 even in the NHN H-bonds
of protonated 1,8�bis(dimethylamino)naphthalenes,20 in non-
ionic species,21 in a zwitterion,22 in the intermolecular H-bond of
pyridine�dichloroacetic acid complexes,23 and in the “strongest”
of H-bonds.24 Therefore it was concluded that although the
environments around the two carboxyl groups can be identical in
a crystal, a solution is disorganized, with one of the carboxyls
instantaneously solvated better than the other,25 leading to the
presence of equilibrating solvatomers (isomers, stereoisomers, or
tautomers that differ in solvation).22 QM/MM calculations
(AM1-SRP/AMBER) on hydrogen phthalate anion in solution

support this interpretation.26 Moreover, the absence of sym-
metric H-bonds in solution suggests that they have no special
stabilization.27

An early theoretical study on the simplest case, the isolated
Hmaleate anion, found the potential for the proton transfer to be
a double minimum (Cs symmetry), with a barrier height of 1.4
kcal/mol and with a structure of C2v symmetry being a transition
state.28 Later studies confirmed the asymmetric structure asmore
stable, although the barrier varies from 0.1 kcal/mol up to a few
kcal/mol, depending on the method used.29�33 Plane-wave DFT
calculations found a broad, flat potential energy surface for the
unit cell but returned to a shallow double-well surface when the
crystal packing forces were removed.34,35 Thus, questions dealing
with the symmetry of Hmaleate anion are still discussed.

Here we use both ab initio Car�Parrinello molecular dy-
namics (CPMD) simulations and fully quantummechanical path
integral molecular dynamics (PIMD) on aqueous Hmaleate ion
at 298 K to provide a theoretical understanding of how the
solvent and the counterions K+ and Na+ modify the symmetry of
the intramolecular H-bond. Based on a new procedure, which
distinguishes separate free-energy profiles for those periods
during the simulation when oxygen atoms of the intramolecular
H-bond are solvated to different or similar extents, we can
discover the determinants of the H-bond symmetry and confirm
some intriguing experimental findings by Perrin et al.19

2. RESULTS AND DISCUSSION

2.1. Isolated HydrogenMaleate Ion and Its Potassium and
Sodium Salts. Before addressing the main theme, one must

Received: August 19, 2011
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consider the isolated Hmaleate ion and the crystal structures of
its salts. To confirm that the isolated ion represents a situation
with a truly symmetric-centered single, well potential or, equiva-
lently, a double well with a low barrier, CPMD and PIMD room
temperature simulations have been performed. Additionally we
have performed CPMD and PIMD simulations for sodium and
potassium Hmaleate crystals.
The results for the isolated ion show the O 3 3 3O distance to be

2.457Å, and bothO 3 3 3Hdistances are the same, 1.235Å.Calculated

structures of sodium and potassium Hmaleate crystals, shown in
Figure 1a1 and a2, reproduce the experimental structures. In
particular, the sodium salt shows a low symmetry and an asymmetric
H-bond, whereas the potassium salt is a highly symmetric crystal, with
a centered proton. However, it must be noted that although the
potassium crystal is truly a high-symmetry one, in the sodium crystal
the presence of water molecules reduces the symmetry and is
responsible for different environments of the two oxygen atoms
involved in the intramolecular H-bond of Hmaleate.

Figure 1. Two crystal structures of Hmaleate salts from CPMD and PIMD simulations: sodium (left panel: a1, b1, and c1) and potassium (right panel:
a2, b2, and c2). (a1,b1) Representative snapshot of the crystal unit cell. (b1,b2) Time evolution of the distances involved in the intramolecular H-bond.
(c1,c2) Free-energy profiles for proton transfer within the H-bond.
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Time-averaged H-bond distances for these two simulations
have been collected in Table 1, and instantaneous distances are
displayed in Figure 1b1 and b2 .
The graph in Figure 1b1 shows the results from simulations on

the crystal structure of sodiumHmaleate. As expected, the O�O
distance shows little variation, and this behavior is maintained in
all the subsequent simulations. In this crystal one O�H distance
remains short, near 1.0 Å, while the other is longer, near 1.4 Å, but
with greater variability. This leads to a highly asymmetric single-
well potential for proton motion within the H-bond, as shown in
Figure 1c1. In this crystal the proton is not able to jump from one
oxygen atom to the other within the intramolecular H-bond
because the two oxygens are in different molecular environments.
By inspection of the structure, it can be seen that one of the
oxygens is closer to its nearest sodium than the other oxygen is to
its closest sodium. The difference is approximately 1 Å. Addition-
ally, the oxygen that has the closer sodium ion participates in a
H-bond to the H of a water molecule, whereas the other oxygen
does not coordinate any water molecules. Thus, because of crystal
packing, which produces an inequivalence of the two oxygens, an
asymmetric single-well potential for proton motion within the
H-bond is induced, as presented in Figure 1c1, with the proton
located on the oxygen that is farther from the sodium ion and that
lacks a water of solvation. Inclusion of quantum effects by the
PIMD treatment does not qualitatively change the results, and the
potential remains an asymmetric single well but with larger fluctua-
tions of the proton motion, as included in Figure 1c1.
For the potassium Hmaleate crystal, the situation is different.

The graph in Figure 1b2 shows the results of the simulations. In
this crystal both O�H distances vary rapidly but stay near 1.2 (
0.1 Å. This leads to a broad and symmetric single-well potential for
proton motion within the H-bond, as shown in Figure 1c2. Both
the X-ray crystal structure and our simulations show that a chain,

3 3 3K
+
3 3 3O1�H�O2 3 3 3K

+
3 3 3 , is observed, with the potassium

ions placed symmetrically, at equal distances, with respect to both
oxygens. Because each oxygen atom has exactly the same neigh-
borhood, the proton is locatedmost of the time in the center of the
H-bond, as shown in Figure 1b2, and the potential is a symmetric
single-well one, as depicted in Figure 1c2. The result from PIMD
simulations is also shown in Figure 1c2. The inclusion of quantum
effects does not change the picture, as expected.
2.2. Hydrogen Maleate Ion in Water. In Figure 2 the results

from CPMD and PIMD simulations on aqueous Hmaleate anion
are collected. The graph in Figure 2b1 shows that according to
CPMD, the proton jumps from one oxygen to the other, with an
average residence time of around 1 ps but sometimes longer. The
proton is found more often on O1. These proton positions
correspond to an asymmetric double-well potential (Figure 2c1)
with a barrier height around 1 kcal/mol. This is likely to be a
consequence of the instantaneous solvation environment, which
favors one solvatomer over another.

We have probed solvation in more detail by summing the
number of H-bonds between the hydrogen atoms of the sur-
rounding waters and each of the two oxygen atoms in the
intramolecular H-bond of the Hmaleate anion. The distance
dependence for deciding to include a H-bond was investigated
and was finally taken as 2.5 Å. Based on this routine, we find that
oxygen atom O1 has been less solvated than O2 (with fewer
H-bonds from water molecules) for approximately 48.2% of the
simulation time, O2 has been less solvated than O1 for 15.1% of
the time, and both oxygen atoms have been solvated similarly
during approximately 26.7% of the time.
Moreover, the position of the proton in the intramolecular

H-bond is correlated with the relative solvation of the two
Hmaleate oxygen atoms. The remarkable result is that the proton
is always located on the oxygen that is less well solvated.
This result, and other considerations presented here, bring to

mind a picture of donor and acceptor solvation theory similar to
the Marcus theory of electron transfer.37 Proton or electron
movement (but not the proton or electron transfer itself) is much
faster than reorganization of the solvent, assumed in Marcus
theory. However, we cannot assume that the donor and acceptor
moieties are only weakly coupled—this assumption of Marcus
would not be true in Hmaleate anion. Marcus theory depicts
electron transfer as made possible by prearrangement of fluctu-
ating solvent molecules. When, by chance, such a correct
arrangement happens, the transfer can take place. Our observa-
tion is very similar. The proton is always located on the oxygen
that is less well solvated; using the Marcus idea, we can reverse
this statement and say that the less well solvated oxygen atom is
preferred to possess the proton, and the better solvated oxygen is
preferred as the bearer of more negative charge, making it a future
acceptor. When by chance this solvation pattern is reversed by
solvent fluctuations, the proton can jump. These ideas were
exploited in studies by Borgis and Hynes38 and by Mavri et al.39

However, the time frame of the CPMD simulations and the
nature of delocalized plane-wave basis set do not allow us to use
directly the methodologies described there.
These results suggest that the asymmetric double-well poten-

tial and the apparent barrier of 1 kcal/mol in Figure 2c1 are a
consequence of averaging over instantaneous solvation environ-
ments that sometimes favor one solvatomer and then the other.
Indeed, if the averaging is restricted to shorter time intervals, a
different picture emerges. The separate free-energy profiles for
the 48.2% of the simulation time when O1 was less solvated than
O2, for the 15.1% of the time whenO2was less solvated thanO1,
and for the 26.7% of time when both oxygen atoms were solvated
similarly are shown in Figure 3a1. For the first two cases, where
the two oxygens were solvated to different extents, the free-
energy profile becomes a single-well potential, with its minimum
at the oxygen that is less solvated. There is no longer a minimum
at the other, better-solvated oxygen. For the third case, where
both oxygen atoms were solvated similarly, the free-energy
profile remains a double-well potential, as in the earlier
Figure 2c1, with nearly the same difference in well depths, but
the barrier has become indistinct. Thus these profiles in
Figure 3a1 show how the instantaneous potential responds to
the solvation environment. An important conclusion is that the
apparent barrier in the CPMD simulations is an artifact of the
long-term averaging over different solvation environments.
One must be aware of the fact that the free energies presented

in Figures 3 and 5 below are not in a sense the most rigorously
defined ones. Definition of a free energy profile requires a

Table 1. Time-Averaged Intramolecular H-bond Distances
from Calculations on Sodium and Potassium Hmaleate Salts

NaHMal KHMal

bond CPMD PIMD8 expt14 CPMD expt36

O�H 1.08 1.13 1.079 1.22 �
H 3 3 3O 1.41 1.37 1.369 1.23 �
O 3 3 3O 2.48 2.47 2.445 2.44 2.434
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complete phase-space average over all orthogonal coordinates, so
our averaging cannot yield a proper free energy. Nevertheless our
projections/averaging of “free energies” are still reasonable ap-
proximations and are able to capture the correlation between
proton localization in the H-bond and the local solvation pattern.
However, it is not possible to analyze energetics based on these
figures. A more rigorous way to define the free energy is to
introduce a second reaction coordinate (as was done byTuckerman

for OH� solvation),40 which in our case is the difference in hydra-
tion number of oxygen atoms involved in the H-bond. For figures
and more details see Supporting Information.
According to PIMD simulation, the situation is slightly

different. Figure 2b2 shows the distribution of the reaction
coordinate, and Figure 2b3 shows the corresponding free-energy
profile. Because of the quantum character of the proton there is
no energy barrier associated with proton transfer, and a slightly

Figure 2. Hmaleate ion in water from CPMD (left column: a1, b1, and c1) and from PIMD (right column: a2, b2, and c2). (a1,a2) Representative
snapshot from simulations, for PIMD the replicas of each atom as small gray spheres are marked. (b1) Time evolution of the distances involved in the
intramolecular H-bond. (b2) Distribution function for the reaction coordinate (c1,c2) Free energy profiles for proton transfer within the H-bond.
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asymmetric single-well potential is observed, with the proton
located predominantly on one oxygen atom of Hmaleate.
As previously, we have quantified the solvation and find that

for the first 6 ps of simulation time one oxygen atom (designated
O1) continued to be less solvated than the other, thereby
favoring one solvatomer. Afterward O2 is sometimes less sol-
vated, so that the other solvatomer becomes favored. But there is
no possibility of a single centered potential. More specifically,
population analysis shows that for approximately 44.6% of the
simulation time oxygen atom O1 was less solvated than oxygen
O2 and for 16.5% of the time oxygen atom O2 was less solvated.
For approximately 38.9% of the time both oxygen atoms in the
H-bond were solvated more or less the same.
However, the slightly asymmetric single-well potential of

Figure 2c2, with the proton apparently located on oxygen that
is less well solvated, is again a consequence of averaging over
instantaneous solvation environments. If the averaging is re-
stricted to shorter time intervals, a different picture emerges. The
separate free-energy profiles for the 44.6% of the simulation
time when O1 was less solvated than O2, for the 16.5% of the
time when O2 was less solvated than O1, and for the 38.9% of
time when both oxygen atoms were solvated similarly are shown
in Figure 3a2. For the first two cases, where one oxygen was less
solvated than the other, the slightly asymmetric single-well
potential is no longer restricted to one in which the proton is
located onO1. Instead, the proton is located on the oxygen that is
less solvated. Moreover, for the 38.9% of time when both oxygen
atoms were solvated to nearly the same extent, the single well is
no longer asymmetric but is symmetric, within the accuracy of
the sampling. Thus these profiles show how the instantaneous
potential responds to the solvation environment. A further
conclusion is that the strong asymmetry in the distribution
function and the free-energy profile of Figure 2b2, c2 is a result
of the long-term averaging over solvation environments, during
most of which O1 happens to be less well solvated.
Thus we have shown that the intramolecular H-bond in

Hmaleate ion in water has an asymmetric H-bond owing to the
instantaneous solvation environment. In principle, with sampling
over a longer time, the oxygens must become equivalent, restoring
an apparent symmetry between them. Under such circumstances,
the total time during whichO1 is better solvated thanO2must be
equal to the total time during which O2 is better solvated than
O1, along with times during which they are solvated equally.

However, the simulation time that we used was too short to
permit the oxygens to become equivalent. The instantaneous
asymmetry of the H-bond then reflects the instantaneous
solvation environment.
2.3. Counterion Effects. We next consider the influence of

counterions on H-bond symmetry. We have examined two coun-
terions, sodium andpotassium, forwhich crystal structures have been
discussed in the Isolated Hydrogen Maleate Ion and Its Potassium
and Sodium Salts Section. The presence of a counterion is a major
factor that can stabilize an asymmetric structure. According toLluch’s
calculations on the QM/MM level (AM1-SRP/AMBER) for the
H-bond in the potassium salt of Hphthalate anion in chloroform, the
energy profile for the intramolecular proton transfer along the
H-bond is a double well with two equivalent asymmetric minima.26

Those calculations show further that a transition statewith a centered
position of the proton is observed when potassium ion is equidistant
to both oxygen atoms of theH-bond and that an energyminimum is
observed when the potassium ion is equidistant to the two oxygen
atoms of one carboxyl group.
Results of our CPMD and PIMD simulations are presented in

Figure 4. At the beginning of the simulations a bare Na+ or K+

was placed equidistant to the two oxygens of one of the
carboxylates. During the equilibration period, 4.0 water mole-
cules hydrate the Na+ and 6.4 waters hydrate the K+. However,
there are no waters directly between either M+ and the anion,
because the equilibration and the simulation times are too short
to overcome the barrier to separating the ions sufficiently to
permit water to insert between them. In principle, the simula-
tions could have been extended to much longer times or could
have been started with fully hydrated Na+(H2O)5 or K

+(H2O)6
near the Hmaleate anion, but this would be less interesting
because the influence of the M+ would be smaller and would
exert less control on the H-bond.
Figure 4a1 and a2 shows the spatial distribution functions of

the Na+ and K+ in the vicinity of Hmaleate anion. The figures
reveal differences in the positioning of sodium and potassium
ions around the carboxyl group. Most of the time the sodium ion
was located equidistant to the two oxygen atoms of one carboxyl,
whereas the potassium ion tended to stay closer to the oxygen
atom that is involved in the intramolecular H-bond. Figure 4b1
and b2 shows further how the position of the hydrogen in the
H-bond varies during the simulations. Figure 4c1 and c2 show
the resulting free-energy profiles for motion of the hydrogen.

Figure 3. Free-energy profiles for H motion in aqueous Hmaleate ion from CPMD (a1) and from PIMD (a2) separately for the simulation time when
O1 was less solvated than O2, for the time when O2 was less solvated than O1, and for the time when both oxygen atoms were solvated similarly.



3510 dx.doi.org/10.1021/ct200580c |J. Chem. Theory Comput. 2011, 7, 3505–3513

Journal of Chemical Theory and Computation ARTICLE

Sodium and potassium ions affect the symmetry of theH-bond
in Hmaleate ion in different ways. Potassium ion results in a
centered single-well potential energy curve, whereas sodium ion
results in an asymmetric single-well potential. The strong asym-
metry of the H-bond in the presence of Na+ is not surprising,
because the Na+ repels the proton, and thus a position nearer to
O1 is preferred. The surprising result is the single-well potential
centered at the midpoint of the H-bond in the presence of K+,
whichmight have shown a greater repulsion because it is closer to
the OHO.

To resolve this puzzle, the potential for Hmotion can again be
separated into instantaneous solvation environments that favor
one solvatomer or the other.We have quantified that solvation by
summing the number of H-bonds between O1 or O2 of the
OHO and the neighboring water hydrogens within 2.5 Å.We can
thus distinguish which O is less solvated by water.
Population analysis for sodium Hmaleate in water shows that

during approximately 58.3% of the simulation time oxygen atom
O2 was less solvated by water than oxygen O1 and 6.8% of the
time oxygen atomO1was less solvated. For approximately 34.9%

Figure 4. Hmaleate ion in water fromCPMD simulations with two different counterions: sodium (left panel: a1, b1, and c1) and potassium (right panel:
a2, b2, and c2). (a1,a2) Spatial distribution function of the counterion around Hmaleate ion. (b1,b2) Time evolution of the O�H distances involved in
the intramolecular H-bond. (c1,c2) Free-energy profile for proton transfer within the H-bond.
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of the time, both oxygen atoms in the intramolecular H-bond
were solvated more or less the same. In comparison, population
analysis for potassium Hmaleate in water shows that approxi-
mately 67.9% of the simulation time oxygen atom O2 was less
solvated by water than oxygen O1 and 2.3% of time oxygen atom
O1 was less solvated. For approximately 29.8% of time, both
oxygen atoms in the intermolecular H-bond were solvated more
or less the same.
Figure 5 shows free-energy profiles for H motion in Hmaleate

anion in the presence of Na+ (a1) and K+ (a2) from CPMD,
separated into instantaneous solvation environments. For Na+

the potential is always asymmetric, with a minimum at O1, which
is farther from the sodium, regardless of the H-bonds from water.
We suggest that this is because the repulsion by Na+ is so strong
that a H position nearer to O1 was always preferred. For K+ the
potential depends on the solvation by water. For the rare times
when O1 was less solvated, a position for the H of the H-bond
nearer toO1was strongly preferred. In constrast, for the 67.9% of
the time whenO2was less solvated, a position for the H nearer to
O2 was slightly preferred, but with an energy cost of only 0.5
kcal/mol, the H could be nearer the other O, resulting in an
almost symmetric potential. For the remaining time when both
oxygens were solvated similarly, the potential is effectively
symmetric. We suggest that these nearly symmetric potentials
arise because the repulsion by the larger, more distant, and more
hydrated K+ is weaker than for Na+ and competitive with
solvation by water, so that the potential for H motion depends
on the location of the K+. Because the distribution of the K+ is
more diffuse than that of the Na+, which is more localized
between the carboxylate oxygens, the K+ exerts a greater repul-
sion for the H when it is close to the OHO but a lesser repulsion
when it is distant. The variable repulsion by the K+ balances the
repulsion by the waters of hydration, which depends on which O
is less solvated.
Because these results for potassium ion are contrary to previous

results by Lluch,26 one should understand why? A partial explana-
tion is that our simulations never reached a situation where either
potassium or sodium ion is equidistant to both oxygen atoms of
the intramolecular H-bond, which is a transition state according to
Lluch’s calculations. Thuswe should not have been able to observe
a centered proton. That is the case with sodium, but not with
potassium, according to Figure 5a2, where we suggest that the

centered proton arises because repulsion by the potassium ion
near one carboxyl balances the repulsion by the waters of solvation
on the other carboxyl.

3. CONCLUSIONS AND OUTLOOK

We have studied theoretically by means of ab initio
Car�Parrinello molecular dynamics the symmetry of the intra-
molecular H-bond of Hmaleate anion as an isolated structure, in
the crystals of its sodium and potassium salts, as a hydrated ion in
water, and in water with counterions (K+ and Na+). The results
confirm and clarify experimental findings by Perrin et al.19

Whenmaleate ion is an isolated structure, molecular dynamics
at 298 K predicts a truly symmetric potential with a centered
proton. For two crystal structures (sodium and potassium salts)
two different situations are observed. For the highly symmetric
case of potassium Hmaleate, the potential is similar to that of the
isolated ion, with a single-well centered proton. For sodium
Hmaleate trihydrate crystal, which is of low symmetry, the
different environments of the two oxygen atoms of the intramo-
lecular H-bond of the Hmaleate result in an asymmetric single-
well potential with a proton located on one oxygen atom, in
agreement with the neutron diffraction study by Olovsson.14

Thanks to a new procedure that can produce separate free-
energy profiles from periods during the simulation when one
oxygen atom of the intramolecular H-bond was less well solvated
than the other one and periods where both oxygen atoms were
solvated to a similar extent, we have shown that the position of
the proton in aqueous Hmaleate ion is entirely dependent on the
solvation pattern around the oxygen atoms in the intramolecular
H-bond. It is shown that the proton is always located on the
oxygen atom that is less well solvated and that there is no longer a
minimum at the other, better solvated oxygen.

Additionally, separation into instantaneous solvation environ-
ments has been applied to an aqueous solution of Hmaleate ion
with two different counterions, namely K+ and Na+. Analysis of
their influence on intramolecular H-bond symmetry revealed
that, whereas the potential of the intramolecular H-bond in the
Na+ salt is always asymmetric, owing to strong repulsion by the
Na+ regardless of the H-bonds to water, for the K+ salt the
repulsion by this larger and more hydrated ion is weaker than for
Na+ and competitive with solvation by water, so that the
potential for H motion depends on the location of the K+.

Figure 5. CPMD free-energy profiles for Hmaleate anion with Na+ (a1) and K+ (a2) separately for the simulation time when O1 was less solvated than
O2, for the time when O2 was less solvated than O1, and for the time when both oxygen atoms were solvated similarly.
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The systems described here combine several factors that make
computational studies of H-bonds difficult. First, the proton
potential is highly anharmonic and fluctuating, and it is necessary
to use a statistical description using molecular dynamics meth-
ods, and second, the barriers are of such height that quantum
effects can be influential, as our path integral results indicate. It is
very challenging to reproduce spectra of such systems. It is
possible to reuse the trajectories used in this work, for example, to
extract snapshots and construct their proton potential energy
surfaces with the aim of further solving the vibrational Schroe-
dinger equation and obtaining a statistically averaged vibrational
spectrum.41�43 If NMR parameters are also calculated for each
point of the potential energy surface, the expectation value of the
NMR shift of the proton can be obtained—such a technique was
proven successful for a highly anharmonic short H-bond.44 How-
ever, such calculations are beyond the scope of the current study.

4. METHODS

All calculations are based on ab initio molecular dynamics45

using the efficient Car�Parrinello46 propagation scheme as
implemented in the CPMD program package.47 These pseudo-
potential calculations have been carried out using the PBE48

exchange�correlation functional within the spin-restricted
Kohn�Sham formalism together with a plane-wave basis set at
a kinetic energy cutoff of 100 Ry, Γ-point sampling of the
Brillouin zone, and Troullier�Martins49 norm-conserving pseu-
dopotentials. The supercell for all these calculations was a cubic
box 15 Å in length with periodic boundary conditions. All
dynamic simulations were performed in the canonical ensemble
at 298 K using Nos�e�Hoover chain thermostats50 in order to
control the kinetic energy of the nuclei (as well as the fictitious
kinetic energy of the orbitals). For the path integral case, a
separate thermostat was used for each degree of freedom.51

To account for the fact that the PBE functional tends to
overstructure water compared to experiment, some researchers
have conducted simulations at 400 K.52 Nevertheless in all our
simulations, we have used a proper temperature of 298 K
together with long enough trajectories to avoid overly rapid
proton transfer inside the intramolecular H-bond.

We have adopted the same approach asMiura et al.,53 in which
the positions of the atoms initially evolve according to the
classical equations of motion. Then we proceed with PIMD
simulation,54�56 which explores the quantum behavior of both
the nuclear and electronic degrees of freedom. It maps the
problem of a quantum particle into one of a classical ring polymer
model with beads that interact through temperature- and mass-
dependent spring forces. Such mapping is known in the literature
as a quantum classical isomorphism.57�59 It should be under-
lined that “real” properties of the quantum systems are recovered
only when the number of beads is extrapolated to infinity. The
path integral simulations in the present study used eight beads
and the normal mode variable transformation.56

A molecular dynamics time step of δt = 3 au (≈0.073 fs) was
used for the integration of the Car�Parrinello equations of
motion using a fictitious mass parameter for the orbitals of 400
au together with the proper atomic masses. The initial config-
urations were generated with classical molecular dynamics
simulations of 1 ns. After this initial equilibration period (ca.
30 000 steps), the Car�Parrinello molecular dynamics simula-
tions were performed, and the data were collected over trajec-
tories spanning 300 000 steps (ca. 22 ps) for the sodium crystal

(NaHMAL), 200 000 integration steps for the potassium crystal
(KHMAL) (ca. 16 ps), 280 000 steps (ca. 20 ps) for Hmaleate
ion with 103 water molecules, 250 000 steps (ca. 18 ps) for
sodium Hmaleate with 102 water molecules, and 300 000 steps
(ca. 22 ps) for potassium Hmaleate with 101 water molecules.
Path integral runs were performed for similar time periods as the
Car�Parrinello simulations.

The reaction coordinate δ is defined in eq 1 as the difference
between O1�H and O2�H distances, where O1 labels the
oxygen that bears the H at the beginning of the simulation and
O2 labels the oxygen that is initially H-bonded to the H:

δ ¼ RO1�H � RO2�H ð1Þ
The reaction coordinate is a measure of the degree of proton

transfer in the H-bond, with zero corresponding to the midpoint
of the H-bond. Also, for the studies of counterions, the oxygen
atoms involved in theH-bond are labeled asO2 for the one closer
to the M+ ion and O1 for the farther (O1 3 3 3H 3 3 3O2 3 3 3M

+).
The free-energy profiles were obtained from eq 2, where k is the
Boltzmann constant, NA is the Avogadro number, T is the
simulation temperature, and P is the proton distribution as a
function of the reaction coordinate.

ΔF ¼ � k 3NA 3T lnðPðδÞÞ ð2Þ
The visualize molecular dynamics (VMD)60 program has been
used for data visualization.

’ASSOCIATED CONTENT

bS Supporting Information. Figures 1�4 compile free en-
ergy profiles generated for all four studied cases: standard
Car�Parrinello (Figure 1) and path integral (Figure 2) simula-
tions of hydrogen maleate ion in water and hydrogen maleate ion
in water with potassium (Figure 3) and sodium (Figure 4)
counterions. This material is available free of charge via the
Internet at http://pubs.acs.org.
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ABSTRACT: Protein�protein interactions (PPIs) have been identified as a vital regulator of cellular pathways and networks.
However, the determinants that control binding affinity and specificity at protein surfaces are incompletely characterized and thus
unable to be exploited for the purpose of developing PPI inhibitors to control cellular pathways in disease states. One of the key
factors in intermolecular interactions that remains poorly understood is the role of water molecules and in particular the importance
of solvent entropy. This factor is expected to be particularly important at protein surfaces, and the release of water molecules from
hydrophobic regions is one of the most important drivers of PPIs. In this work, we have studied the protein surface of a mutant of the
protein RadA to quantify the thermodynamics of surface water molecules. RadA and its human homologue RAD51 function as
recombinases in the process of homologous recombination. RadA binds to itself to form oligomeric structures and thus contains a
well-characterized protein�protein binding surface. Similarly, RAD51 binds either to itself to form oligomers or to the protein
BRCA2 to form filaments. X-ray crystallography has determined that the same interface functions in both interactions. Work in our
group has generated a partially humanizedmutant of RadA, termedMAYM, which has been crystallized in the apo form.We studied
this apo form of MAYM using a combination of molecular dynamics (MD) simulations and inhomogeneous fluid solvation theory
(IFST). The method locates a number of the hydration sites observed in the crystal structure and locates hydrophobic sites where
hydrophobic species are known to bind experimentally. The simulations also highlight the importance of the restraints placed on the
protein in determining the results. Finally, the results identify a correlation between the predicted entropy of water molecules at a
given site and the solvent-accessible surface area and suggest that correlations between water molecules only need to be considered
for water molecules separated by less than 3.2 Å. The combination of MD and IFST has been used previously to study PPIs and
represents one of the few existing methods to quantify solvent thermodynamics. This is a vital aspect of molecular recognition and
one which we believe must be developed.

’ INTRODUCTION

Protein�protein interactions (PPIs) are essential in control-
ling cellular networks and play an important role in many disease
states.1 Significant efforts are now being focused on understand-
ing the nature of the intermolecular interactions in PPIs, and
computational methods are a key aspect of increasing our
understanding.2,3 In addition, PPIs are now increasingly being
targeted for drug development, and computational methods are
commonly combined with structural data in virtual screening and
lead optimization for PPI targets.4 One aspect of molecular
interactions that is particularly important for understanding PPIs
is hydrophobic association driven by desolvation of nonpolar
protein surfaces. Water molecules form significant hydrogen
bonding interactions in bulk water and are somewhat ordered.
Conversely, water molecules at a hydrophobic surface have
reduced hydrogen bonding interactions and have differing levels
of order, dependent upon the environment. The balance of these
components is one of the key factors that controls the thermo-
dynamics of binding. This has been proposed as the principal
driving force for binding in a number of systems and also impacts
protein folding and stability.5 In this study, we apply solvation
thermodynamics to a prototypical PPI surface.

Recombinase Biology. Recombinases such as RadA and
RAD51 are key factors in the process of homologous recombination
(HR) to repair broken double strand breaks (DSBs) in DNA.6 The
human RAD51 recombinase is known to form an oligomeric
structure in the cell, where it is sequestered until needed for HR.
Shortly after DNA replication, RAD51 is loaded onto DNA around
DSBs by associationwith the so-calledBRC repeats of the regulatory
BRCA2 protein.7 RadA, the archaeal homologue of RAD51, is
sequestered in oligomeric structure in the cell but appears to bind
DNA as a helical filament without the presence of a regulatory
protein.8 The interface for oligomerization has been identified in
RadA and RAD51 by crystallography.9,10 The key determinant of
binding is the presence of a hydrophobic pocket on the surface that
binds a phenylalanine residue.11 Another smaller pocket is found in
close proximity and binds an alanine residue. These pockets are
termed the phenylalanine pocket and the alanine pocket. RadA and
RAD51oligomerize by bringing together their hydrophobic surfaces
with an FMRA and an FTTA sequence, respectively. The BRC
repeats of BRCA2 also exploit these pockets to bind RAD51 with a
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conserved FXXAmotif.12 In addition, these pockets are surrounded
by a surface dottedwith hydrophobic patches, as shown in Figure 1a
forMAYMandFigure 1b forRAD51.This surface is thus typical of a
PPI and provides a good test case to explore the thermodynamics of
solvation and how it contributes to protein�protein association.
Inhomogeneous Fluid Solvation Theory. Inhomogeneous

fluid solvation theory (IFST) was developed by Lazaridis as a
method to study hydrophobic hydration13 by calculating inter-
actions and correlations between water molecules through an
analysis of molecular dynamics (MD) or Monte Carlo (MC)
simulations. IFST was initially used to study pure water,14 but the
theory was then extended to consider small hydrophobic
solutes15 and then to consider protein binding sites.16 In IFST,
bulk water is considered as a reference state, and other molecules
perturb this state, resulting in a change in enthalpy and entropy.17

This is quantified by calculating the interaction energies and the
correlation functions between the water molecules and the
solute.15 Regions of high water density are identified and then
analyzed to compare the enthalpy and entropywithwatermolecules
in bulk solvent. Themethodology is described in detail below. IFST
has been used to analyze a number of ligand binding sites to
elucidate the role of water molecules.16,18,19 IFST has also shown
success in predicting binding affinities and has recently been
implemented in Schrodinger’s WaterMap software.20,21 WaterMap
has also been applied to explain binding affinities and specificities for
PDZ domain22 and for the polo-box domain of the mitotic kinase
PLK1.23 It has also been employed recently by Zielkiewicz to study
water molecules around simple polypeptides.24

Here, we apply IFST to the protein surface of the RadA
MAYM mutant and explore the thermodynamic properties of
water molecules at a PPI interface. This analysis quantifies the
intermolecular interactions that underlie PPIs and allows the
identification of potential binding hotspot regions.

’MATERIALS AND METHODS

We performed MD simulations of bulk water and of the apo
MAYM protein using NAMD25 using a number of simulation
protocols.
Crystallography. The crystal structure of RadA was taken

from a protein construct of Pyrococcus furiosus RadA (accession
number AF052597) containing residues 108�349 (Marsh et al.,
unpublished). Residues 288�300 in the L2 loop were replaced
by a single Asn residue, and residues 108�286, 304�329, and

336�349 have assigned density. The MAYM form of RadA has
four humanizing mutations: I169M, Y201A, V202Y, K221M.
The crystal structure contains one DMSO solvent molecule and
one phosphate group. This protein construct lacks an N-terminal
domain and thus does not oligomerize. However, the N-terminal
domain is located over 15 Å from the phenylalanine and alanine
pockets9,26 and is thus unlikely to affect the properties of this
surface.
Structure Preparation. The protein structure was initially

prepared as follows. Atom coordinates for the protein and the
water molecules were taken from the X-ray crystal structure. The
DMSO solvent molecule and the phosphate group were deleted
from the structure. The hydrogen-atom positions for the protein
and the water molecules were then built using the PSFGEN
mode of VMD27 with the CHARMM27 energy function.28,29

Histidine residues were then manually checked for protonation
state. His210, His243, and His269 were assigned as epsilon
protonated. All remaining histidines were assigned as delta
protonated. The residues lysine, arginine, aspartate, glutamate,
cysteine, and tyrosine were also analyzed to check their proton-
ation state. There was no evidence of any unusual protonation
states, and thus all lysine and arginine residues were assigned as
positively charged, all aspartate and glutamate residues were
assigned as negatively charged, and all cysteine and tyrosine
residues were assigned as neutral. The terminal residues 304 and
336 were patched with an N-acetyl group, and the terminal
residues 286 and 329 were patched with an N-methyl amide
group. The atomic charges were assigned from the CHARMM27
forcefield.28,29 All water molecules were modeled with the
TIP4P/2005 water model.30 The next stage was to solvate the
protein with water molecules. All the water molecules observed
in the crystal structure were retained. Solvation was performed
with the SOLVATE program31 version 1.0 from the Max Planck
Institute to generate a solvation sphere of radius 50 Å around the
center of the protein. No ions were included in the solution, as
the protein has a net charge of zero. The system was then cut to
form a rhombic dodecahedron (RHDO) with an edge length of
60 Å using the CHARMM program (version 34b1).32

Equilibration. During all simulations with the RHDO, the
protein atoms were fixed, the RHDO was treated using periodic
boundary conditions, and the electrostatics were modeled using
the particle mesh Ewald method.33 The water molecules in the
RHDO were first subjected to energy minimization for 10 000
steps using NAMD. This was followed by MD equilibration for

Figure 1. (a) The molecular surface of RAD51 in complex with the BRC4 peptide from PDBID 1N0W. (b) The molecular surface of MAYM. RAD51
and MAYM are colored by electrostatic potential and BRC4 is displayed as atom colored balls and sticks. The phenylalanine and alanine pockets are
boxed in yellow and green, respectively.
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100 ps in anNPTensemble and thenMDequilibration for 100 ps in
an NVT ensemble. This stage of preparation was undertaken to
equilibrate the density of the water molecules at the surface. The
density of thewatermolecules plays an important role in IFST and is
thus important to converge accurately. We ensured that the system
was brought to equilibrium before continuing our simulations by
verifying that the system reached a point where the energy fluctua-
tions were stable. In the next stage, the RHDO was cut to form a
sphere of water molecules around the binding pocket of interest
using the CHARMM program. The solvent sphere of radius 20 Å
was centered at the coordinates of the CA atom of Ala201. This is
defined as the centroid of the solvent sphere. The resulting system
containing the protein and a sphere of water molecules was then
treated with three protocols. For each protocol, the system was
subjected to MD equilibration for 100 ps using NAMD with
spherical boundary conditions.34 Again, we ensured that the
system was brought to equilibrium before beginning the MD
simulation by verifying that the system reached a point where the
energy fluctuations were stable for each protocol. The three
protocols are as follows:
(1) Fixed: All protein atoms were kept fixed.
(2) Restrained: All atoms of any residue partially or comple-

tely outside the 20 Å sphere were fixed in place. All heavy
atoms of any residue completely inside the 20 Å sphere
were restrained using a 1.0 kcal/mol/Å2 harmonic force.

(3) Free: All atoms of any residue partially or completely
outside the 20 Å sphere were fixed in place. All atoms of
any residue completely inside the 20 Å sphere were not
constrained.

Molecular Dynamics. Production simulations were performed
for 10.0 ns at 300 K. AllMD simulations were performed using the
NAMD program version 2.7b332 with the CHARMM27 force
field28,29 using anMD time step of 2.0 fs. Electrostatic interactions
weremodeled with a uniform dielectric and a dielectric constant of
1.0 throughout the setup and production runs. Van der waals
interactions were truncated at 12.0 Å with switching from 8.0 Å.
Bulk solvent was simulated as a periodic box of edge length 25 Å
for a period of 8 ns using the same methods, parameters, and
equilibration procedures detailed above.
Clustering.The 10.0 nsMD runs were first analyzed to cluster

the water molecules into distinct spherical regions of high number
density. These regions have been termed hydration sites in previous
work using IFST,20 and we retain this terminology here. We
employed a radius of 1.2 Å for these hydration sites, in line with
prior work.18 The hydration sites were selected by sampling 1000
snapshots from the MD trajectory. All 1000 snapshots were super-
posed to generate a profile of thewater density.Within the complete
water density profile, we identified the oxygen atom of the water
molecule with the largest number of water molecules within a 1.2 Å
radius. The 1.2 Å sphere around the position of this oxygen atom
was defined as a hydration site. This water molecule and all of its
neighboring water molecules within 1.2 Å from any snapshot were
excluded from further consideration. The process was then repeated
to identify more hydration sites, allowing no new hydration sites
within 1.2 Åof a previously defined hydration site. This iterationwas
terminated oncewhen the density of an identified hydration sites fell
below 1.5 times the number density of bulk water, which corre-
sponds to an occupancy of 0.36 in the sphere of radius 1.2 Å. Only
hydration sites within 12.0 Å of the solvation sphere center were
considered. The resultant set of hydration sites was then subjected
to energy and entropy calculations using IFST.

Energy Calculations. The interaction energy of each hydra-
tion site was calculated by sampling 5000 snapshots, taken every
2 ps from the 10.0 ns simulation. For each snapshot, we
computed the average interaction energy with both the protein
and all the other water molecules with VMD version 1.8.7 using
the namdenergy plugin. This was then compared with the
interaction energy of a water molecule determined from the
bulk water simulation (�23.62 kcal/mol) to calculate the energy
difference ΔE shown in eq 1.

ΔE ¼ E̅surfacewater=protein þ E̅surfacewater=water � E̅ bulk
water=water ð1Þ

In this equation, ΔE is the energy difference, Ewater/protein
surface is

the mean interaction energy between a water molecule in the
hydration site and the protein, Ewater/water

surface is the mean interaction
energy between a water molecule in the hydration site and all of
the other water molecules, and Ewater/water

bulk is the mean total
interaction energy of a water molecule in bulk.
Entropy Calculations.The entropy of each hydration site was

calculated by sampling 100 000 snapshots, taken every 100 fs from
the 10.0 ns simulation. The entropy difference between a water
molecule at a hydration site and in bulk was calculated from the
contributions of the protein�water term (Spw), the water�water
reorganization term (Sww), and a term arising from the change in
density (Sdensity).

35 These terms can be calculated by integrating
over the protein�water gpw(r,ω) and water�water gww(r,ω,r0,ω0)
correlation functions, where the variable r represents the position of
the water molecule with respect to the center of the hydration site,
and the Euler angles ω represent the orientation of the water
molecule in the fixed protein reference frame. As in previouswork, only
correlations between two species were considered.18,20 The protein�
water correlations functionwere calculated using a bin size of 0.06Å for
the radial component and 18� for the angular components. The
protein�water and contribution to the entropy of changing the
number density35 can be calculated for each hydration site using
eqs 2 and 3, where k is Boltzmann’s constant, F is the number density
of bulk solvent, Fsite is the number density of the hydration site being
considered, andΩ is the integral over the Euler angles ω.

Spw ¼ �kF=Ω

Z
gswðr;ωÞln gswðr;ωÞdrdω ð2Þ

Sdensity ¼ k ln
h F
Fsite

i
ð3Þ

As in previous work, the protein�water term was separated
into translational, Stranspw, and orientational, Sorientpw, entropic
contributions, and the orientational distributions were assumed
to be independent of the position of the water molecules within
the sites.18 The entropies were calculated using eqs 4 and 5,
where gtranspw(r) and gtranspw(ω) are the translational and
orientational correlation functions.

Stranspw ¼ � kF
Z

gtranspw ðrÞln gtranspw ðrÞdr ð4Þ

Sorientpw ¼ �kF=Ω

Z
gtranspw ðrÞdr

Z
gorientpw ðωÞln gorientpw ðωÞdω

ð5Þ

The water�water reorganization term was calculated for each
pair of hydration sites within a distance of 3.5 Å. This distance
corresponds to water molecules in the first solvation shell of a
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water molecule in bulk. The water�water correlation functions
were calculated using a bin size of 0.1 Å for the radial component
and 18� for the angular components. For a given hydration site,
the total reorganization entropy was calculated as the sum of
the pairs of proximal sites. This term was then compared with the
entropy of a water molecule from the bulk water simulation due
to other water molecules within 3.5 Å (11.24 cal/mol/K). The
entropies were calculated using eq 6.

ΔSww ¼ ∑ Sw, w0 � Sbulkw, w0 ð6Þ
ΔSww is the water�water entropy change, Sw,w0 is the pair

entropy between a water molecule in the hydration site and a water
molecule in another hydration site and Sbulkww is the pair entropy of a
water molecule in bulk. The contribution to the enthalpy from
water�water correlations was also split into translational and orienta-
tional contributions. However, because of the vast amount of data
required to accurately calculate the multidimensional water�water
correlation functions, we employed two approximations first pro-
posed by Li and Lazaridis.18 The first is that the water�water
correlation functions can be treated as dependent only on the relative
orientation of the two water molecules and the distance between the
centers of the two hydration sites. This correlation function can, in
turn, be separated into translational and orientational contributions.

gwwðr;r0;ω;ω0Þ ¼ gwwðR;ωrelÞ ð7Þ
gwwðR;ωrelÞ ¼ gwwðRÞgwwðωreljRÞ ð8Þ

In these equations, gww are the water�water correlation func-
tions, r0 represents the position of the second water molecule with
respect to the center of its hydration site, ω0 represents the
orientation of the second water molecule in the fixed protein
reference frame, the variable R is the distance between the centers
of the two hydration sites, and ωrel|R is the relative orientation of
two water molecules at a distance R. The second approximation is
that the water�water correlation functions for the bound waters
are the same as the water�water correlation functions in bulk
water. This leads to eqs 9, 10, and 11, where the variablesθ1,θ2, χ1,
χ2, and j are the five angles that specify the relative orientation of
two water molecules.14

gwwðRÞ ¼ gbulkww ðRÞ ð9Þ
gwwðωreljRÞ ¼ gbulkww ðωreljRÞ ð10Þ

gbulkww ðωreljRÞgbulkww ðθ1;θ2;χ1;χ2;jjRÞ ð11Þ

Application of these approximations leads to eqs 12 and 13.

Stransww ¼ � 1
2
kF2
Z

gtranspwðaÞðrÞgtranspwðbÞðr0Þfgbulkww ðRÞln gbulkww ðRÞ

� gbulkww ðRÞ þ 1gdrdr0 ð12Þ

Sorientww ¼ � 1
2
kF2
Z

gtranspwðaÞðrÞgtranspwðbÞðr0Þfgbulkww ðRÞdR

�
Z

gorientww ðωÞgorientww ðω0Þfgbulkww ðωreljRÞgln gbulkww ðωreljRÞgdωdω0

ð13Þ

The water�water correlation functions were calculated from
the 8 ns simulation of bulk water, using all available water pairs.

All calculations were performed using the Darwin Supercompu-
ter of the University of Cambridge High Performance Comput-
ing Service (http://www.hpc.cam.ac.uk/) and were funded by
the EPSRC under grant EP/F032773/1. All MD simulations
were performed using NAMD compiled for use with CUDA-
accelerated GPUs.

’RESULTS

The initial stage of the analysis was to cluster the water
molecules from the MD trajectories to identify the hydration
sites. To assess the predictions, we compared the positions of the
hydration sites to the experimental positions of the oxygen atoms
of water molecules from the crystal structure. The experimental
sites should represent regions of high water density. We counted
the number of predictions where the hydration sites were within
1.2 Å of the crystal structure oxygen atom position. Density was
assigned to 38 water molecules in the crystal structure of apo
MAYM within 12 Å of the site centroid. Each MD methodology
produced a different number of hydration sites. This data can be
found in Table 1. The fixed protein simulation predicts the
largest number of hydration sites (78) and identifies the largest
number of water molecules from the crystal structure.21 The sites
are predicted with an rmsd of 0.62 Å from the crystal structure
positions. However, the restrained simulation also performs well,
identifying 65 hydration site and 20 water molecules from the
crystal structure with an rmsd of 0.64 Å. The correctly predicted
hydration sites (blue) and crystal structure water molecules (red)
for the restrained simulation are shown in Figure 2. Some water
molecules and some hydration sites lie under the surface and thus
do not appear in the figure. The water molecules labeled A, B, and

Table 1. Effect of the MD Protocol on the Predictionsa

MD Scheme free restrained fixed

total sites predicted 52 65 78

crystal waters matched (within 1.2 Å) 18 20 21

percentage of predictions correct (%) 34.62 30.77 26.92

percentage crystal waters matched (%) 47.37 52.63 55.26

rmsd of matches (Å) 0.76 0.64 0.62
aThe effect of the MD protocol on the hydration site clustering and the
accuracy with respect to the crystal structure water molecules. The per-
centage of predictions correct is the percentage of predictions made that
are correct. The percentage crystal waters matched is the percentage of
the crystal water molecules that were correctly identified.

Figure 2. The molecular surface of the MAYM mutant showing the
positions of water molecules in the crystal structure and the predicted
hydration sites from the restrained protein simulation. The oxygen
atoms of the crystal structure water molecules are colored red and the
correctly predicted hydration sites are colored blue.
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C are in close proximity to neighboring crystal units in the X-ray
structure (3.60, 5.27, and 4.74 Å to the closest heavy atoms,
respectively), and their positions may thus be affected. The free
simulation compares less favorably with the crystal structure,
identifying 18 water molecules from the crystal structure with an
rmsd of 0.76 Å and 52 hydration sites in total. It is important to
note that the twometrics of the number of crystal structure water
molecules identified and the rmsd of the water molecules are
reliant on assigning X-ray density to specific points, which is an
artifact of crystallography.

In addition to comparing the positions of the hydration sites
with the crystal structure, we calculated the effect of the three
schemes on the calculated occupancy and thermodynamic
properties of the hydration sites. The results of this analysis
can be seen in Table 2, which details the calculated properties of
five hydration sites. In general, despite small differences in the
number of predicted sites and their position and occupancy, the
fixed and restrained schemes agree reasonably well on the
majority of the hydration sites. However, the free scheme yields
quite different results, with markedly lower occupancies for all
the hydration sites. There is also a key disparity that it is
interesting to note. When restraints on the protein are removed,
the hydrophobic phenylalanine pocket is filled by two methio-
nine residues for a significant portion of the simulation. These
two methionine residues form one side of the phenylalanine
pocket. This reduces the apparent occupancy of the four water
molecules within the pocket to an average of 0.19 in the free
simulation. This low occupancy means that they are not identi-
fied as hydration sites under the clustering protocol. These four
sites have appreciable occupancies of 0.94 and 0.90 on average
from the fixed and restrained simulations. This prediction is not
completely unexpected, as the opening and closing of hydro-
phobic pockets on protein surfaces has been observed.36 Further-
more, these two methionines have relatively high average
B-factors of 15.99 Å2 and 11.93 Å2, suggesting high mobility.
Because of the limitations of MD and of crystallography, it is
difficult to assess whether the phenylalanine pocket spends an
appreciable time in a closed conformation. However, as this clearly
affects theMDsimulations and the subsequent IFST analysis, it is a
very important consideration. If the protein structure is treated as
fully flexible, the energy function must be accurate or the predic-
tions of IFST will be misleading. Previous implementations of this

methodology have treated the protein as fixed18 or as restrained.21

Wepredict that this can have a significant effect on the location and
occupancies of hydration sites. It also has a significant effect on the
calculated thermodynamic properties, as can be seen in Table 2
and Table 3. Table 2 details the interaction energy, entropy, and
free energy for the three different MD protocols for ten hydration
sites. Formany of the hydration sites, the three schemes agree both
qualitatively and quantitatively. However, some hydration sites are
predicted to have different thermodynamic properties in the three
schemes. This is true for sites A and F in Table 2, where the
predictions for the free energies vary by 1.80 and 2.23 kcal/mol,
respectively. Such a difference impacts the conclusions of the
modeling and would affect any quantitative treatment of the results.
Table 2 shows that the hydrophobic sites C, D, and G have a free

Table 2. Effect of the MD Protocol on Specific Hydration Sitesa

occupancy ΔE (kcal mol‑1) �TΔS (kcal mol‑1) ΔF (kcal mol‑1)

site free rest fix free rest fix free rest fix free rest fix

A 0.79 0.93 0.98 �0.05 0.94 1.49 0.92 �0.16 1.09 0.87 0.78 2.58

B NA 0.73 0.85 NA �1.37 �0.99 NA 0.50 0.77 NA �0.87 �0.22

C NA 0.95 0.99 NA 3.65 3.57 NA 0.98 0.41 NA 4.62 3.98

D NA 0.98 0.97 NA 3.51 5.2 NA 0.68 2.10 NA 4.19 7.30

E NA 0.94 0.94 NA 2.41 1.01 NA 1.09 2.27 NA 3.50 3.28

F 0.66 0.90 0.96 �1.05 0.06 �0.01 �1.00 �0.16 0.19 �2.05 �0.10 0.18

G 0.53 0.91 0.98 5.40 6.27 7.69 �1.65 0.07 0.33 3.75 6.33 8.02

H 0.68 0.77 0.85 �0.52 �0.14 �0.73 �0.80 �0.50 �0.81 �1.32 �0.65 �1.54

I 0.68 0.82 0.88 1.10 1.65 1.22 0.12 0.99 0.91 1.22 2.64 2.13

J 0.70 0.85 0.95 �0.12 0.27 �0.17 �0.99 1.52 1.79 �1.11 1.79 1.62
aThe effect of theMD protocol on ten hydration sites on the surface ofMAYM for the free, restrained (rest), and fixed (fix) schemes. E is the interaction
energy, and F is the free energy.

Table 3. Calculated Thermodynamic Properties for the Hy-
dration Site Lying within the Alanine Pocketa

MD scheme

free

(kcal mol‑1)

restrained

(kcal mol‑1)

fixed

(kcal mol‑1)

occupancy 0.77 0.82 0.88

E (pw) �13.41 �13.98 �13.79

E (ww) �9.11 �7.99 �8.61

E (total) �22.52 �21.97 �22.40

ΔE +1.10 +1.65 +1.22

TS (density) 0.68 0.72 0.76

TS (pw, trans) 0.12 0.16 0.26

TS (pw, orient) 1.83 2.03 2.28

TS (pw) 1.94 2.19 2.54

TS (ww, trans) 0.01 0.01 0.01

TS (ww, orient) 0.84 1.42 0.95

TS (ww) 0.85 1.43 0.96

TS (total) 3.47 4.34 4.26

�TΔS +0.12 +0.99 +0.91

ΔF +1.22 +2.64 +2.13
aDetails on the thermodynamic properties for the hydration site lying
within the alanine pocket, calculated using the restrained MD scheme.
The protein�water terms are denoted pw, and the water�water terms
are denoted ww. The translational contributions are denoted trans, and
the orientational contributions are denoted orient. E is the interaction
energy, and F is the free energy.
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energy with respect to bulk of +4.62, +4.19, and +6.33 kcal/mol.
This agrees very well with previous applications of IFST to
hydrophobic sites, where the maximum free energy with respect
to bulk was approximately 5 kcal/mol.20,21 Table 3 provides more
specific details on the thermodynamic properties for the hydration
site lying within the alanine pocket. The protein�water entropy
decreases from the free scheme to the restrained scheme and then to
the fixed scheme. This trend occurs throughout the results. Fixing or
restraining the protein also restrains the surrounding water mol-
ecules, and this has a direct effect on the entropies.

The ten hydration sites shown in Table 2 are illustrated in
Figure 3. For the hydration site labeled A, the three schemes agree
closely with one another in position and also agree with the crystal
structure position. However, the fixed scheme has a markedly
different thermodynamic profile from the other schemes. This is
due to the increased order in the fixed scheme at this hydration site,
with the resulting decreased entropy leading to a less favorable free
energy with respect to bulk. Hydration sites B, C, D, and E lie in the
phenylalanine pocket and form a conserved square network with
few hydrogen bonds per water. This is most marked for hydration
sites C and D at the base of the pocket, which have very reduced
interaction energies with respect to bulk. However, these hydration
sites do not have a high overall entropy with respect to bulk water
because of the reduction in water�water correlations in the pocket.
Hydration site G lies on the surface of the protein in the same
location as theDMSO solventmolecule in the crystal structure. The
highly unfavorable free energy for this hydration site may explain
why a DMSO molecule is found there in the apo state. Hydration
siteH also lies on the protein surface above a backbone amide group
but is mostly exposed to solvent. It has a more favorable interaction
energy than in bulk due to hydrogen bonding, and the reduced
water�water correlations at the surface also lead to a favorable
entropy with respect to bulk. Displacement of a water molecule
from this hydration site by a ligand is predicted to contribute
unfavorably to the binding free energy. Formation of a strong
hydrogen bond between the ligand and the backbone amide group
at this site could lead to a net favorable contribution to the binding
free energy whereas a hydrophobic group would lead to a net
unfavorable contribution. Hydration site I lies in the alanine pocket,
and water molecules within this site have a strong degree of
orientational ordering due to the formation of hydrogen bonds
with twobackbone carbonyls.Hydration site J is on aflat hydrophobic

surface and makes weak interactions with the protein. However, its
overall interaction energy is only 0.27 kcal/mol higher than in bulk
water due to favorable interactions with other water molecules.
However, these interactions lead to a strong degree of order and
unfavorable protein�water entropy (+1.79 kcal/mol) and water�
water entropy (+1.77 kcal/mol) terms. The property of increased
ordering around hydrophobic solutes to yield favorable interactions
has been likened to the formation clathrate cages and has been used
previously to explain the hydrophobic effect.37 The surface of RadA
alongwith the predicted hydration sites from the restricted simulation
can be seen in Figure 4. The sites are colored by hydrophobicity from
hydrophobic in blue to hydrophilic in red. Such a view has been used
previously to study protein binding sites and to explain binding
affinity and selectivity.22,23 Here it can be used to identify binding
hotspot regions and provide a quantitative comparison. The pheny-
lalanine and alanine pockets are clearly visible with blue hydrophobic
sites on the left- and right-hand sides, respectively.

As well as studying the effect of the three simulation schemes,
we have also considered the effect of other computational
parameters in the IFST methodology. In this study we only
considered water�water entropies for pairs of hydration sites
up to 3.5 Å apart, because of the high computational cost of
considering a large number of pairs. We thus looked at the
correlation in the water�water pair distance and the water�

Figure 3. The molecular surface of the MAYM mutant showing the
positions of ten water molecules in the crystal structure and the
predicted hydration sites from the three simulation schemes. The
oxygen atoms of the crystal structure water molecules are colored red,
the hydration sites from the free simulation are colored green, the
hydration sites from the restrained simulation are colored dark blue, and
the hydration sites from the fixed simulation are colored cyan.

Figure 4. The molecular surface of the MAYM mutant showing the
predicted hydration sites from the restricted simulation. The hydration
sites are colored by free energy with respect to bulk water from more
positive in blue to more negative in red.

Figure 5. A plot of the distance between two hydration sites against the
calculated water�water entropic contribution to the free energy of that
site (TΔS), predicted by the restrained simulation.
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water pair entropy. A graph of the water�water pair distance
against the water�water pair entropy for the restrained scheme
can be seen in Figure 5. Because of the dependence on the radial
distribution function in bulk, the significant pair entropies are
found when the distance between the hydration sites is similar to
the maximum in the radial distribution function (2.7 Å). No
significant pair entropies are found for hydration sites separated
by more than 3.2 Å using this methodology. The majority of the
pair entropies result from the orientational term, with the largest
translational term being only 0.006 kcal/mol. With sufficient
data, it would be very instructive to repeat this calculation
without the approximations to the correlation functions.

As a final test, we also calculated the change in solvent-
accessible surface area (ΔSASA) of a carbon atom placed at
the centroid of each hydration site. The ΔSASA upon binding is
commonly employed as an estimate of the contribution of the
hydrophobic effect to binding, so we were interested in how it
correlates with the thermodynamic properties of the hydration
sites. Figure 6 shows the plot of ΔSASA against the entropic
contribution to the free energy (�TΔS) for all 65 hydration sites
in the restrained simulation. The coefficient of determination
between ΔSASA and �TΔS is 0.52, suggesting a reasonable
correlation, with buried sites tending to have more negative
entropies and thus more unfavorable contributions to the free
energies. The coefficients of determination for ΔSASA with the
interaction energy (0.06) and the total free energy (0.31) were
not as high. TheΔSASA for a shape comprised of all 65 hydration
spheres was 2167.46, and the sum of the entropic contributions
to the free energies for the 65 sites was 62.14 kcal/mol. This
corresponds to a value of 28.67 cal/mol/Å2, which is consistent
with previous estimates used in MMPBSA (38) and MMGBSA
(39) of between 5.0 and 50.0 cal/mol/Å2.

In summary, the results of this study highlight the importance
of the molecular dynamics scheme on the results of IFST and
illustrate how the predictions from IFST can be used to under-
stand the thermodynamics of hydration at a protein surface.

’DISCUSSION

This paper describes the application of IFST to a prototypical
PPI surface. In particular, we studied the effect of freezing or

restraining the protein structure during the simulation. This
approximation has been applied previously, and we were inter-
ested in the effect. The free, fixed, and restrained schemes
perform comparably in terms of correctly predicting the location
of water molecules in the crystal structure. The fixed and
restrained schemes identify the primary hotspot in the phenyl-
alanine binding site as three hydration sites that are entropically
unfavorable and strongly enthalpically unfavorable. However,
these sites are not identified in the free simulation, as the protein
shifts to close the pocket with twomethionine residues. This may
be due to inaccuracies in the forcefield, but it may, however,
represent a lowly populated state of the apo protein that is
incorrectly scored and thus overly populated. It may also be due
to incorrect pressure in the MD simulation. Creation of the
spherical boundary region and simulation in an NVT ensemble
are likely to affect the pressure and the density of the water, which
could lead to cavitation. All three schemes predict a secondary
hotspot in the alanine binding site and also locate a third hotspot,
which is filled by a solventDMSOmolecule in the crystal structure.

In general, the locations of the hydration sites are very similar
with the three schemes. However, the results predict that fixing
the protein significantly restricts movement of water molecules at
the surface, and this impacts the predicted density and thermo-
dynamic properties of the hydration sites. In particular, the
protein�water entropies decrease when the protein is frozen, and
this leads to less favorable free energies with respect to bulk water.
Incorporating at least some protein flexibility into the simulation
seems to be very important, and this is consistent with recent imple-
mentations of IFST.20,21 However, the effect of the degree and nature
of the restraints have not been fully explored, and this remains as an
important task for future work. In particular, quantifying hydration
thermodynamics in highly flexible protein regions is a significant
challenge but a very important one. The findings of our study also
suggest that water�water pair entropies need only be calculated for
pairs that are less than 3.5 Å apart for this implementation of IFST, as
contributions from more distant pairs were found to be negligible.
However, due to the dependence on the radial distribution function
in bulk, this may not be true in a more complete treatment of
water�water pair correlations and should be investigated in further
work. It is also interesting that the degree of burial of a hydration site
correlates to some degree with the entropy but not with the
interaction energy. This suggests that the surface area term of
MMGBSA and MMPBSA approaches to calculating binding free
energy captures some aspects of solvent entropy changes.

IFST is one of the most important methods to quantify solvent
thermodynamics, and it has numerous important potential appli-
cations. As shown here, it is ideally suited to scanning a protein
surface to locate binding hotspots, and it can also be used to predict
PPI surfaces on proteins of unknown function. When combined
with a scoring function to compute protein�ligand interactions, it
can also be applied to molecular docking and the computation of
protein�ligand binding affinities.21,35 This also allows it to be
applied to molecular design algorithms for increasing binding
affinities. However, in common with other methodologies that
utilize MD, this method is highly sensitive to implementation
details. This work details one aspect of the implementation that is
very important and suggests a number of others. The utility of the
method depends on using accurate forcefields, water models,
restraints, and simulation parameters. However, the potential of
IFST to greatly improve prediction of protein�ligand binding
affinities makes the development of this method a very important
goal of computational modeling.

Figure 6. A plot of the change in SASA when a carbon atom is placed at
each of the 56 hydration sites predicted by the restrained simulation
against the calculated total�TΔS of that site with respect to bulk water.
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ABSTRACT: Spin-flip time-dependent density functional theory (SF-TDDFT) has been applied to predict magnetic coupling
constants for a database of 12 spin-1/2 homobinuclear transition-metal complexes previously studied by Phillips and Peralta
employing spin-projected broken-symmetry density functional theory (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2011, 134, 034108).
Several global hybrid density functionals with a range of percentages of Hartree�Fock exchange from 20% to 100% have been
employed within the collinear-spin formalism, and we find that both the high-spin reference state and low-spin state produced by
SF-TDDFT are generally well adapted to spin symmetry. The magnetic coupling constants are calculated from singlet�triplet energy
differences and compared to values arising from the popular broken-symmetry approach. On average, for the density functionals that
provide the best comparison with experiment, the SF-TDDFT approach performs as well as or better than the spin-projected
broken-symmetry strategy. The constrained density functional approach also performs quite well. The SF-TDDFT magnetic
coupling constants show a much larger dependence on the percentage of Hartree�Fock exchange than on the other details of the
exchange functionals or the nature of the correlation functionals. In general, SF-TDDFT calculations not only avoid the ambiguities
associated with the broken-symmetry approach, but also show a considerably reduced systematic deviation with respect to
experiment and a larger antiferromagnetic character. We recommend MPW1K as a well-validated hybrid density functional to
calculate magnetic couplings with SF-TDDFT.

1. INTRODUCTION

The synthesis and study of bi- and polynuclear transition-
metal complexes has been motivated in part by the remarkable
magnetic properties they often exhibit, ultimately leading to what
has been called single-moleculemagnets.1�10Magneticmolecules
have a nonzero total spin and other properties that make them
suitable for potential technological applications such as high-
density information storage and quantum computing.11�13 In
transition-metal complexes, the metal atoms may act as para-
magnetic centers with effective localized spinmoments, Si, where i
identifies the atom on which the spin is localized, that interact
with each other ferro-, ferri-, or antiferromagnetically. Experi-
mental measurements of magnetic susceptibilities versus tem-
perature or neutron diffraction, among other techniques, permit
one to study the lower lying electronic states of magnetic systems.
In many cases, the experimental data can be interpreted by des-
cribing the magnetic interactions with the isotropic Heisenberg�
Dirac�Van Vleck (HDV) Hamiltonian, which for a binuclear
complex takes the form14,15

H_ ¼ � J S1 3 S2 ð1Þ
where J represents the phenomenological magnetic exchange
coupling between the two magnetic centers. A positive sign for J
corresponds to ferromagnetic coupling and a negative sign to
antiferromagnetic coupling. The HDV Hamiltonian is appropri-
ate for the physical description of magnetic coupling in a wide
variety of systems, including some organic biradicals, transition-
metal complexes, and ionic solids.15

The prediction of magnetic couplings from first principles is a
very important albeit difficult task, since this property depends
strongly on a balanced treatment of electron exchange and
electron correlation effects. Furthermore, both nondynamical
and dynamical correlation have to be described accurately, as
evidenced in a number of studies16�21 that have employed high-
level wave function methods such as difference-dedicated con-
figuration interaction (DDCI)22 and multiconfigurational second-
order perturbation theory (e.g., CASPT223,24). However, the size
and complexity of transition-metal clusters of chemical interest
preclude in most cases the use of these potentially accurate but
computationally demanding electronic structure methods. In
recent years, density functional theory (DFT) has emerged as
a robust and practical electronic structure method in quantum
chemistry and solid-state physics. DFT is formally a theory
designed for the ground electronic state, which in the Kohn�
Sham formulation is represented by a single Slater determinant
formed by orbitals of a fictitious noninteracting system obtained
by solving pseudoeigenvalue equations.

For two spin-1/2 centers, the HDV Hamiltonian in eq 1 has
one triplet and one singlet eigenstate, with eigenvalues (energies)
equal to�J/4 and +3J/4, respectively. In this case, the magnetic
coupling can be obtained by simply mapping the lowest triplet
and singlet electronic states to the HDV eigenstates, and it is
given by the difference between the energies of these states. For
wave function methods, this mapping can be carried out by
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expressing the electronic state functions as expansions in con-
figuration state functions having a well-defined spin symmetry.15

In DFT, one way to calculate the splitting of two levels is to take
the difference in energy of separate self-consistent-field (SCF)
calcuations on the two spin states, which is called the ΔSCF
approach. In the unrestricted Kohn�Sham formalism, the lowest
triplet state, with energy E(HS), is in most cases approximately
well represented by a single Slater determinant, but if we make an
analogy with wave function theory, the lowest singlet state would
require a spin-adapted linear combination of at least two
determinants.25 Noodleman26�28 advocated a workaround to
this problem that involves converging to a broken-symmetry
(BS) solution of the Kohn�Sham equations such that the two
spins are localized at the two centers. The BS determinant has
neither singlet nor triplet spin symmetry, and a strategy must be
adopted to relate its energy, E(BS), to that of the relevant singlet
state. At this point there are two extreme approaches that can be
called spin-unprojected and spin-projected. In the spin-unpro-
jected approach,29,30 one assumes that the energy of the BS state
is an approximation of the energy of the open-shell singlet state,
in which case the magnetic coupling would be obtained as

J ¼ E BSð Þ � E HSð Þ ð2Þ
whereas in the spin-projected approach,26�28 one assumes that
the BS state is a weighted average of spin states; in this case that
would be an equal mixture of singlet and triplet, which yields

J ¼ 2ðEðBSÞ � EðHSÞÞ ð3Þ
These twoequationscanbe seenas limitingcasesof theweighted-average
formula proposed by Yamaguchi and co-workers,31�33 in particular

J ¼ 2½EðBSÞ � EðHSÞ�
S2h iHS � S2h iBS

ð4Þ

where ÆS2æHS and ÆS2æBS are the expectations of the square of the
spin angular momentum for the HS and BS solutions, respec-
tively. If we assume that the high-spin unrestricted DFT deter-
minant is a good approximation of the triplet, then ÆS2æHS = 2,
and if the BS determinant is a good approximation of the singlet
state, as assumed in the spin-unprojected approach, then ÆS2æBS
≈ 0, and eq 4 reduces to eq 2. In practice, this would be achieved
if the two centers were strongly coupled, so that theα and β spins
are covalently shared (not localized on the two centers at all);
hence, this may be called the strong interaction limit. Conversely,
in the weak interaction limit in which the two spin orbitals are
completely localized, the BS determinant is a 50:50 mixture of pure
singlet and triplet states, ÆS2æBS≈ 1, and eq 4 reduces to eq 3.34 For
unrestricted Hartree�Fock wave functions, this argument is
straightforward, but in the case of DFT, ÆS2æ is not rigorously
defined, and one can argue that spin symmetry does not have to be
respected, although this argument presents conceptual complica-
tions.35 In the present study we will compare the weighted-average
BSapproach to spin-flip time-dependentdensity functional theory36�39

(SF-TDDFT), where the spin symmetry is less ambiguous. To an-
ticipate the results, we will find that spin projection is required for
consistency between the BS approach and the SF-TDDFT approach.

In section 2 we introduce the computational methods and
motivate their use for the calculation of magnetic couplings. In
section 3 we present the details of the database of transition-
metal complexes employed. Section 4 contains the main results
of the study and their relation to previous work. Finally, section 5
draws conclusions.

2. COMPUTATIONAL METHODOLOGY

Note that only singlet�triplet and doublet�quartet pairs
of states can be studied in the present implementation of
SF-TDDFT, and here we restrict our attention to the case of
singlet�triplet splittings of systems with two spin-1/2 centers,
each of which is an identical transition-metal atom, but with its
own set of nonmagnetic ligands. Symmetry-adapting localized
states leads to a spatially symmetric state and a spatially anti-
symmetric state, ϕ+ and ϕ�, respectively, and these are simply the
sum and difference of singly occupied particle or hole states
centered on the transition-metal atoms. These states can be used
to form three singlet states and three triplet states:25,40

1Γ1 � λϕþϕþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2

p
ϕ�ϕ�

� �
ð5Þ

1Γ2 � λϕþϕþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2

p
ϕ�ϕ�

� �
ð6Þ

1Γ3 � ϕþϕ� � ϕ�ϕþÞ� ð7Þ
3Γ1 � ϕþϕ�

� � ð8Þ
3Γ2 � ϕþϕ�� � ð9Þ
3Γ3 � ϕþϕ� þ ϕ�ϕþ� � ð10Þ

where a spin orbital without or with an overbar has α or β spin,
respectively, and each product of spin orbitals should be inter-
preted as shorthand for a determinant. The three singlet spin
states are each composed of two determinants; the first two
triplet wave functions, eqs 8 and 9, which have MS = 1 and �1,
respectively, are singly determinantal, and the third triplet spin
state, eq 10 withMS = 0, consists of two determinants. The lowest
singlet state of two weakly coupled centers is eq 5, and the 3-fold-
degenerate lowest triplet state is given by eq 8, 9, or 10.

In time-dependent DFT (TDDFT),41�47 a time-dependent
perturbation is added to the ground-state Hamiltonian and the
poles of the response function are the frequencies of the allowed
excitations (here “excitations” include both excitations and de-
excitations, if any), thereby yielding the energies of the excited
states. The perturbation is assumed small enough for the
response function to be in the linear regime; furthermore, the
dependence of the exchange-correlation potential on the fre-
quency of the excitation is ignored—which is called the adiabatic
approximation and entails using the ground-state exchange-
correlation potentials. In the conventional formulation of
TDDFT, which may be called the low-spin formulation or LS-
TDDFT, the state before the perturbation is a closed-shell
singlet. With these approximations, only single excitations from
the closed-shell reference state can be captured by the formalism,
and in particular the state of eq 5 cannot be obtained in LS-
TDDFT.41 However, in SF-TDDFT,36�39 which may also be
called high-spin TDDFT, the triplet wave function in eq 8 is
taken as a reference, and both an excitation and a spin flip are
applied to obtain both determinants in eq 5. The same kind of
process also yields the triplet state withMS = 0 in eq 10. Thus, to
represent the triplet state, there would be, in principle, two
options, namely, to take the reference state withMS = 1 or to take
the MS = 0 component of the triplet state generated in the spin-
flip excitation process; this is a choice that also shows up when
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using configuration interaction (CI) wave functions. In principle,
these two states should be exactly degenerate (i.e., the excitation
energy would be zero). In practical calculations, there is an
energy difference between these two components of the triplet
state, and this energy difference has been called the self-splitting
test.48 It is supposed to be a measure of the consistency of the SF-
TDDFT method. We follow here the usual procedure of
calculating the singlet�triplet splitting from the MS = 0 compo-
nent of the triplet because eq 10 generated by the response is
more consistent than the reference (eq 8) for comparing with the
generated eq 5.49,50 In general, one expects more accurate energy
splittings when one compares parallel calculations than when one
compares disparate ones. In fact, we find that computing
magnetic couplings using the MS = 1 results for the triplet leads
to meaningless values. Because the use of theMS = 0 state is the
standard approach in the literature, results obtained by this
method are labeled SF-TDDFT, as usual.

Applications of the spin-flip strategy in the literature include
the study of the singlet�triplet splitting and diradical character
of organic systems,51�55 bioinorganic chemistry,56�59 conical
intersections,60,61 and electron transfer couplings.62�64 To our
knowledge, there are only two previous studies of magnetic split-
tings like those considered here with a formalism equivalent to SF-
TDDFT, namely, the recent work of Ziegler and co-workers,50

where they apply their spin-flip constricted variational DFT form-
alism to the study of trinuclear copper complexes, and the even
more recent work of Yang et al.49 on low-spin�high-spin splittings
in p-block atoms.

The calculations in this study have been carried out with a
collinear formulation36 of SF-TDDFT and within the Tamm�
Dancoff61,65,66 approximation, as implemented in the Q-Chem
program.67 Within the collinear approach, only the Hartree�
Fock exchange part of the exchange-correlation functional con-
tributes to the SF coupling.36 Therefore, only hybrid functionals
can be employed in this formulation. For the triplet reference

state, the calculations were performed with a grid composed of
120 radial points and 302 Lebedev angular points.

The density functionals used in the present calculations and in
those included in the tabular comparisons made in section 4) are
all global hybrids (in a global hybrid, the percentage X of
Hartree�Fock exchange is the same for all interelectronic
distances) of the hybrid generalized gradient approximation
(GGA) type and of the hybrid meta-GGA type. In particular,
the functionals studied, in order of increasing X, are as follows:
• the popular B3LYP68�70 hybrid GGA functional (20%)
• the Minnesota M0671,72 hybrid meta-GGA (27%)
• PBE35 (a modification, with X = 35, of the PBE073,74

functional, which itself is a hybrid version (X = 25) of the
Perdew�Burke�Ernzerhof (PBE)75 GGA)

• B3LYP40 (B3LYP with X = 40)
• B1LYP40 (the B1LYP76 one-parameter hybrid GGA with
the percentage of Hartree�Fock exchange raised from 25%
to 40%)

• B1PW40 (the B1PW9176 one-parameter hybrid GGA with
the percentage of Hartree�Fock exchange raised from 25%
to 40%)

• BMK77 (the Boese�Martin model for kinetics hybrid meta-
GGA with 42% Hartree�Fock exchange)

• MPW1K78 (the modified Perdew�Wang one-parameter
model for kinetics hybrid GGA with X = 42.8)

• B3LYP54 (B3LYP with 54% Hartree�Fock exchange)
• the Minnesota M06-2X71,72 (54%) and M06-HF72,79

(100%) hybrid meta-GGA functionals
In addition, a few functionals to which we compare will be

explained in section 4.

3. TRANSITION-METAL COMPLEX DATABASE

We have chosen a database of 12 bimolecular transition-
metal complexes, each containing two spin-1/2 metal centers,

Figure 1. Binuclear complexes studied in this investigation.
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to study the performance of SF-TDDFT in the calculation of
magnetic couplings. The motivations for choosing this database
are twofold: First, since this database was used by Phillips and
Peralta80 for a study of the performance of range-separated
hybrid functionals by the spin-projected broken-symmetry
approach, it allows us to make a precise comparison to that
approach for a relatively extended set of complexes. Second,
this database provides a particularly straightforward way to
examine magnetic exchange constants because only singlet�
triplet energy differences need to be calculated to obtain J for
this database.

The 12 complexes are illustrated in Figure 1. Eleven of them
have Cu(II) d9 atoms as metal centers, and one has a V(IV) d1

metal center. The first seven complexes are Cu(II) complexes,
to be called here Cu2Cl6

2�, YAFZOU, XAMBUI, PATFIA,
CAVXUS, CUAQAC02, and BISDOW, where the names of the
latter six complexes correspond to their Cambridge Structural
Database reference codes. Note that these seven cases have
been used before to test various approaches to the calculation of
magnetic couplings.81�85 As in previous work, the XAMBUI
and PATFIA systems are simplified as compared to the systems
for which the spin splittings were measured experimentally; in
particular, the ferrocenecarboxylate groups were replaced by
formate groups. To test the accuracy of this approximation, the
full PATFIA complex has also been used to compute magnetic
couplings using the crystallographic data from L�opez et al.86

The last five complexes studied are four Cu(II) complexes and
one V(IV) complex, to be called 1(Cu�Cu), 2(Cu�Cu),
4(V�V), 7(Cu�Cu), and 8(Cu�Cu), as in the work of Phillips
and Peralta.80 These complexes are the complexes of spin-1/2
centers from a larger database used by Rudra et al.35 and later by
Peralta and Melo87 in their magnetic coupling studies (their
database also included complexes with higher spin states). The
geometries of all the complexes are taken from their crystal-
lographic structures. The counterions are neglected in all cases.

The Gaussian basis sets employed for the first seven com-
plexes are the same as in ref 83, and those for the last five
complexes are taken from ref 87. For the full PATFIA complex,
the Los Alamos ECP double-ζ-type basis set LANL2DZ88 was
employed for the Fe atoms. Additional SF-TDDFT calculations
were carried out for the B3LYP40 functional using the larger
def2-QZVPPD89,90 basis set for the transition-metal atoms and
the same basis sets as before for the rest of the atoms.

4. RESULTS AND DISCUSSION

The main results of the present work are presented in Table 1,
where the calculated magnetic couplings for the 12 transition-metal
complexes with each of the 10 density functionals are comparedwith
experiment. The magnetic couplings are calculated simply as the
difference between the singlet and triplet energies, as onewould do in
wave function theory. This is justified by the values of the spin-
squared operator ÆS2æ of the two spin-flip states, eqs 5 and 10, which
are presented in Table 2. It can be seen that the values of ÆS2æ are in
most cases close to the theoretical values of 0.0 and 2.0 for the singlet
and the triplet, respectively. The exceptions are theXAMBUI and the
7(Cu�Cu) complexes and for the M06-HF density functional also
YAFZOU and PATFIA. In these cases we have taken a pragmatic
approach and considered the singlet and triplet to be the states with
the lower and higher values of ÆS2æ, respectively. The ÆS2æ values that
show significant deviations from the nominally correct valuesmay be
an indication of the inadequacy of some presently available func-
tionals for particular systems, but they might also indicate that ÆS2æ
cannot always be used as a reliable indicator of the success of a given
calculation. A more fundamental reason for this behavior might be a
larger multiconfigurational character of a given complex with the
Kohn�Sham orbitals differing from the magnetic orbitals.

We have computed four statistical measures of accuracy,
namely, the mean signed error (MSE), the mean unsigned error
(MUE), the root mean squared error (RMSE), and—following

Table 1. Magnetic Couplings (cm�1) for the 12 Transition-Metal Complexes Studied at the SF-TDDFT Level

system

B3LYP

(X = 20)

M06

(X = 27)

B3LYP40a

(X = 40)

B1LYP40

(X = 40)

B1PW40

(X = 40)

BMK

(X = 42)

MPW1K

(X = 42.8)

B3LYP54

(X = 54)

M06-2X

(X = 54)

M06-HF

(X = 100) exptl

Cu2Cl6
2� �342 �210 �94 (�44) �94 �88 �59 �69 �15 �13 35 0 to �94

YAFZOU 96 91 76 (73) 75 76 78 73 60 65 90 111

XAMBUI �1 1 1 (�1) 1 2 1 1 1 0 3 2

PATFIAb �399 �198 �98 (�98) �98 �98 �71 �81 �35 �22 32 �11

[�420] [�140] [�100] [�101] [�105] [�86] [�86] [�37] [�24] [26]

CAVXUS �65 �37 �15 (�19) �15 �15 �14 �12 �7 �8 �2 �19

CUAQAC02 �721 �523 �245 (�245) �244 �249 �214 �215 �123 �129 �31 �286

BISDOW �1126 �743 �349 (�343) �347 �354 �306 �306 �173 �181 �40 �382

1(Cu�Cu) �426 �226 �74 (�57) �74 �74 �59 �60 �27 �29 �8 �62

2(Cu�Cu) �397 �280 �115 (�100) �114 �115 �105 �98 �53 �56 �8 �75

4(V�V) �444 �290 �159 (�154) �159 �166 �156 �147 �85 �81 �3 �214

7(Cu�Cu) �421 �145 177 (164) 183 181 159 198 198 194 143 168

8(Cu�Cu) 35 79 111 (102) 110 112 108 112 103 104 72 114

MSEc �292 �147 �3 (�2) �3 �4 7 11 47 46 82

MUEc 292 147 29 (29) 30 28 32 35 62 59 98

RMSEc 374 190 39 (39) 39 37 43 46 93 89 147

MUREc 5.3 2.6 0.9 (1.0) 0.9 0.9 0.7 0.8 0.6 0.5 1.0
aThe values in parentheses are the results obtained with the def2-QZVPPD basis set for the metallic centers. bThe values in brackets are the results
obtained with the full PATFIAmodel. cThemean errors are calculated over rows YAFZOU through 8(Cu�Cu), as explained in the second paragraph of
section 4.
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Phillips and Peralta80—also the mean unsigned relative error
(MURE). The definitions of these quantities are as follows:

MSE ¼ 1
N ∑

N

i¼ 1
½ Jcalcd, i � Jexptl, i� ð11Þ

MUE ¼ 1
N ∑

N

i¼ 1
Abs½ Jcalcd, i � Jexptl, i� ð12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼ 1
½ Jcalcd, i � Jexptl, i�2

N

vuuut
ð13Þ

MURE ¼ 1
N ∑

N

i¼ 1
Abs

Jcalcd, i � Jexptl, i
Jexptl, i

" #
ð14Þ

First, note that there is some uncertainty as to the experimental
value of J for the Cu2Cl6

2� complex. One experimental reference
quotes an antiferromagnetic coupling of between 0 and
�40 cm�1,91 whereas another experiment suggests a significantly
larger value of�94 cm�1.92 There is also a spread in high-level ab
initio results for this splitting. Thus, studies carried out with the
DDCI approach21,93,94 have found a magnetic coupling for the
experimental structure in agreement with the first experimental
interval and with more recent CASPT2 calculations.17 In con-
trast, a recent application of state-specific multireference coupled
cluster theory with single and double excitations yielded95 values
between �66 and �84 cm�1, in better agreement with the

second experimental value (�94 cm�1). The B3LYP40 result in
Table 1 shows that the magnetic coupling for Cu2Cl6

2� depends
strongly on the basis set used for the Cu atoms. Because of the
larger experimental and theoretical uncertainties in this case, we
omitted themagnetic couplings of Cu2Cl6

2� from all calculations
of mean errors.

The most conspicuous trend in Table 1 is the strong depen-
dence of the magnetic coupling on the percentage of Hartree�
Fock exchange. In general, local functionals (i.e., those without
Hartree�Fock exchange) tend to favor the low-spin states, and
high-X hybrid functionals tend to favor the high-spin states,
probably because Hartree�Fock exchange correlates electrons
with the same spin by enforcing the Fermi hole, but this does not
apply to electrons with opposing spins. We find, for example, that
B3LYP and M06 with X = 20 and 27, respectively, are in most
cases strongly antiferromagnetic, and they show a large systema-
tic deviation from experiment. The optimal value of X is found to
be about 40, as in B3LYP40, B1LYP40, and B1PW40, or a little
higher, as in MPW1K and BMK. The MSE for all these
functionals is very small, on the order of only a fewwavenumbers.
The best results are found with the B1PW40 density functional,
and we will use this as a reference for subsequent comparisons.
However, note that the MURE is still relatively large, mainly due
to the large deviations (in terms of MURE) found for the
PATFIA complex. The MURE becomes less appropriate in cases
like this where some of the couplings are very small because these
small quantities appear in the denominator of the relative error.

Table 1 also shows that the dependence of J on X is stronger
for the antiferromagnetic than for the ferromagnetic complexes.
Another interesting feature of the results is the small dependence

Table 2. Values of ÆS2æ for the Magnetic States Obtained at the SF-TDDFT Level for the 12 Complexes Studieda

system B3LYP M06 B3LYP40 B1LYP40 B1PW40 MPW1K BMK B3LYP54 M06-2X M06-HF

Cu2Cl6
2� 0.03 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01 2.01

1.99 2.01 2.00 2.00 2.00 2.01 2.01 2.01 2.02 0.02

YAFZOU 1.71 2.00 2.00 2.00 2.01 2.01 1.92 2.01 2.00 1.45

0.30 0.02 0.02 0.02 0.02 0.02 0.10 0.02 0.02 0.58

XAMBUI 0.98 1.73 1.52 1.51 1.49 1.47 1.50 1.52 1.85 1.05

1.03 0.29 0.50 0.51 0.53 0.55 0.52 0.50 0.17 0.97

PATFIA 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.04 1.69

1.99 2.01 2.01 2.01 2.01 2.01 2.00 2.01 1.98 0.34

CAVXUS 0.03 0.01 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.45

1.99 2.01 2.00 2.00 2.00 2.00 2.00 2.01 2.01 1.58

CUAQAC02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

1.98 2.00 2.00 2.00 2.00 2.00 2.01 2.01 2.01 2.01

BISDOW 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

1.99 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01

1(Cu�Cu) 0.04 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

1.98 2.01 2.00 2.00 2.00 2.01 2.01 2.01 2.01 2.01

2(Cu�Cu) 0.03 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02

1.98 2.01 2.01 2.00 2.00 2.01 2.01 2.01 2.02 2.02

4(V�V) 0.03 0.05 0.05 0.05 0.05 0.06 0.02 0.06 0.05 0.08

2.03 2.06 2.07 2.07 2.07 2.08 2.03 2.10 2.08 2.13

7(Cu�Cu) 0.09 0.21 1.62 1.60 1.62 1.73 1.95 1.97 2.02 1.62

1.94 1.83 0.45 0.46 0.44 0.34 0.10 0.20 0.04 0.43

8(Cu�Cu) 1.99 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01

0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
aThe first and second values correspond to the lower and higher energy states, respectively.
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found on the pure exchange and correlation functionals em-
ployed, as evidenced by the set of five density functionals
mentioned above that have nearly the same accuracy for the
prediction of magnetic couplings, despite significant differences
in the functional forms and/or parameters of the exchange and
correlation functionals.

The observation that magnetic couplings and, more generally,
spin-state energy differences, depend strongly on X has been
discussed at length in the literature for transition-metal-containing
compounds96�110 and p-block atoms.49 In general, X in the range
of 40�60 is often necessary to obtain good agreement with
experiment for spin energy differences36,49,52,53,60,64 (note, how-
ever, that B3LYP was found to perform well for bioinorganic
copper complexes).56�59 The optimum X value of about 40 found
here is roughly in agreement with the observation made many
years ago that X = 35 is optimal for strongly correlated solids such
as NiO96�98 and others.111 However, X of about 15 was found to
be optimum for single-center Fe(II) complexes,99 and local
functionals (X = 0) such as OPBE75,112 and OLYP112,113 were
also found to perform well in several cases.100,108,110 Thus, the
calculation of magnetic couplings in transition-metal complexes
could be seen in the wider context of the study of multiplicity-
changing transitions in transition-metal chemistry, crucial to the
understanding of, e.g., reaction mechanisms114 and spin-crossover
complexes.115�117

An important consideration to keep in mind in seeking
generalizations is that the HDV model was designed for when
the magnetic coupling is due to a pure spin flip without changes
in the spatial orbitals, as is most likely to occur for weakly coupled
centers, whereas many of the cases just mentioned involve spin
states of different orbital parentage or orbitals on the same center
that are not weakly coupled. The recent study of single-center

splittings in p-block atoms49 showed that splittings depend
strongly on X but also that the dependence on X and the
optimum value of X depend on the system studied and on the
method, being different forΔSCF, LS-TDDFT, and SF-TDDFT.
In this context, it is interesting to compare the present SF-
TDDFT results with previous studies, and we have prepared
Table 3 to facilitate such a comparison. In this table, we will
compare the present results with weighted-average BS-ΔSCF
results based on spin projection (eq 3) and with those of two
further strategies to obtaining magnetic couplings: the con-
strained DFT (C-DFT) method118 as implemented by Wu and
Van Voorhis119 and the spin-restricted ensemble-referenced
Kohn�Sham (REKS) method of Filatov and Shaik.120,121

The first set of results in Table 3 is the optimal set of results
of the present study, which—on the basis of the values of MSE,
MUE, and RMSE—are the B1PW40 results. The next column
has the optimal spin-projected weighted-average BS-ΔSCF
results of Phillips and Peralta,80 namely, their PBE35 results.
Note that these authors employed three density functionals in
their study: PBEX, HSEΩ, and LC-ωPBEΩ, where X denotes a
variable percentage of Hartree�Fock exchange and Ω repre-
sents a variable range parameter ω for the range-separated
HSE and LC-ωPBE density functionals. The rest of their
parameters were taken from the standard PBE0,73,74 HSE,122

and LC-ωPBE123 functionals. Their results showed that one
obtained the best results with HSE0 (HSEΩ with Ω =
0.0 a0

�1) but that one obtains similar results for anyΩ between
0.0 and 0.2 a0

�1. (Note that HSE0 is the same as PBE0).
However, Phillips and Peralta also pointed out that since one
could expect results with the original HSE value of Ω very
similar to the best results with Ω = 0.0, the standard HSE
method with the value ofΩ = 0.11 a0

�1 would be advantageous

Table 3. Comparison of the Optimal Results of the Present Study with Those of Other Methods To Obtain Magnetic Couplings
(cm�1)

SF-TDDFT,a

B1PW40

BS-ΔSCF,b

PBE35

BS-ΔSCF,c

M06

BS-ΔSCF,c

M06-2X

BS-ΔSCF,d

B2-PLYP

BS-ΔSCF,d

B2GP-PLYP

SF-TDDFT,a

B1PW40

REKS,e

B3LYP

REKS,e

BH&HLYP

C-DFT,f

B3LYP exptl

Cu2Cl6
2‑ �88 �9 5 0.1 �121 �61 0 to �94

YAFZOU 76 132 294 75 164 123 76 264 87 111

XAMBUI 2 1.5 3 0.8 �15 �11 2 6.2 0.75 2

PATFIA �98 �7.5 �15 �19 15 19 �98 139 32 �11

CAVXUS �15 �10.5 �28 �6 �17 �14 �15 3.3 �3.4 �19

CUAQAC02 �249 �233 �436 �143 �262 �177 �249 �285 �91 �286

BISDOW �354 �308 �632 �177 �336 �122 �354 �429 �135 �382

MSEg �9 27 �38 53 22 51 �9 47 79

MUEg 32 27 100 68 28 55 32 63 88

RMSEg 43 38 141 103 33 80 43 90 130

MUREg 1.4 0.3 0.7 0.6 1.9 1.7 1.4 3.1 1.1

1(Cu�Cu) �74 �71 �32 �62

2(Cu�Cu) �115 �89 �88 �75

4(V�V) �166 �129 �166 �214

7(Cu�Cu) 181 277 224 168

8(Cu�Cu) 112 179 114 114

MSEh 1.5 47 24

MUEh 23 56 29

RMSEh 29 69 36

MUREh 0.2 0.4 0.2
a Present work. bReference 80. cReference 83. dReference 85. eReference 81. The results included here correspond to those computed using eq 14 of
that work. fReference 35. gMean errors for rows YAFZOU though BISDOW. hMean errors for rows 1(Cu�Cu) though 8(Cu�Cu).
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for extended systems because of its more favorable computa-
tional cost as compared to that usingΩ = 0.0. The mean errors
in Table 3 are for two subsets. If we compute the mean errors of
the results from weighted-average BS-ΔSCF calculations with
PBE35 over the 11 complexes used for averages in Table 1, we
obtain MSE, MUE, and RMSE values of 36, 40, and 54 cm�1,
all larger than the corresponding values in Table 1 for SF-
TDDFT with B1PW40; the MURE is smaller though (0.3 vs
0.9) because of the large relative error of SF-TDDFT with
B1PW40 for PATFIA.

For the seven complexes Cu2Cl6
2�, YAFZOU, XAMBUI,

PATFIA, CAVXUS, CUAQAC02, and BISDOW, we also
compare the present results with two other sets of spin-
projected weighted-average BS-ΔSCF results, the ones from
our previous study83 using the Minnesota M06 and M06-2X
functionals71,72 and those reported with the double-hybrid
B2-PLYP124 and B2GP-PLYP125 functionals by Schwabe and
Grimme.85 The B2-PLYP and B2GP-PLYP density functionals
are doubly hybrid functionals,126 in which an SCF step is
followed by a post-SCF perturbative calculation of the correla-
tion energy; both the density functional correlation energy and
the perturbative contribution are empirically scaled. For the six
complexes YAFZOU, XAMBUI, PATFIA, CAVXUS, CUA-
QAC02, and BISDOW, we report the best results of two
implementations of the REKS method as described in eqs 13
and 14 of the work in which the couplings are calculated.81

Finally, for the five complexes 1(Cu�Cu), 2(Cu�Cu), 4(V�V),
7(Cu�Cu), and 8(Cu�Cu), we compare the present results with
the C-DFT results of Rudra et al.35

The results in Table 3 show several interesting features. First,
note that only SF-TDDFTwith the present X = 40 functional (or
any other functional in Table 1 with X = 40 since they all give
similar results), PBE35 with the spin-projected weighted-average
BS-ΔSCF approach, and C-DFT predict the correct sign (ferro-
magnetic or antiferromagnetic) for all the complexes for which
they have been tested. (The only two methods for which it is
certain that they predict all 12 signs correctly are the first two.) If
we look at the MSEs as a measure of systematic deviations from
experiment, it is clear that the best method is SF-TDDFT with
X = 40. Furthermore, the only three methods with MUE and
RMSE comparable to those of SF-TDDFT with X= 40 are spin-
projected weighted-average BS-ΔSCF with PBE35, doubly
hybrid B2-PLYP, which was applied85 using the spin-projected
eq 3, and C-DFT. Note that, for the last two, results have been
reported for only the second subset of magnetic complexes. If
instead of the MSE, MUE, and RMSE we would take the MURE
as a measure of accuracy, it is clear that PBE35 with the spin-
projected broken-symmetry approach would be the best method
overall (i.e., for the 12 complexes). TheMURE obtained with SF-
TDDFT is large because of the large relative error of the PATFIA
complex, which has a very small splitting. The REKS method is
systematically too ferromagnetic and does not provide results
competitive with those of SF-TDDFT or the best spin-projected
weighted-average BS ones. One can conclude that, to the extent
that the database of 12 complexes studied is representative of
homobinuclear transition-metal complexes with spin-1/2 cen-
ters, SF-TDDFT with X= 40 makes more accurate predictions,
on average, than any other method studied. Since all the SF-
TDDFT functionals with X = 40 make similar predictions, we
recommend using MPW1K or BMK since they are standard
functionals that have been well validated for a great variety of
chemical properties; for example, MPW1K has been shown to

provide relatively accurate predictions for hydrogen-bonding and
charge-transfer interactions.127 Of the two, MPW1K is simpler
(being a hybrid GGA, whereas BMK is a hybrid meta-GGA) and
is therefore easiest to implement in a wide variety of programs.

The discussion above regarding the accuracy of the different
approaches has focused on the comparison to experiment. From
a fundamental point of view it is also interesting to compare
SF-TDDFT and BS energy splitting values obtained with two
different formalisms. We found that, in all cases studied, the
results obtained from the BS approach compare to those arising
from SF-TDDFT if and only if spin projections (eq 3) are taken
into account; this is another indication that spin symmetry has to
be taken into account in DFT calculations as is usually done
when wave functions are used.

5. CONCLUSIONS

Magnetic exchange coupling constants have been computed
for a database of 12 spin-1/2 homobinuclear transition-metal
complexes previously studied by Phillips and Peralta80 and
others. In the present work, several global hybrid density
functionals, with the percentage of Hartree�Fock exchange
ranging from 20% to 100%, have been employed with collinear,
Tamm�Dancoff spin-flip time-dependent density functional
theory. The magnetic coupling constants are calculated from
singlet�triplet energy differences, as one would do in wave
function theory, with both spin states generally well adapted to
spin symmetry.

For a given functional, the spin-state energy splitting values
predicted by the SF-TDDFT formalism are consistent with those
obtained from the broken-symmetry approach if and only if spin
projection is taken into account in the latter. Considering all 12
complexes, we find that 40% Hartree�Fock exchange provides
the best agreement with experiment and—in terms of mean
signed error, mean unsigned error, and root-mean-square error—
the SF-TDDFT approach performs systematically better than
the spin-projected weighted-average broken-symmetry strategy,
although the optimal percentage is slightly different in each
case (about 40% for SF-TDDFT and 35% for spin-projected
weighted-average broken symmetry). If one considers sub-
sets of the database for which previous results are available,
one finds that the spin-projected weighted-average broken-
symmetry doubly hybrid functional B2-PLYP and the con-
strained density functional theory based on B3LYP also per-
form quite well.

For SF-TDDFT, the magnetic couplings show a much larger
dependence on the percentage of Hartree�Fock exchange than
on other aspects of the exchange and correlation density func-
tionals employed. Given that hybrid meta-GGAs do not seem to
improve the results with respect to hybrid GGAs, one can use a
less computationally demanding hybrid GGA such as MPW1K
for SF-TDDFT on this kind of system. Further studies on a
greater variety of systems would be welcome.

In conclusion, we find that the SF-TDDFT approach provides
more accurate spin-state energy splittings than the spin-projected
weighted-average broken-symmetry scheme for binuclear spin-
1/2 transition-metal complexes, with the added advantage of
avoiding the ambiguities associated with the weighted-average
broken-symmetry approach. We recommend MPW1K as a
well-known, standard hybrid density functional to calculate
magnetic couplings in the context of SF-TDDFT.
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ABSTRACT: The low-energy spectroscopies of Mn(II) and Mn(III) porphyrin (P) complexes were investigated using complete
active space and subsequent perturbative treatment (CASPT2) as well as DFT-based calculations. Starting fromDFT optimizations
of MnIIP and MnIIIPCl using crystallographic data, the CASPT2 results show that whatever the relative position of the Mn(II) ion
with respect to the porphyrin cavity, the high-spin state S = 5/2 of the [MnP] unit lies much lower in energy than the intermediate S
= 3/2 state. Not only are these results in agreement with experimental observations but they also differ from previous theoretical
conclusions. In the Mn(III) complexes, σ and π charge redistributions compete to result in a S = 2 ground state. The performances
of different functionals have been tested in the reproduction of the CASPT2 spin gaps. Our results confirm that theMn(II) system is
very challenging, as GGA functionals fail in the spin states ordering and in the reproduction of the gaps, unless a high percentage of
exact HF exchange (55%), as in KMLYP, is incorporated. This inspection demonstrates the need for specific active space functional
to investigate the low-energy spectroscopy of [MnP] units.

1. INTRODUCTION

The prominent role of porphyrin-based complexes in biolo-
gical processes as in heme active sites has stimulated intense work
from both the experimental and theoretical communities since
the 1970s.1�5 Much attention has been devoted to revealing the
strong relationships between the electronic structures of metal-
loporphyrins and their molecular parameters. Such remarkable
interplay has also led to intense efforts in order to take advantage
of these features in widespread areas of interest such as health,
catalysis,6�8 and molecular materials.9 In particular, metallopor-
phyrins have been recently investigated as possible information
storage devices taking advantage of charge transfer effects.10�13

The association of a redox metal center such as manganese with
smart functionalization of the porphyrin has turned out to be a
promising route in the design of molecular switches.14 From this
perspective, we got interested in gaining a better understanding
of the particular relationships between the electronic structures
of Mn(II) and Mn(III) porphyrins and their structural features
through theoretical approaches.

Quantum chemistry descriptions of metalloporphyrins are
well documented in the literature, especially after the advent of
density functional theory (DFT) methods.15�23 This class of
coordination compounds is also considered a good candidate for
quantum chemistry benchmarking,19�23 thanks to the large
amount of chemical and spectroscopic data available. The most
difficult case is for Mn(II) (d5), which may give rise to two low-
lying states: the high-spin one (HS, S = 5/2) and an interme-
diate one (IS, S = 3/2). Much experimental evidence (Mn�N
distances, EPR, magnetic data) has unambiguously shown that

the sextet is the ground state.24�26 In contrast, from the early
extended H€uckel calculations3 to more recent DFT studies,20,27

the electronic structure of Mn(II) porphyrins is predicted to
exhibit a quartet ground state. In particular, it seems that GGA
functionals are unable to reproduce the high-spin character of the
ground state. In contrast, hybrid functionals which contain a
Hartree�Fock exchange component do predict most of the time
the correct spin energetics.20 This result is in line with the well-
known property of hybrid functionals to favor the HS state
as ground state, contrarily to GGA predicting generally a low spin
state.28�30 It was long ago underlined1,26 that the HS state of
Mn(II) implies the population of a dx2�y2 orbital compared to its
IS state (or to Mn(III), d4) thus leading to significantly longer
Mn�N distances in HS Mn(II) porphyrins (dMn�N ca. 2.09 Å)
compared to IS six-coordinate ones (dMn�N ca. 2.03 Å) or to HS
(S = 2)Mn(III) porphyrins (dMn�N ca. 2.02 Å).

26 Actually, X-ray
structural studies have clearly shown that the Mn(II) ion is
positioned out of the mean porphyrinic plane at a height of
0.19 Å in a tetra-coordinated Mn(II) tetraphenyl porphyrin
(TPP).24,26 Moreover, a recent DFT study on Mn(II) porphyr-
ins has enlightened this difficulty: the authors have obtained a
(wrong) quartet ground state. It is not until a rather large height h
= 0.37 Å of the Mn ion with respect to the porphyrin mean plane
is reached that the HS state becomes the ground state.27

The dependence of spin states ordering with the functional is
also recurrent in Fe(II) and Fe(III) porphyrins.19,20,22,31�33 Even
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with a hybrid functional such as B3LYP, the spin energetics are
not always reliable.33 More generally, within the last 10 years, a
large amount of work in the DFT community has been devoted
to the reproduction of spin states ordering within transition
metal complexes.23,28�30,33�40 Some of the main findings that
emerged from these studies were (i) the efficiency of the OPTX
exchange functional of Handy and Cohen41 associated with
standard local correlation functionals (OPBE, OLYP, etc.) to
reproduce low spin energetics of metal complexes,34,35,39,42 (ii)
the design of a modified B3LYP functional, namely B3LYP*,
including a weaker exact exchange (ex. ex.) contribution (15%)
than the standard one (20%),28,36 and (iii) the correlation
between the HS/LS ordering and the nature of the metal�ligand
bonding.28,29 The latter is of course a direct consequence of the
role of the ligand field in the ordering of the lowest electronic
states of a metal complex. In the meantime, there have been con-
siderable advances in the design of new families of functionals—the
third rung in the so-called Jacob’s ladder43—especially with the
advent of meta-GGAs and hybrid meta-GGAs.44�46 These func-
tionals have been built with the intent of being as universal as possible,
including all chemical elements and a wide range of properties.44,45

For all of the above-mentioned reasons, a better analysis of the
performance of various functionals for describing Mn(II) and
Mn(III) porphyrins became necessary. Such benchmarking may
be realized against experimental data or highly accurate ab initio
calculations as a reference.23,29,33,47 In this context, explicitly
correlated calculations are particularly appealing since (i) they
manipulate the exact Hamiltonian and (ii) the multireference
character of the wave function gives access to important informa-
tion with respect to the weights of the different configurations. In
a configuration interaction method, the zeroth-order wave func-
tion is formed by a linear expansion of Slater determinants. Such
a description is accessible by means of Complete Active Space
Self-Consistent Field (CASSCF)48 calculations which incorpo-
rate qualitatively the leading electronic configurations distribut-
ing n electrons inmmolecular orbitals (MOs), defining an active
space referenced as CAS[n,m]. At this level of calculation, the so-
called static correlation effects are taken into account variation-
ally, provided that the active space is flexible enough. The dy-
namical correlation effects can be included using second-order
perturbation treatment (CASPT2) to produce reference calcula-
tions. However, large basis sets and extended active spaces might
be necessary to reach convergence in the spectroscopy. Thus,
particular attention was paid to (i) the active space characteristics
and (ii) the nature of the functional in the low-energy spectros-
copy determination.

Several functionals were compared in this study, from GGAs
to meta-GGAs, hybrids and hybrid meta-GGAs, including recent
and/or already proven efficient functionals, as above-mentioned:
(i) GGAs BP86,49,50 PBE,51 OPBE,41 and BLYP;49,52 (ii) meta-
GGAsMO6-L53 and TPSS;45 and (iii) hybrid functionals including
ex. ex. (value given in parentheses): B3LYP (20%)54 and B3LYP*
(15%),36 PBE0 (25%),55 BHandHLYP (50%),54 and KMLYP
(55.7%).56 The two latter choices were driven by the large exchange

energy due to the half-filled d5 shell in Mn(II). BHandLYP is
based on the half-and-half approach of Becke54 based on 50%
Hartree�Fock exchange and 50% BLYP exchange and a correla-
tion functional. Another recent functional, KMLYP, that shows a
similar percentage of exact HF exchange (55,7%) has appeared
on the basis of the exchange part of Kang and Musgrave.56 This
functional was originally developed to reproduce energy reaction
barriers and also contains a built-in reduction of self-interaction
errors, which may be too interesting for such issues. Finally,
recent meta hybrid functionals have also been investigated,
namely, M06 (27%) and M06-2X (54%), from the Minnesota
suite44 completing the local M06-L meta-GGA, and TPSSH
(10%) from Staroverov et al.45 M06 was designed to be efficient
for transition metals, while M06-2X was designed for main group
elements but incorporates a high content of ex. ex. Finally, TPSS
(meta-GGA) and TPSSH45 were chosen because they are based
on a local part, which is the PKZB functional fromPerdew et al.,46

that reproduces the exchange energy to second order in expan-
sion of the density gradient and does not contain self-interaction
spurious effects.

Our comparative study based on both the ab initio CASPT2
approach and the DFT scheme has been applied on simple
Mn(II) and Mn(III) porphyrins, with H atoms in all meso and β
positions (named porphin and abbreviated below as P), i.e.,
MnIIP and MnIIIPCl. Using the spin-dependent optimized
geometries, the adiabatic energy differences for the MnIIP and
MnIIIPCl systems were calculated. Since some difficulties have
been mentioned regarding the spin state ordering of MnIIP with
respect to experimental data, the vertical transition from the S =
5/2 was also investigated. The starting geometries were based on
X-ray diffraction experimental structures (see Figure 1).

Starting from these structures, we removed the four meso
phenyl groups and replaced them with hydrogen atoms leading
to the porphin (P) ligand. The use of simple MnP species as a
model for more complex architectures has been justified in
previous calculations.16 The resulting structures will be referred
to as a for the Mn(II) porphyrin and b for the Mn(III) por-
phyrin MnPCl.

Structures a and b were used as starting geometries to optimize
MnIIP and MnIIIPCl, respectively (see Computational Details).
As it was not possible to optimize the structures with CASPT2
methods,we chose to use reference equilibriumgeometries resulting
from spin-dependent optimizations done with a given GGA (i.e.,
PBE), with the various possible spin states. The MnIIP optimized
structure starting from a for sextuplet (S = 5/2) and quartet (S =
3/2) states will be noted as a-6 and a-4, respectively. The MnIIIPCl
optimized structure from b for triplet (S = 1), quintet (S = 2), and
septet (S = 3) states will be noted as b-3, b-5, and b-7, respectively.

2. COMPUTATIONAL DETAILS

All of our CASSCF and CASPT2 calculations were performed
with the Molcas7.0 package,58 including atomic natural orbitals
(ANO-RCC) as basis sets.59�61 The one-electron basis sets

Figure 1. Crystallographic structures of (a) [Mn(II)TPP]26 and (b) [Mn(III)TPPCl].57 Hydrogen atoms are not depicted, for clarity.
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employed to describe the molecular orbitals (MOs) are derived
from primitive ANO-RCC (21s,15p,10d,6f,4 g,2 h), (17s,12p,-
5d,4f,2 g), (14s,9p,4d,3f,2 g), (14s,9p,4d,3f,2 g), and (8s,4p,3d,1f)
for the manganese, chlorine, nitrogen, carbon, and hydrogen
atoms, respectively. Following the atomic natural orbital con-
tractions of Widmark, these basis sets were contracted into
[7s,6p,5d,3f,2 g,1 h], [4s,3p,1d], [3s,2p,1d], [3s,2p,1d], and
[2s1p]. Finally, to avoid the presence of intruder states and to
provide a balanced description of open and closed shells, imaginary
level and IPEA shifts of 0.20 and 0.25 au (atomic units) were used
in the CASPT2 calculations, respectively. All electrons were
correlated except those in the core parts. Depending on the
number of d electrons, five for the Mn(II) complex and four for
the Mn(III), different active spaces can be used for the [MnP]
and [MnP]Cl species:
1. CAS[5,5] and CAS[4,5] are the minimal active spaces that

consider nothing but the d orbitals and electrons.
2. CAS[14,13] and CAS[13,13] add to the previous one a set of

bonding and antibonding porphyrin-localized (π/π*) orbitals
(see Figure 2) within each irreducible representation.

3. CAS[15,14] and CAS[14,14] finally consider a supplemen-
tary σ-type orbital (see Figure 2) representing the ion�
porphyrin σ bond.Whereas the enlargement from the five-
orbital active spaces to the 13-orbital ones is rather natural
in light of the extended π system over the porphyrin ring,
the inclusion of an additional σ-type orbital deserves some
explanation. The importance of ligand-to-metal charge trans-
fers (LMCT), in particular along the σ channel, has been
stressed in the ground state from previous DFT-based cal-
culations.62,63 The 14-orbital active spaces do not discri-
minate between the σ and π manifolds and allow one to
estimate the relative importance of these LMCTs accessible
from the wave function expansion.

Dynamical correlation effects were added through theCASPT259,64

method that has proven to be an impressive tool used to accurately
investigate spectroscopy issues.65,66 However, extended basis sets com-
binedwith rather large active spaces arenecessary to reachexperimental
agreement.67

The DFT calculations were performed with the ADF2010
package68�70 using an all-electron Slater type basis of triple-ζ
quality on each atom with polarization functions. Geometry
optimizations were made with TZP all-electron basis sets (one
polarization function) and single points with TZ2P all-electron
basis sets (two polarization functions).70 All of our calculations
were performed using an unrestricted formalism to describe the
various spin states. The convergence criteria were fixed to 10�6

Hartree for the energy. Several checks were made on calculations
(optimizations or single points) carried out with or without
symmetry (D4h or C2v for MnP, C4v or C2v for MnPCl), showing
that symmetry contraints do not greatly affect the results. For

instance, optimizations lead to distance differences less than
0.02 Å and energy differences less than 0.04 eV.

3. MN(II) PORPHYRINS

Geometry optimizations for the sextet and quadruplet states
performed with the PBE functional gave flat porphyrin systems,
as already pointed out in the literature.20,27 Indeed, it is known
that the porphyrin ring is rather flexible, precluding a reliable
investigation of minima on the potential energy surface.71,72 The
Mn�N distance for a-6 species was 2.07 Å (exp. 2.085 Å26) and
2.00 Å for a-4. Optimizations with BLYP, OBPE, B3LYP, and
M06 gave very similar geometries with distances ranging from
2.07 to 2.085 Å for a-6 and 2.00 to 2.02 Å for a-4. The decrease of
Mn�N distances between the S = 5/2 and the S = 3/2 structures
is in line with the depopulation of the mainly dx2�y2 antibonding
orbital.

In order to check their consistency and convergence, the
CASPT2 results were calibrated using several active spaces on
the experimental structure a (see Table 1). In agreement with
experimental observations, the three active spaces CAS[5,5],
CAS[14,13], and CAS[15,14] give rise to a sextet (S = 5/2)
ground state. As seen in Table 1, the spin gap between the S = 5/2
(HS) and S = 3/2 (IS) states is almost not affected by the active
space enlargement. The comparison between CAS[14,13] and
CAS[15,14] is however instructive. Indeed, the inclusion of the
σ-type orbital does not lead to any significant modification of the
wave functions’ structures. It should be stressed that for both
spin-states, the main configuration holds a similar weight.

Both vertical and adiabatic energy differences (see Figure 3)
were computed. ΔEa

vert uses the high-spin state geometry a-6,
whereas ΔE4�6

adia relies on the quartet and sextet optimized
geometries a-4 and a-6.

Table 2 gathers the results obtained with the various functionals
defined above, compared to the reference CAS[15,14]PT2 values
for both types of transition energy.

The first check was to correctly reproduce the experimentally
known ordering, i.e., the sextet being the ground state thus
corresponding to a positive energy gap. Clearly, GGAs and meta-
GGAs are unable to reproduce this ordering, yielding a negative
gap. It should be mentioned nevertheless that using the OPTX
exchange potential (OLYP andOPBE) results in a weak spin gap,
which becomes even positive with OLYP for the vertical transi-
tion. The most satisfactory behavior is obtained when including
ex. ex., in hybrids or hybrid meta-GGAs functionals. But even in
that case, the expected ordering is not obtained in all cases as
B3LYP* (15%), B3LYP (20%), and PBE0 (25%) give again a
wrong ordering of the gaps for the vertical transition.

At this stage, the PBE optimized geometries might be ques-
tionable. Therefore, the geometries and corresponding adiabatic
energy differences were calculated for a selection of functionals
(see Table 3).

It is remarkable that OPBE and B3LYP give now qualitatively
good ordering, with a sextet ground state, while BLYP and BPE
still fail in reproducing the expected ordering.

From a qualitative point of view, there are clearly three major
behaviors: GGAs and meta-GGAs, which are far from experi-
mental agreement (except the OPTX-based ones), OPTX
derived (OPBE and OLYP) and hybrid functionals with a low
percentage of ex. ex. for which the result is ambiguous and
depends on the molecular structure, and finally the hybrids with

Figure 2. The π-type (left) and σ-type (right) orbitals of the [MnP]
complexes from CASSCF calculations.
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at least 50% ex. ex. and hybrid meta-GGAs which always lead to
the expected sextet ground state.

We turn now to a more quantitative comparison, based on the
CAS[15,14]PT2 values. Hybrids with less than 25% ex. ex., even
if they give the expected sign for the vertical gap, do not perform
well for numerical values. The best agreement—qualitatively and
quantitatively—is obtained for hybrid functionals with a higher
HF percentage, i.e., BHandHLYP and KMLYP, being the only
ones to reproduce the good ordering in the vertical transition,
although the numerical agreement is less favorable. Among the
hybrid meta-GGAs, TPSSH gives a too low gap while M06 and
M06-2X give a rather good agreement with the CAS[15,14]PT2
calculation.

We should mention that we checked that the electronic
configurations of both sextet and quadruplet states obtained
with bothDFT andCAS approaches (the latter showing only one
major configuration as above-mentioned) were the same. For the
high spin state, the expected (dz2)

1(dxy)
1(dxz,dyz)

2(dx2�y2)
1 con-

figuration was obtained. The lowest quartet state was also
found to be (dz2)

1(dxy)
1(dxz,dyz)

3(dx2�y2)
0, in agreement with

the CAS[15,14] leading configuration. The spin contaminations
that may reveal some mixing with higher states were checked for
both spin states. It was found to be very low, as could be expected
for the high spin state (S2 = 8.75 to 8.77 for an expected one of
8.75). For the quartet state with an expected value of S2 = 3.75,
we obtained, most of the time, weak spin contamination with S2

between 3.77 and 4 (i.e., < 10%) for GGAs, meta-GGAs, and
hybrids, while three local functionals (M06-L, OPBE, and
OLYP) gave a slightly larger value close to 4.2.

We should also mention that due to the differences obtained
in the various B3LYP gaps (almost 0 eV for PBE optimized
geometries and 0.58 eV for B3LYP optimized geometries), we
also checked the consistency of the electronic configuration by
calculating the gap on one geometry (B3LYP or PBE ones)
restarting with the electron density obtained from the other

geometry (respectively PBE or B3LYP ones). This was accom-
panied by a check of the electron configurations, especially in the
quartet states. The results were very similar to the ones above-
mentioned (obtained without restarting densities), with a gap of
0.07 eV for the PBE geometries using the restart from B3LYP
geometries and a gap of 0.55 eV for the B3LYP geometries using
the restart from PBE geometries. The electronic structures were
also checked to be consistent with the sextet and quartet state
configurations described above.

As another check, we also explored the comparison of the
potential energy curves as a function of the Mn height above the
porphyrin plane, calculated for the [MnIIP] complex from
experimentally derived structure a. This key parameter was
chosen due to ambiguous determinations through previous
X-ray and theoretical studies.26,27,73 As depicted in Figure 4,
whatever the position of the manganese ion, the vertical quar-
tet�sextet gap is at least 1.37 eV. Let us stress that the S = 5/2
potential energy curve is rather flat, the energy variation being
less than 0.1 eV for h e 0.45 Å. This result might support the
reported difficulties in [MnP] structure determinations since the

Table 1. CASPT2Quartet�Sextet Vertical Spin Gap (eV) for
the Experimentally Derived Structure a, Using Different
Active Spaces

active space

gap

(eV)

weight of the main

configuration for

S = 5/2

weight of the main

configuration for

S = 3/2

CAS[5,5] 1.40 1.00 0.98

CAS[14,13] 1.36 0.85 0.83

CAS[15,14] 1.37 0.84 0.83

Figure 3. Potential energy curves for sextet and quadruplet spin states
vs. d(Mn�N) distance in the porphyrin and definitions of the spin gaps
as estimated in the CASPT2 and DFT evaluations.

Table 2. Spin GapsΔE6
vert and ΔE4-6

adia in eV Calculated by
DFT Methods and CAS[15,14]PT2a

ΔE6
vert ΔE4-6

adia

GGA

PBE �0.28 �0.49

OPBE �0.16 �0.14

BLYP �0.4 �0.59

OLYP 0.04 �0.19

BP86 �0.28 �0.55

hybrid

B3LYP* 0.06 �0.2

B3LYP 0.23 �0.03

PBE0 0.5 �0.01

BHandHLYP 1.07 0.92

KMLYP 0.99 1.03

meta-GGA

M06-L �0.18 �0.62

TPSS �0.43 �0.76

meta-hybrid

M06 0.71 0.83

M06-2X 1.49 1.18

TPSSH 0.32 0.16

CASPT2 1.03 0.49
aAll stuctures were optimized using the PBE functional.

Table 3. Adiabatic Energy Gap between the Quadruplet and
Sextet States, with GeometriesOptimized for Each Functional

functional ΔE4-6
adia

PBE �0.39

OPBE 0.06

BLYP �0.43

B3LYP 0.58

M06 0.30
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Mn(II) ion has the ability to be displaced out of the plane under
weak external perturbations.25,26

At this stage, the KMLYP functional which displays the best
overall agreement also gives a potential energy curve quite close
to the CASPT2 result. M06 also closely reproduces the results
from KMLYP, but with a smaller quartet�sextet gap, as was
already observed in Table 2. Yet it gives a very satisfactory
reproduction of the ground state curve.

From our comparison and previously reported ones, it is clear
that the correct reproduction of the ground state of MnIIP
species remains challenging for quantum chemical modeling.
The inclusion of HF exchange helps to recover the high spin
ground state, in line with the classical observation that high spin
states are favored by including some exact exchange in the
functional.28,29

4. MN(III) PORPHYRINS

The spin energetics of the [MnPCl] species were investigated
using again optimized structures starting from the experimental
structure b, for each of the three spin states: triplet, quintet, and
septet. The latter state is very often encountered in the MnIII

porphyrin physicochemistry and corresponds to a formally MnII

(S = 5/2) ion ferromagnetically coupled to a S = 1/2 radical on
the porphyrin. The agreement between the structural parameters
optimized for the quintet ground state with experimental data
was very satisfactory, with a mean Mn�N distance of 2.04 Å
(exp. 2. 015 Å), d(Mn�Cl) = 2.30 Å (exp. 2.30 Å), and a Mn out
of plane displacement of 0.30 Å (exp. 0.32 Å).

The geometry optimization for the S = 3 state yields longer
Mn�N distances (2.098 Å). Accordingly, the Kohn�Sham
orbitals clearly show that the dx2�y2 is occupied—as expected
for a high spinMn(II) ion—and the spin densities give 4.5 on the
Mn ion and a total of 1.06 delocalized on the four meso carbon
atoms. This electronic structure supports the [MnIIP•] nature of
the septet [MnIIIP]+ state in MnPCl.

In a first step, we explored the active space for CASPT2
calculations, starting from the experimentally derived structure b.
The results are shown in Table 4. As forMn(II) complexes, a first
minimal active space (CAS[4,5]) has been used and leads to an S
= 2 ground state (5A2) followed by two low-lying triplets

3B2 and
3B1 at 1.65 and 2.11 eV, respectively. Then, by enlarging the
active space to CAS[12,13], a charge transfer state [Mn(II)P•]+

(7A2) can be described. It arises from the promotion of a π
electron of the porphyrin ring into the vacant dx2�y2 orbital ofMn
as already mentioned above in the DFT study. This state appears
to be the first excited state at the CAS[12,13]PT2 level. In order
to properly account for any charge redistributions between the
Mn ion and the porphyrin ring, the 14-orbital active space has
been tested, including both σ and π channels. 5A2 remains the
ground state. 7A2 is shifted to much higher energies, i.e., 1.74 eV
above 5A2, while the triplets are stabilized with respect to the
previous calculation. Thus, it is clear from this monitoring that
the correct description of the σ transfer is crucial in the ordering
of spin-states of Mn(III) complexes. Any successive enlargement
of the active space led to no visible modification of the
spectroscopy.

We have then used the CAS[14,14]PT2 results as reference to
compare all DFT results obtained for each optimized geometry
in each spin state. The results are summarized in Table 5.

The first conclusion is that whatever the functional, the
expected quintet ground state is obtained. This is in contrast
with the various differences observed with the MnIIP species.
Apart from this first qualitative observation, the concern remains

Figure 4. Potential energy curves with respect to the Mn ion displace-
ment h for the [MnP] complex a for S = 5/2 and S = 3/2 states. Black:
CASPT2. Dark gray: DFT/KMLYP. Light gray: DFT/M06. Zero
energy reference taken as the h = 0 point for S = 5/2 state.

Table 4. CASPT2 Low-Energy Vertical Spectroscopy (eV) of
the [MnPCl] Complex Calculated with Different Active
Spaces from Structure ba

active space 3A2
3B2

7A2

CAS[4,5] 2.11 1.65

CAS[12,13] 2.05 1.61 1.41

CAS[14,14] 1.44 1.53 1.74
aThe reference energy is the quintet state 5A2 (C2v).

Table 5. Adiabatic Energy Gaps (eV) of the Lowest Triplet
(S = 1) and Septet (S = 3) States, Respectivleya

ΔE3�5
adia ΔE7�5

adia

GGA

PBE 0.42 1.55

OPBE 0.83 1.32

BLYP 0.37 1.50

OLYP 0.78 1.29

BP86 0.42 1.52

hybrid

B3LYP* 0.7 1.39

B3LYP 0.45 1.47

PBE0 1.14 1.67

BHandHLYP 1.21 1.07

KMLYP 1.28 1.11

meta-GGA

M06-L 1.27 1.82

TPSS 0.37 1.80

meta-hybrid

M06 1.45 1.54

M06-2X 1.83 1.15

TPSSH 0.55 1.72

CAS[14,14]PT2 1.51 1.10
aΔE3-5

adia and ΔE7-5
adia, with reference to the quintet ground state.
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about the ordering of excited spin states. In these relaxed
geometries, the S = 3 spin state at the CAS[14,14]PT2 level is
found to be lower than the S = 1 state, whereas GGAs, meta-
GGAs, and some hybrids yield the opposite result. The two
hybrids KMLYP and BHandHLYP give a very satisfactory
quantitative agreement, which again can be related to the
stabilization of high spin states due to a high ex. ex. content within
these functionals. The results of the M06 and M06-2X meta-
hybrid functionals are also in rather good agreement with the
CASPT2 orderings.

The spin contamination has been checked for the three states
(S2 = 6 for the ground state, S2 = 2 for the triplet, and S2 = 12 for
the septet state). Almost no deviation is observed for the quintet
state with all S2 values in the range 6.03�6.09, while deviations
are below 10% for the triplet state (almost all being between 2.02
and 2.07). Finally, for the septet state, again very low deviations
are obtained with all values between 12.04 and 12.16.

As for Mn(II) species, we have analyzed the Kohn�Sham
orbitals of the lowest triplet state that was obtained in DFT and
compared it to the major configuration given by the CAS
approach. For the high spin state, the expected (dxz,dyz)

2(dxy)
1-

(dz2)
1(dx2�y2)

0 configuration was obtained, resulting in a 5A2

symmetry in the C2v point group as obtained in the CASPT2 C2v

calculations. The lowest triplet state yielded the same configura-
tion: (dxz,dyz)

2(dxy)
2(dz2)

0(dx2�y2)
0 as the main one found in the

CASPT2 calculation and corresponding to the 3A2 state in C2v

symmetry.
At this stage, we would like to comment on the choice of

CASPT2 calculations as a reference in this particular case.
Indeed, to obtain a balanced description of open and closed
shells along the perturbative treatment, one has to include a so-
called IPEA (ionization potential�electronic affinity) shift in the
zeroth-order Hamiltonian.74 The default value of 0.25 au as set by
default in the current Molcas package usually gives excellent
results. Nevertheless, this choice has been questioned on two
occasions: (i) the case of magnetically coupled metals where it
was found that the originally proposed zeroth-order Hamiltonian
(corresponding to an IPEA set to 0.00 au) led to better
description of the magnetic coupling75and (ii) in the evaluation
of the adiabatic gap (between S = 0 and S = 2 spin states) for
Fe(II) spin-crossover systems where it is suggested that a proper
description of the gap requires an IPEA shift no less than 0.50
au.76 For the former, the spectroscopy is characterized by states
with identical numbers of open shells. In contrast, such number
changes along the S = 0 to S = 2 transition. In a first step, we
checked the impact of the IPEA shift on the low-energy
spectroscopy of the Mn(II) species. The change in the quartet�
sextet adiabatic gap appears to be less than 0.20 eV when going
from the default value 0.25 au to the very high 0.75 au. In
particular, no change is observed in the ordering of spin states.
Thus, the standard 0.25 au value is suitable for calculations upon
Mn(II) species, keeping inmind an error bar of(0.10 eV. On the
other hand, the low-energy spectrum ofMn(III) species has to be
treatedmore carefully. Even for a large IPEA shift value up to 1.00
au, the quintet state remains the ground state. However, the
septet�quintet gap appears to be more sensitive to this para-
meter. Let us stress that the number of open shells reaches six for
the heptet state, which involves an intramolecular electron
transfer. As previously reported in the literature, the description
of such a phenomenon requires larger values of the IPEA shift
(∼0.5 au). Considering the CASPT2 limitations, one may

conclude at this stage that the excited triplet and septet states
are expected to lie relatively close in energy.

5. DISCUSSION

The present study has been intended to check the behavior of
various types of functionals to reproduce qualitatively and—
when possible—quantitatively the energetic ordering of the
lowest spin states in Mn(II) and Mn(III) porphyrins. Our con-
clusion is that in Mn(III) species, all types of functionals are able
to reproduce at least qualitatively and—for some—quantita-
tively the spin states ordering. However, the story is completely
different for Mn(II) porphyrins, and we will focus the discussion
on these systems.

In the following, we will first position our own results in the
light of recent literature in spin states DFT benchmarking. Then,
we will give some comments based first on the chemical nature of
Mn(II), then on the choice of functionals that seems to result
from this particular nature.

Our conclusion about the good efficiency of high exchange
hybrid functionals is not completely in line with previous studies
performed on the functionals to reproduce spin states ordering in
3d transition metal complexes. Indeed, most analogous com-
parative studies have been conducted on FeII and FeIII com-
plexes23,28,30,32,39,42,77�80 because they are ubiquitous in active
sites of metalloenzymes, within mononuclear or polynuclear
clusters with magnetic coupling, and because this transition
metal is very much used in spin-crossover materials. As men-
tioned in the Introduction, some constant conclusions emerged
from these numerous studies, about the very efficient behavior of
the exchange potential OPTX and about the good behavior of
B3LYP* with a decrease of ex. ex. compared to the standard
B3LYP functional. Yet the efficiency of B3LYP* for spin state
orderings proved not to be universal.32,42,80,81 Finally, all of these
observations were nicely rationalized by some authors, on the
basis of the nature of the ligand bonding.29,32,39 High spin
complexes are favored with ligands giving rise to more ionic
bonding such as O or N donor ligands, whereas S, P, or C donor
ligands are bonded with more covalent character, thus favoring a
higher ligand field and lower spin ground states. Thus, hybrid
functionals with a higher ex. ex. percentages are expected to
perform better within ionic complexes with low covalence,
whereas with complexes involving a more covalent bonding,
hybrid functionals with a low percentage of ex. ex. are expected to
be better.32,39,47

Thus, this rationalization in terms of chemical features can be
extended to our case. Indeed, Mn(II) is very special among the
3d transition series. It is well-known by coordination chemists
that this ion gives almost exclusively high spin ground state
complexes82 except with very strong field ligands such as CO,
cyanide, or alkyle/aryle ligands. The manganese(II) ion in most
of the ligand environments is known to behave as a noninteract-
ing large sphere. The metallocene family is a typical example of
this unique character, as all 3d metallocenes exhibit a low spin
ground state except Mn(II). The manganocene complex
(MnIICp2, Cp = C5H5) has been much studied using EPR and
NMR solid state spectroscopies.83,84 At very low temperatures, it
exhibits antiferromagnetic coupling of S = 5/2 units, due to a
solid-state structure where the Cp ligands bridge two Mn(II)
ions.84 Moreover, NMR paramagnetic studies also revealed that
manganocene was unique among other metallocenes because
the metal�Cp ring bond was much less covalent than that of
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nickelocene and cobaltocene.84 Another remarkable feature is
that when substituting the Cp rings with alkyle groups, the
derived manganocene exhibited a low spin ground state.84 This
particular example illustrates several features of Mn(II) chem-
istry: (i) Mn(II) gives preferentially low covalent complexes and
a high spin ground state even with the Cp ligand, known to favor
low spin complexes, and it is necessary to substitute this ligand
with alkyl groups in order to get a low spin ground state. (ii) The
low covalence is correlated to the high spin ground state. (iii)
DFT benchmarking on this particular case has yielded ambig-
uous results.28,29

The particular stability of the half filled d shell inMn(II) due to
a high exchange contribution is a key point. But FeIII—also a d5

ion—does not behave the same. Yet, the latter is more positively
charged, allowing ligands to get closer, thus favoring strong field
environments, thus lower spin states. In fact, Fe(III) complexes
exhibit various types of spin states, depending on their coordina-
tion environment.

All of these considerations give support to our results for
MnIIP species, pointing to the need of increasing the ex. ex.
contribution in hybrid functionals in order to properly describe
the nature of Mn(II) complexes, unless particularly covalent
bonds are expected. Indeed, the proper description of the
exchange term and its correct balance with the correlation part
is clearly very critical for Mn(II) species. In this context, the
OPTX exchange constructed by fitting the HF exchange on
atoms41 behaves remarkably well and is the only GGA able to
compete with hybrid functionals. But in order to get a quantita-
tive agreement, inclusion of a high content of ex. ex. is desirable,
and the tuning of the percentage has a direct effect on the
efficiency of the hybrid, as already above-mentioned.

6. CONCLUSION

The present study was devoted to the evaluation of the low-
energy spectroscopy of Mn-porphyrins through ab initio meth-
ods and to the comparison with DFT methods. For both Mn(II)
and Mn(III) species, CASPT2 calculations were first conducted
with different active spaces. In the case of Mn(II) compounds,
the experimental spin ordering is recovered even with a minimal
active space. However, the spectroscopy of Mn(III) complexes
requires a larger active space to reach a correct description of the
low-energy spectrum, featuring a capital part played by both
σ- and π-type orbitals. This is reminiscent of the experimentally
very different spectroscopies of Mn(II)P and Mn(III)P, well
documented in the literature (see for instance ref 1).

These studies have allowed us to design a reliable DFT
approach of Mn-porphyrin complexes. Indeed, as already men-
tioned in many instances, we fuel some other arguments—if
necessary—that the choice of a functional is particularly crucial
in transition metal complexes, where the spin state ordering may
be complicated due to subtle interplay between d shell effects and
the metal�ligand bonding nature. As in previously published
studies, GGAs and meta-GGAs fail to reproduce the correct
ordering in the Mn(II) sextet�quartet states as well as some
hybrids, whereas the correct one is recovered with hybrids with a
high content of ex. ex. such as KMLYP, BHANDHLYP, or to a
lesser extent M06.

We must emphasize again the very special nature of the
Mn(II) ion among other 3d metal ions, being a very large ion
with a half filled d shell, that is known by coordination chemists
to give mainly high spin species (except with very strong field

ligands).82 We believe that this case is another “niche” where we
cannot simply apply standard DFT methods. We must think of
the chemistry behind the system in order to adapt the method
and make an extensive usage of the experiences in the various
theoretical approaches already published. The present study is
another illustration of what has already been pointed out in some
reflections published in recent years, about the pursuit of the
“divine” functional.43,78,85,86
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ABSTRACT: An energy-specific TDHF/TDDFT method is introduced in this article for excited state calculations. This approach
extends the conventional TDHF/TDDFT implementation to obtain excited states above a predefined energy threshold. The
method introduced and developed in this work enables computationally efficient yet rigorous calculations of energy-specific spectra,
e.g., X-ray absorption involving extremely high-energy transitions. All transitions are solved in the full molecular orbital space, and
orthogonality to the ground state and lower-lying excited states is preserved for each high-energy excited state. Encouraging
computational savings are observed in calculating the targeted energy spectrum, while the transition energies, as well as oscillator
strengths, remain identical to the results from the standard implementation.

I. INTRODUCTION

Single-reference methods such as configuration interac-
tion singles (CIS)1 and the linear-response variants of time-
dependent Hartree�Fock (TDHF)2,3 and time-dependent den-
sity functional theory (TDDFT)4�7 are widely used for ab initio
calculations of electronic excited states for large molecular sys-
tems because of their balance of computational efficiency and
accuracy for practical applications.8�11 Highly correlated meth-
ods, such as symmetry adapted cluster/configuration interaction
(SAC�CI12), linear response coupled cluster (LRCC13), and
equation-of-motion coupled cluster (EOM-CC14,15) and multi-
reference approaches, such as multireference configuration interac-
tion (MRCI16) andmultireference perturbation theories (MRMP17

and CASPT218) are capable of providing more accurate treat-
ments of excited states, including those with multielectron excita-
tion character. However, these methods are generally computa-
tionally prohibitive for large molecules.

Conventional TDHF and TDDFT are subject to some non-
trivial problems. For example, excitation energies for Rydberg
and charge transfer states are often underestimated. The latter
can be improved with the range-separated class of hybrid DFT
functionals.19�22 Neither TDHF nor TDDFT properly include
the effects of dispersion. However, efforts have been made to
include dispersion in DFT functionals, and promising results
have been obtained.23�25 The lack of correlation, or approximate
nature of the treatment thereof, in standard implementations of
TDHF and TDDFT results in the methods being unable to
correctly describe excited states with multielectron excitation
character.26,27 In spite of these limitations, theTDHFandTDDFT
methods can generally be expected to reproduce trends for one-
electron valence excitations, which contribute to a majority of
transitions of photochemical interest. TDDFT using hybrid
density functionals, in particular, has been successful in model-
ing the optical absorption spectra of large molecules.28 Recent
studies have further extended the application of TDDFT to pre-
dict very high-energy, core�electron excitations that account for
the pre-edge features in X-ray absorption spectroscopy (XAS).29�31

A simple frozen-orbital method has been proposed and found to
be very effective in obtaining core orbital excitations.32�35

Although linear-response TDHF and TDDFT are among the
most tractable methods for excited state calculations, they can
still be computationally demanding for large molecular systems
of photochemical interest. The numerical cost of solving the
TDHF/TDDFT equations using iterative techniques formally
scales asO(MN4), whereN is the total number of basis functions
andM is the number of excited states sought. With development
of effective Krylov subspace algorithms and linear-scaling meth-
ods for direct Fock/Kohn�Sham operator builders, conven-
tional implementations of the computational scaling of linear-
response TDHF and TDDFT equations can be reduced to
O(MN2) � O(MN3) in complexity. Detailed studies on the
numerical algorithms for solving the TDHF/TDDFT equations
are available in refs 36 and 37. Notably, if many states are to be
obtained simultaneously, efficiency degrades considerably as a
result of increased memory and I/O requirements. For large-
scale systems, the computational bottleneck of orbital transfor-
mation can be avoided by using “orbital-free” approaches.38,39

In cases where a certain high-energy excited state is the subject
of interest, it is possible to obtain an approximate solution of the
linear-response equation of TDHF/TDDFT only in the small
energy-range of interest. Along those lines, Kauczor et al.37 have
demonstrated that the optimal algorithm for solving the standard
and damped complex response equation40,41 is the precondi-
tioned iterative subspace algorithm with symmetrized trial vec-
tors, and the use of complex damping allows for the determina-
tion of higher excited states without knowledge of lower state
solutions. Tretiak et al.36 proposed using a symmetric Wilkinson
shift42 to acquire higher-energy excited states when solving the
TDHF/TDDFT equations in an orbital-independent formula-
tion. A response function using only a subset (e.g., core orbitals)
of the molecular orbitals has also been developed to reduce the
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cost of excited state calculations using TDHF/TDDFT. For
example, the frozen-orbital method truncates the molecular
orbital (MO) space and considers only the transitions between
core and valence orbitals.32,33 These methods are efficient in
obtaining approximate energies and electronic characteristics of
high-energy excited states; however, the application is limited to
core orbitals with restricted radial extent that are nearly ortho-
gonal to all other occupied orbitals and excited states. When such
orthogonality is not well preserved, calculated excited states
with incomplete orbital space can lead to inaccurate oscillator
strengths and unphysical electron distributions.

In this article, we introduce an energy-specific TDHF/TDDFT
(ES-TD) approach to selectively calculate absorption spectra
above a predefined energy threshold while maintaining the ortho-
gonality between excited states and the ground state. The algo-
rithm introduced herein is rigorous because the solutions are
exact in the full molecular orbital space. It is based on a simple yet
effective idea to bracket high-energy spectra using a Davidson-
like iterative algorithm43,44 of the spin-unrestrictedTDHF/TDDFT
implementation.9 Computational performance and accuracy are
compared for Rydberg excited states of an alanine dimer, ligand-
to-metal charge transfer transitions in Mn2+-doped ZnO semi-
conductor nanocrystals, and high-energy X-ray absorptions in a
set of metal tetrachlorides.

II. METHODOLOGY

In conventional linear-response TDHF/TDDFT theory, ex-
citation energies ω can be determined by solving the non-
Hermitian eigenvalue equation, given in matrix form as6,8,9

A B
B A

 !
X
Y

 !
¼ ω

1 0
0 �1

 !
X
Y

 !
ð1Þ

with the matrices for TDHF

Aia, jb ¼ δijδabðεa � εiÞ þ ðia j jbÞ � ðib j jaÞ
Bia, jb ¼ ðia jbjÞ � ðij jbaÞ ð2Þ

and for TDDFT

Aia, jb ¼ δijδabðεa � εiÞ þ ðia j jbÞ � αðib j jaÞ þ ðia j fxc j jbÞ
Bia, jb ¼ ðia jbjÞ � αðij jbaÞ þ ðia j fxc jbjÞ

ð3Þ
where X and Y are the first order electron density responses
determined by solving this system of linear equations. The
regular two-electron integrals are expressed inMulliken notation.
For hybrid DFT, the HF exchange integral takes on a fractional
value scaled by a nonzero scaling factor α, while α = 0 for pure
DFT kernels. The response of the exchange-correlation (xc)
potential term, also called the xc kernel, is given as

ðia j fxc j jbÞ ¼
Z Z

ϕ
�
i ðrÞ ϕaðrÞ

δ2Exc
δFðrÞ δFðr0Þ ϕ

�
j ðr0Þ ϕbðr0Þ dr dr0

ð4Þ
The i and j and the a and b indices represent occupied and virtual
molecular orbitals (MOs), respectively, in the HF/Kohn�Sham
ground state configuration.

For real orbitals, eq 1 can be reduced to a non-Hermitian
(eq 5) or Hermitian (eq 6) eigenvalue equation with half the

dimension

ðA � BÞðA þ BÞjX þ Yi ¼ ω2jX þ Yi ð5Þ

ðA � BÞ1=2ðA þ BÞðA � BÞ1=2T ¼ ω2T ð6Þ

T ¼ ðA � BÞ�1=2ðX þ YÞ ð7Þ
If all solutions of these equations are sought, A and B include all
transitions between occupied and unoccupiedmolecular orbitals.
The size of A and B in the molecular orbital space is (Nocc �
Nunocc)

2 where Nocc and Nunocc are the numbers of occupied
and unoccupied molecular orbitals. Such a full treatment has a
significantly large computational cost. An efficient algorithm to
solve the response equation of TDHF/TDDFT was introduced
by Stratmann et al. based on the nonsymmetric Davidson dia-
gonalization algorithms of Hirao and Nakatsuji44 and Bouman
et al.45 for obtaining lower-lying excited states.9 The idea is to
solve the response function in the reduced form of eq 5 or 6.
The solutions can be obtained by a symmetric diagonalization or
Davidson’s algorithm.43,44 In this work, we introduce additional
algorithms to bracket trial vectors and eigenvalues in the pre-
defined energy range to eventually obtain high-energy excitation
energies and transitions without the effort of scanning through
lower-lying excited states. We choose the Stratmann method9 as
the basic equation solver integrated with an energy screening and
bracketing idea. For simplicity, we will only present the algorithm
within the framework of the Hermitian eigenvalue equation
(eq 6). The non-Hermitian version of the method can be readily
obtained with simple matrix transformations.

The following discussions assume that M excited states with
energies greater than ω0 are the subject of interest. The (A + B)
and (A� B) matrices in eq 6 are first projected onto a subspace
spanned by a set of zeroth order trial vectorsC = {b1, ..., bl}where
l > M

~Mþ ¼ CTðA þ BÞC ð8Þ

~M� ¼ CTðA � BÞC ð9Þ

~M ¼ ð ~M�Þ1=2ð ~MþÞð ~M�Þ1=2 ð10Þ
where the dimension of the resulting matrices is l. Because the
number of trial vectors l is much smaller than Nocc � Nunocc, the
computational cost of directly generating the resulting matrices
in eq 6 is greatly reduced. On the other hand, the initial l needs to
be much larger than the requested number of excited states to
include all MO transition candidates that may contribute sig-
nificantly to excitations in the desired energy range. In the
current implementation, we construct initial trial vectors by
sampling the Koopmans’ MO transitions for the requested
energy range. l = 4M trial vectors are generated in the first
step, corresponding to the lowest energy Koopmans’ transi-
tions with a constraint of

εa � εi g ω0 þ δω ð11Þ
The δω energy shift is used to approximate corrections for the
errors in Koopmans’ transitions for a better selection of initial
trial vectors. Note that a good selection of initial trial vectors is
important for a fast convergence but generally does not affect
the quality of the final results because vectors that are found to
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contribute to the excitations will be added into subspaceC during
later iterations until the convergence is achieved.

Once the reduced subspace is constructed, diagonalization of
~M generates a set of eigenvalues ω~ and eigenvectors ~T in the
reduced space. In the reduced space, qualified eigenvalues and
eigenvectors are selected according to the predefined require-
ment for excitation energy and number of excited states:

ω~i g ω0, i ¼ n:::ðn þ MÞ ð12Þ
where ω~n is the lowest eigenvalue that is greater than the energy
thresholdω0. We define eigenvalues and eigenvectors that satisfy
eq 12 as the qualified candidates in the reduced space, denoted as
ω~M and ~TM. The corresponding collective transition densities,
(~X + ~Y)M and (~X � ~Y)M, can be obtained as well. These can-
didates can be transformed from the reduced space to the full
MO space,

ðX0 þ Y0ÞM ¼ Cð~X þ ~YÞM ð13Þ

ðX0 � Y0ÞM ¼ Cð~X� ~YÞM ð14Þ

ω
0
M ¼ ω~M ð15Þ

where the primed notation refers to approximate solutions in the
complete MO space. In order to estimate the errors associated
with the approximate solutions, residual vectors can be defined as
(see ref 9 for detailed discussions)

WL
M ¼ ðA þ BÞðX0 þ Y0ÞM �ωM

0ðX0 � Y0ÞM ð16Þ

WR
M ¼ ðA � BÞðX0 � Y0ÞM �ωM

0ðX0 þ Y0ÞM ð17Þ
When the norm of a residual vector is below a certain small
threshold (10�6 au in this work), the associated excited state is

considered converged. For those unconverged excited states, a
new set of vectors can be constructed following the Davidson
algorithm:

Q L
M ¼ ðωM

0 �ΔεÞ�1WL
M ð18Þ

Q R
M ¼ ðωM

0 �ΔεÞ�1WR
M ð19Þ

where the Δε is the orbital energy difference. These new vectors
will be orthonormalized and added into the subspaceC, and new
iteration starts from eq 8 until all vectors are converged. Note
that a monotonic convergence of the reduced eigenspace can
be observed because MacDonald’s theorem46 applies when
the reduced subspace is unchanged.9 Usually after a few initial
iterations, the subspace of interest becomes well-defined
and remains the same. A monotonic convergence can then
be observed.

The algorithm introduced above is a simple extension with
subspace bracketing and energy spectrum selection to the
Stratmann method based on the Davidson algorithm. It is worth
noting that because linear transformations are always carried out
of (A+B) and (A�B) matrices, symmetrized trial vectors are
introduced in each iteration, which gives optimal efficiency for
standard response equation as suggested by Kauczor et al.37 This
approach is different from other approximate methods34,35 that
make use of an incomplete MO space and neglect contributions
from other minor transitions. Note that the reduced subspace is
used merely for the sake of obtaining solutions that correspond
to a desired energy range at low computational cost. The con-
vergence is verified in the full MO space. The size of the reduced
subspace expands during iterations to include all significant tran-
sition pairs. The final results are true eigenvalues and eigenvec-
tors of the linear-response TDHF/TDDFT equations. The resulting

Table 1. Comparison of Select Rydberg States of an Alanine Dimer Computed Using the Regular TDHF, ES-TDHF, and a Subset
Space with Removal of HOMO TDHF Methods with the aug-cc-pvdz Basis Set

regular TDHF ES-TDHF subset TDHF

excitation energy (eV) oscillator strength (a.u.) excitation energy (eV) oscillator strength (a.u.) excitation energy (eV) oscillator strength (a.u.)

8.0767 0.1048 8.0767 0.1048 8.3037 0.0656

8.4052 0.0647 8.4052 0.0647 8.8951 0.0848

8.6152 0.0280 8.6152 0.0280 9.0088 0.0298

9.0680 0.0061 9.0680 0.0061 9.1274 0.0085

9.1148 0.0469 9.1148 0.0469 9.2649 0.0739
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high-energy excited states are intrinsically orthogonal to lower
lying states because eigenvectors in the full space corresponding
to different eigenvalues are automatically biorthogonal. Numerical
tests in the next section will show that not only can this method
directly and accurately obtain high-energy excited states without
scanning through lower-lying ones, the calculated excited states
also maintain orthogonality to the ground state and to lower-
lying states that are skipped in the calculations.

III. BENCHMARKS AND DISCUSSION

Calculations were carried out on a Dell PowerEdge R610
Server (dual quad-core 2.4 GHz Intel Xeon with 16 GB of RAM),
using the development version of theGaussian series of programs47

with the addition of energy-specific linear-response TDHF/
TDDFT approach presented here. The computational time re-
ported in this article is the absolute total CPU time. In the next
two sections, we will test the ES method on the Rydberg states of
an alanine dimer, charge transfer excitation in a 1.0 nm quantum
dot doped with a transition metal, and X-ray absorption spectra
of a series of metal tetrachlorides.
A. Rydberg States of Alanine Dimer. Rydberg states of a

molecule are generally associated with characteristics of high ex-
citation energies and diffusive electronic distributions. Calcula-
tions of Rydberg states usually require large basis sets with dif-
fusive functions, and the transition vectors of these states strongly
depend on many orbitals. As a result, the excited states are very
sensitive to the quality of calculations. This can be considered a
stringent test case for the ES method developed herein. Table 1
lists the excitation energies and oscillator strengths of select
Rydberg states of an alanine dimer molecule computed at the
TDHF/aug-cc-pvdz level of theory. The first excited state lies
∼6.6 eV above ground state. An energy threshold of 8 eV is used
in the ES-TDHFmethod, which skips three lower energy valence
states. The results from the first two different calculations using
the regular approach and the ES-TDHF method are essentially
identical. Residual norms of eqs 16 and 17 are plotted against
iteration number in the Davidson algorithm in Figure 1. The

convergence performance of the two methods are very similar
for the first Rydberg state, though ES-TDHF may take a few
more iterations to reach final convergence due to smaller initial
expansion vector space. Most importantly, both methods exhibit
a monotonic convergence. Such behavior has been shownmathe-
matically in a recent work by Kauczor et al.37 The transition
vectors are also in perfect agreement (errors <10�5) in both
magnitude and sign with those obtained from the regular TDHF
calculation. This agreement suggests that even though lower-
energy valence states were skipped in the ES-TDHFmethod, the
resulting high-energy Rydberg states properly maintain orthogo-
nality to the lower ones. In Table 1, we also included results from
calculations using only a subset of occupied orbitals by forbidding
transitions from the highest occupied orbital. Using such a frozen-
orbital approach with TDHF, the calculated Rydberg type transi-
tion energies and oscillator strengths significantly deviate from
the reference values. Such deviations are a result of neglecting the
strong couplings between active and frozen orbitals and the
inability to preserve the orthogonality to lower-lying excited
states.
B. LVBMCT Transitions in Semiconductor Nanocrystals. In

our recent studies48,49 of Co2+- and Mn2+-doped ZnO semicon-
ductor nanocrystals, two types of charge transfer (CT) transi-
tions were characterized by TDDFT: metal-to-ligand CT as the
promotion of a transition metal (TM) dopant d electron to the
ZnO conduction band (MLCBCT) and ligand-to-metal CT as
the promotion of a ZnO valence band electron to a vacant tran-
sition metal dopant d orbital (LVBMCT). On the basis of theo-
retical calculation and experimental observations,49�51 the LVBMCT
transitions are always higher in energy than the MLCBCT ones
in ZnO nanocrystals. The LVBMCT transition is at ∼6.0 eV for
the Zn32TMO33 nanocrystal of ∼1.0 nm diameter, while the
MLCBCT transitions take place above ∼1.75 eV.52 For detailed
discussions about the characteristic transitions in a dilutedmagne-
tic semiconductor, we refer readers to our recent work using
linear response TDDFT.49

Doped nanocrystal structures were constructed on the basis of
the scheme described in ref 48, and the ground state electronic

Figure 1. Convergence performance of the regular TDHF and the ES-TDHF methods for the first Rydberg state of alanine dimer. Residual norm is
plotted against iteration number in the Davidson algorithm. The arrow indicates when the selected subspace starts to become stable and remain constant.
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structures andTDDFT spectra were obtained at the PBE1PBE53,54/
LANL2DZ55�58 level of theory. In order to characterize the
LVBMCT band in the absorption spectrum, a conventional linear
response TDDFT approach would need to generate as many as
120 states to be able to reach the >6.0 eV energy range. The ES-
TDDFT method introduced herein can skip the lower lying
excited states if a target excitation energy range is defined. Table 2
lists the computational costs of obtaining LVBMCT transitions in
Mn2+ and Co2+-doped ZnO nanocrystals with both the standard

implementation and the ES-TDDFT approach. The energy
threshold in ES-TDDFT is set to be 6.0 eV for the Zn32TMO33

quantum dots. As shown in Figure 2, the modified algorithm
yields excitation energies and oscillator strengths that are nearly
identical to those obtained with the standard algorithm, with less
than 1� 10�4 eV numerical difference. Themethod also exhibits
encouraging performance (∼30% the cost of the regular cal-
culation), even though the higher-energy transitions require more
transition vectors, covering a much larger expansion vector space.

Table 2. Comparison of Computational Costs for Obtaining LVBMCT Transitions in Mn2+- and Co2+-Doped ZnONanocrystalsa

regular TDDFT ES-TDDFT

nanocrystal systems total number of AO total states (range in eV) size of subspace CPU time in h total states (range in eV) size of subspace CPU time in h

Zn32CoO33 1015 120 (0.89�6.43) 1580 331.2 (1.0) 20 (6.11�6.23) 594 99.4 (0.30)

Zn32MnO33 1015 120 (3.73�6.45) 1526 319.0 (1.0) 20 (6.21�6.35) 576 92.5 (0.29)
aThe computational cost is evaluated using the total CPU time of the regular TDDFTmethod as the unit reference. Note that the wall clock time is one
eighth of the total CPU time.

Figure 2. Top panel: Structure of the Zn32TMO33H*60 nanocrystal. The TM
2+ dopant ion is placed close to the center of the nanocrystal and is shown

as a ball. Bottom panel: Comparison of optical transition oscillator strengths calculated for Mn- and Co-doped ZnO nanocrystals with (a) regular
TDDFT method and (b) ES-TDDFT approach for higher energy LVBMCT transitions. TDDFT peaks are dressed with Gaussian functions and a
broadening parameter of 0.12 eV. Inset shows spectrum peaks in the high excitation energy region with LVBMCT transitions identified with arrows.



3545 dx.doi.org/10.1021/ct200485x |J. Chem. Theory Comput. 2011, 7, 3540–3547

Journal of Chemical Theory and Computation ARTICLE

C. Cl K-Edge XAS Spectra for Metal Complexes. A series of
metal tetrachlorides were constructed according to experimental
X-ray structures,59�62 and the Cl K-edge TDDFT XAS spectra
were calculated with the BP86 functional63,64 and TZVP basis
set65 following ref 35. XAS pre-edge features for five metal
tetrachlorides ([CuCl4]

2�, [NiCl4]
2�, [CoCl4]

2�, [FeCl4]
2�,

[TiCl4]
0) were calculated using ES-TDDFT with initial guess

transitions originating from core orbitals. An energy threshold of
2700 eV was utilized to target the top edge of core electron
excitations, i.e,. a Cl 1s-core electron into a metal d-based MO.
For very high-energy transitions like X-ray absorptions that

involve excitation of a core�electron, the spectroscopic oscilla-
tor strength needs to account for higher-order dipole interactions
and takes on the form

fI ¼ f edI þ fmdI þ f eqI ð20Þ

where f I
ed,f I

md and f I
eq are electric dipole, magnetic dipole, and

electric quadrupole oscillator strengths for the Ith transition,
respectively. They are given by the following expressions in
atomic units35

f edI ¼ 2
3
ωI j ÆΨ0 j r̂ jΨIæ j 2

fmdI ¼ 2
3
α2ωI j ÆΨ0 j l̂ þ 2̂s jΨIæ j 2

f eqI ¼ 1
20

α2ω3
I ∑

i, j

����� Ψ0

�����r̂i r̂j �
1
3
r2δij

�����ΨI

* +�����
2

ð21Þ

where α is the dimensionless fine-structure constant given as
1/137.03599 and ωI is the excitation energy. Other notations

Figure 3. Comparison of experimental (top) Cl K-pre-edge XAS data to the calculated spectra (bottom). Experimental data are adapted from
refs 67 and 68.
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used are r̂, the position operator; l̂, the angular momentum
operator; and ŝ, the spin operator.
Figure 3 shows a comparison of the experimental Cl K pre-

edge data to the calculated pre-edge spectra where the oscillator
strengths account for magnetic dipole and electric quadruple
interactions in accordance with eqs 20 and 21. Oscillator stren-
gths of electric dipole and electric quadrupole transitions are
listed in Table 3. The calculated energies are underestimated
(∼85.6 eV on average), due to the limitations of DFT in
modeling potentials near the nucleus, resulting in a Cl-1s orbital
that is too high in energy relative to the valence orbitals.35,66 The
investigation of a systematic error in DFT such as this is beyond
the scope of the present work. On the other hand, the calculated
spectra are in good agreement with previously reported results
from TDA type calculations.35 The relative energies and inten-
sities are also consistent with experimental observations.67,68 The
slight deviations from previous calculated spectra may arise from
the use of an augmented basis set for the metal center and the
dielectric continuum solvent that can lead to further stabilization
of the valence orbitals.

IV. CONCLUSION

This paper presents an energy-specific TDHF/TDDFTmethod
based on Davidson’s iterative subspace algorithm. The method
allows for the flexibility of only obtaining excitations above a
predefined energy threshold enabling the prediction of an absor-
ption spectrum over a specific energy range, such as extremely
high-energy X-ray absorptions. Despite the fact that higher-
energy transitions usually require a considerably large expansion
vector space, this method shows an encouraging efficiency for
large-scale systems. In about 30% of the time required for ob-
taining the full absorption spectra via the standard implementa-
tion of TDDFT, ES-TDDFT calculated the higher-energy ligand
to metal charge transfer states for Mn2+- and Co2+-doped ZnO
semiconducting nanocrystals. Most importantly, all of the calcu-
lated transitions are solved in the full MO space, ensuring that all

of the excited states maintain orthogonality to the ground state
and lower-lying excited states. Because the MO space is not
restricted while solving for the transitions of interest, the cal-
culated eigenvalues and eigenvectors are true solutions to the
linear-response TDHF/TDDFT equations. As a result, charac-
teristics of excited states obtained using the ES-TDHF/TDDFT
method are essentially identical to those computed using the
regular TDHF/TDDFT implementations.
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ABSTRACT: We assess the performance of the whole class of functionals defined by the Perdew�Burke�Ernzerhof (PBE)
exchange-correlation enhancement factor, by performing a two-dimensional scan of the μ and k parameters (keeping β fixed by the
recovery of the local density approximation linear response). We consider molecular (atomization energies, bond lengths, and
vibrational frequencies), intermolecular (hydrogen-bond and dipole interactions), and solid-state (lattice constant and cohesive
energies) properties. We find, for the energetical properties, a whole family of functionals (with μ and k interrelated) giving very
similar results and the best accuracy. Overall, we find that the original PBE and the recently proposed APBE functional [Phys. Rev.
Lett. 2011, 106, 186406], based on the asymptotic expansion of the semiclassical neutral atom, give the highest global accuracy, with
a definite superior performance of the latter for all of the molecular properties.

1. INTRODUCTION

Ground-state density functional theory1,2 (DFT) in the Kohn�
Sham3 (KS) self-consistent formalism is nowadays one of the
most popular computational methods in electronic calculations
of quantum chemistry and solid-state physics. The central quantity
in DFT is the exchange-correlation (XC) functional, which collects
all of the “unknown” terms of the electron�electron interaction.
Over the years, many approximations have been developed
for the XC functional, which form the so-called “Jacob’s ladder”
of DFT.4

The ladder is grounded on the Hartree approximation (i.e., no
XC contribution) and has at the first rung the local spin-density
approximation3 (LSDA), which only contains as ingredients the
electron spin-densities Fv(r) and FV(r). The second rung of the
ladder is formed by those functionals depending on the gradient
of the electron spin-densities (3Fv(r), 3FV(r)) as well as on the
electron spin-densities themselves. The generalized gradient
approximations5 (GGAs) and the second-order gradient expan-
sions, derived from small perturbations of the uniform electron
gas (GE2)6 or from the semiclassical theory of neutral atoms
(MGE2),7�12 are the most important representatives of this
class. On the third rung of Jacob’s ladder, formed by meta-GGAs,
the additional ingredients of the positive KS kinetic energy spin-
densities (τv(r), τV(r)) or the Laplacian of the spin-densities
(32Fv(r), 32FV(r)) are considered, in order to satisfy more exact
constraints of the XC energy and potential. On the fourth rung,
the dependence on occupied KS orbitals is taken into account, in
search of an improved description of the exchange energy or of a
fully nonlocal correlation energy compatible with exact
exchange.13 Hybrid14 and orbital-dependent15�17 functionals,
as well as hyper-GGAs,13 belong to this rung. Finally, on the fifth
rung of the ladder, we find functionals including an explicit

dependence on virtual KS orbitals,18�23 which allow one to
describe exactly nonlocal parts of the correlation energy density.

Despite the remarkable accuracy demonstrated by the func-
tionals belonging to the fourth and fifth rungs of Jacob’s ladder in
different test studies, the majority of practical DFT applications
are based on GGAs and hybrid functionals, which provide the
best compromise between accuracy and computational effort. In
particular, GGA functionals provide an efficient tool for the study
of large systems (e.g., for biology and solid-state physics) and still
outperform hybrid functionals for organometallic and transition
metal complexes.24�27 In addition, they attract basic theoretical
interest, because they constitute the basis on which meta-GGA,
hyper-GGA, and hybrid functionals are constructed.

Among different GGA functionals, the generalized gradient
approximation proposed in 1986 by Perdew, Burke, and Ernzer-
hof (PBE)28 has gained large popularity in both quantum
chemistry and condensed-matter physics, due to its simplicity
and good performance in a broad range of applications. The PBE
functional contains no empirical parameters and fulfills a number
of exact constraints for the XC energy. The correlation part of the
PBE functional was constructed from a sharp cutoff of the GE2
correlation hole (in the high density limit)29 and is defined as

EPBEc ½Fv, FV� ¼
Z

F½εunifc ðrs, ζÞ þ Hðrs, ζ, tÞ� dr ð1Þ

where

Hðrs, ζ, tÞ ¼ γϕ3 ln 1 þ β

γ

t2 þ At4

1 þ At2 þ A2t4

 !
ð2Þ
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with F = Fv+ FV being the total electron density, rs = [(4π/3)F]1/3

being the local Seitz radius, ζ = (Fv� FV)/F being the relative spin
polarization, ϕ = ((1 + ζ)2/3 + (1� ζ)2/3)/2 being a spin scaling
factor, εc

unif(rs,ζ) being the correlation energy per particle of the
uniform electron gas,A being a function of εc

unif and ϕ, and t = |3
F|/(2ϕksF) being the correlation density gradient that measures
the density variations over a Thomas�Fermi screened wave-
number ks = (4kF/π)

1/2, where kF = (3π
2F)1/3 is the Fermi wave

vector. The parameter γ = (1� ln 2)/π2≈ 0.031091 is fixed by
uniform scaling to the high-density limit of the (spin-un-
polarized) correlation energy, and the parameter β = βPBE =
0.066725 is the second-order gradient expansion coefficient of
the correlation energy in the high-density limit.

The exchange part of the PBE functional has as the enhance-
ment factor a simple Pad�e-polynomial formula originally pro-
posed by Becke:30

FPBEx ðsÞ ¼ 1 þ k� k

1 þ μ

k
s2

ð3Þ

where s = |3F|/(2kFF) is the reduced gradient. The exchange
energy for a spin-unpolarized system is then

EPBEx ½F� ¼
Z

Fεunifx ðFÞ FPBEx ðsÞ dr ð4Þ

where εx
unif(F) is the exchange energy per particle of the uniform

electron gas, while for any spin-polarized system

Ex½Fv, FV� ¼
Ex½2Fv� þ Ex½2FV�

2
ð5Þ

from the spin-scaling relation of the exchange energy.31

The exchange enhancement factor in eq 3 is very simple and
satisfies two important limits: for small s, we have Fx

PBE(s)≈ 1 +
μs2; while for large s, Fx

PBE(s)f 1 + k. The parameter k = kPBE =
0.804 is fixed by the Lieb�Oxford bound for the exchange
energy, and the parameter μ is fixed to satisfy the correct linear
response of the spin-unpolarized uniform electron gas, i.e.

μ ¼ β
π2

3
ð6Þ

which leads to μ = μPBE = 0.21951.
Since its introduction, many variations of the original PBE

functional have been presented.12,32�45 Some of them keep the
same functional form for the exchange and correlation but
employ different parameters.12,32,35,37,38,41,43 These functionals
can be represented by a triplet of parameters (μ;β;k), see also ref
46. Among them, we recall:
(i) revPBE,32 an empirical functional constructed for mol-

ecules with

ðμ ¼ μPBE; β ¼ βPBE; k ¼ 1:245Þ
where k was fitted to atoms

(ii) PBEsol,37,38 a functional for solids and surfaces, with

μ ¼ μGE2 ¼ 10
81
; β ¼ 0:046; k ¼ kPBE

� �

where μGE2 is the exact second-order gradient expansion
coefficient of the exchange energy and β was fitted to
jellium surfaces

(iii) APBE,12 a nonempirical functional accurate for molec-
ular systems, constructed from the semiclassical theory

of neutral atoms, with

μ ¼ μMGE2 ¼ 0:26; β ¼ 3μMGE2

π2
¼ 0:079; k ¼ kPBE

 !

where μMGE2 is the coefficient of the modified second-
order gradient expansion and β was chosen to recover
the LSDA linear response. We note that the construc-
tion of the APBE functional shares some similarities with
that of PBE(Jr,Gx).41 However, the latter uses μ = μGE2

= 10/81, recoveringGE2 and notMGE2. It thus behaves
similarly to PBEsol and rather differently than APBE.
This fact highlights the importance of the modified
second-order gradient expansion for the exchange in
the construction of APBE.

Other functionals modify the functional form of the exchange
enhancement factor,33,34,36,39,40,42,44,44,45 often producing a faster
increase of Fx

PBE(s) with s. Of particular relevance we recall the
following: Wu�Cohen (WC)36 and the second-order GGA40

(developed for better solid-state properties), PBEint44 and
RPBE33 (developed for hybrid interfaces), and the regularized
gradient expansion.42 These functionals can also be written as a
parameter triplet provided that μ is expressed as a function of s.
For the PBEint functional, e.g., we have

μ ¼ μðsÞ ¼ μGE2 þ ðμPBE � μGE2Þαs2
1 þ αs2

; β ¼ 0:052; k ¼ kPBE
 !

where α = (μGE2)2/(k(μPBE � μGE2)) = 0.197 is determined by
the requirement of a smooth functional derivative. Thus, μ(s)
interpolates between the GE2 and PBE coefficients, whereas β is
fitted to jellium surfaces.

By changing the parameters in the PBE functional form,
important exact constraints for solids, surfaces, or molecular
systems can be recovered, and improved accuracy can be
achieved for special classes of problems. However, it is not
possible to satisfy all of the different constraints at once. In fact,
noGGA functional can be accurate for both solid-state properties
and atoms.10

In recent years, many different investigations about the
performace of the PBE-like functionals have been presented.46,47

Some studies focused on the relevance of the k parameter,40,48

the μ parameter,46 or both.12,37,38,41 However, so far, only few
points in the three-dimensional (μ;β;k) space have been in-
vestigated and mainly for few selected properties.46

In this paper, we aim at critically assessing this issue and
explore the dependence of the performance of a whole family of
PBE-like functionals on the values of the μ and k parameters. For
the sake of clarity, we restricted our attention to those PBE-like
functionals that satisfy the LSDA linear response. This choice is
also motivated by the fact that this is the only known exact
constraint for the correlation energy of importance for molecular
or solid-state systems. The second-order gradient expansion for
the correlation has been in fact demonstrated to be of minor
importance for real systems.49 Therefore, we performed a two-
dimensional scan of PBE-functionals of the type

½μ, k� ¼ μ; β ¼ 3μ
π2

; k
� �

Previous studies41 and preliminary test calculations (see the
Supporting Information) indicate that different choices of
β do not modify the results significantly. Nevertheless, we
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cannot exclude more important effects for particular proper-
ties and/or systems.

We consider many different tests, namely, atomization en-
ergies and bond lengths of organic molecules, transition metals,
and metal complexes; harmonic vibrational frequencies of
organic molecules; binding energies of hydrogen-bonded and
dipole-interacting molecular systems; equilibrium lattice con-
stants; and coehesive energies of solids. For each test, the
results are presented as countour graphs showing the accuracy
of the PBE-like functionals for different combinations of the
(μ,k) parameters, and the performance of standard PBE-like
functionals (i.e., PBE, APBE, revPBE) is analyzed. In addition,
global errors for different classes of problems are considered.
We find that the nonempirical APBE and PBE functionals are
the most representative functionals for a broad palet of proper-
ties and systems and yield the higher accuracy over a large
number of tests. In addition, APBE outperforms PBE for
molecular properties.

We note finally that, of course, for practical reasons, our
selection of tests is necessarily limited. For example, it does not
consider quantities such as transition barriers, isomerization
energies, or reaction energies, just to mention a few relevant to
the ground-state energetics. At the same time, for computational
reasons, it is essentially restricted to considering small molecules,
while tests including large organic molecules43,50 or extended
metal systems are not considered (these would require in
addition the consideration of further theoretical issues as for
example dispersion corrections51). This facts suggest that caution
must be used in drawing conclusions from the present work, as
from any other similar broad-range assessment work, because of a
possible bias introduced by the selection of specific test sets (see
in this respect the discussion in ref 52). Nevertheless, we believe
that the present selection of tests is representative of a fairly large
class of the most fundamental and important problems in
quantum chemistry and solid-state physics and can thus provide
useful insight into the performance of the family of PBE-like
functionals.

2. COMPUTATIONAL DETAILS

Several properties of molecules and bulk solids were investi-
gated by employing a PBE-like functional (eqs 1�6) with μ and
k values in the intervals μ ∈ [0.1,0.3] and k ∈ [0.5,1.5] and the
β parameter fixed by the relation β = 3 μ/π2 in order to preserve
the accurate LSDA linear response. The parameter μ (k) was
varied in steps of 0.01 (0.1). In total, we tested 231 different PBE-
like functionals.

We considered the following properties and test sets:
AE6: Atomization energies were computed for SiH4, SiO, S2,
CH4, C2O2H2, and C4H8; accurate reference data were taken
from ref 53.
TMAE4: Atomization energies were computed for the Cr2,
Cu2, V2, and Ag2 transition metal complexes; reference data
were taken from ref 25.
MCAE6: Atomization energies were calculated for the AgH,
BeO, FeS, LiCl, MgO, and VSmetal complexes; reference data
were obtained from ref 26.
HBL9: Optimization of bond lengths involving at least one
hydrogen atom are provided. The following molecules were
considered: H2, CH4, NH3, H2O, HF, C2H2 (C�H bond),
HCN (C�H bond), H2CO (C�H bond), and OH; reference
values were taken from ref 54.

NHBL10: Bond lengths were optimized for CO, N2, F2, C2H2

(C�C bond), HCN (C�N bond), H2CO (C�O bond),
CO2, N2O, and Cl2; reference values were taken from ref 54.
TMBL4: Bond lengths were computed for the Cr2, Cu2, V2,
and Ag2 transition metal complexes; reference data were taken
from ref 25.
MCBL6: Bond lengths were optimized for the AgH, BeO, FeS,
LiCl, MgO, and VS metal complexes; reference data were
obtained from ref 26.
F38: Harmonic vibrational frequencies were calculated for
H2, CH4, NH3, H2O, HF, CO, N2, F2, C2H2, HCN, H2CO,
CO2, N2O, Cl2, and OH; reference data were obtained from
ref 55.
HB6/04: The binding energies of hydrogen-bond interacting
systemswere calculated for (H2O)2, (HCONH2)2, (HCOOH)2,
(HF)2, (NH3)2, andNH3�H2O; reference datawere taken from
ref 56.
DI6/04: The binding energies of dipole-interacting systems
were calculated for CH3Cl�HCl, CH3SH�HCl, CH3SH�
NCH, (H2S)2, (HCl)2, and H2S�HCl; reference data were
taken from ref 56.
SOLIDS: Equilibrium lattice constants and cohesive energies
were computed for bulk Na (simple metal), Ag, Cu
(transition metals), Si, GaAs (semiconductors), and NaCl
(ionic solid); reference values were taken from refs 47 and 57.
This small test of six solids can reproduce the mean absolute
errors of the functionals for larger set of solids well.44 For
example, for 60 solids,45 the PBE lattice constant mean
absolute error is 0.054 Å, whereas our small test of solids
gives a PBE error of 0.0597 Å.
In all calculations, fully relaxed geometries were considered.

The simulations of molecular systems were performed with the
TURBOMOLE program package,58 using a def2-TZVPP59,60

basis set. The simulations of solid-state properties were per-
formed employing the FHI-AIMS program61,62 using the light
basis set and a 18� 18� 18 k-point grid. Scalar relativistic effects
were included, where needed, through the zeroth-order relati-
vistic approximation (ZORA).63

3. RESULTS

In this section, we report the performance of PBE-like
functionals using different values of the μ and k parameters.
For each test, the results are reported as a two-dimensional plot
showing themean absolute error (MAE) as a function of μ and k.
In the figures also the combinations of (μ,k) corresponding to
PBE, APBE, revPBE, and mPBEsol are indicated for reference.
Here, mPBEsol indicates a functional having the same (μ,k)
values as the original PBEsol37,38 (μ = 10/81, k = 0.804), but a
different value of β (0.037) imposed by the constraint of the
LSDA response satisfaction. Actually, this functional was already
considered in ref 41, where it was indicated as PBE(Jr,Gx),
yielding a very similar performance with the original PBEsol.

In the following discussion, we will also compare the results of
the PBE-like functional with other common ones, i.e., BLYP,64,65

OLYP,65�67 PBEint,44 TPSS meta-GGA,68 and the global hybrid
PBE0.69 These results are reported in Table S1, in the Supporting
Information.

To discuss the performaces of different functionals, we
introduce an exchange (X) nonlocality measure Λ for PBE-like
functionals. The true nonlocality of a GGA functional is given by
the XC enhancement factor FXC(rs,ζ,s).

70 However, this function
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of three variables is too complicated to yield a simple measure, as
the one required in this work. For this reason, we consider simply
FXC(rs = 0,ζ = 0,s) = FX(s), i.e., the leading exchange part. For a
given functional, the X-nonlocality is thus defined as

Ifunc �
Z smax

0

ðFfuncðsÞ � 1Þ ds ð7Þ

where F is the enhancement factor of the functional and smax is
the maximum value of the reduced gradient s that contributes to
the integration of the exchange energy (eq 4). Here, we used smax

= 6; however, our final result will turn out to be independent of
the value of smax, provided that it is large enough. Using the PBE-
like exchange enhancement factor form (eq 3), performing the
integration, and after some algebra, we find

Ifunc ¼ k2funcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μfunckfunc

p G
μfuncsmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μfunckfunc

p
 !

ð8Þ

with G(x) = x �arctan(x). In the range of μ and k values
considered in this work, we can approximate the function G as

GðxÞ ≈ x2

csmax
ð9Þ

where c = 1.05 is a fitting parameter. The X-nonlocality of the
functional can thus be written as

Ifunc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μfunckfunc

p
smax

c
ð10Þ

The X-nonlocality measure can be finally defined as the X-non-
locality of the given functional relative to PBE, i.e.

Λfunc ¼ Ifunc
IPBE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μfunckfunc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μPBEkPBE

p ð11Þ

The values of the X-nonlocality measure for the different PBE-
like functionals considered in this paper are reported in Figure
S1, in the Supporting Information. For standard PBE-like

functionals, we have 0.75, 1.00, 1.09, and 1.24 for mPBEsol,
PBE, APBE, and revPBE, respectively.
3.1. Molecules. 3.1.1. Atomization Energies. In Figure 1, we

report the MAE for the AE6 test as a function of μ and k. The
best results, with MAEs below 10 kcal/mol, are found for
combinations of the two parameters including either high values
of k and intermediate values of μ or intermediate values of k and
high values of μ. Both the APBE (MAE 7.9 kcal/mol) and the
revAPBE (MAE 8.84 kcal/mol) functionals belong to this region
and indeed yield for this test a performance close to the best
GGAs (e.g., OLYP65�67 has a MAE of 4.3 kcal/mol) and to the
TPSS68 meta-GGA (MAE 5.4 kcal/mol) and hybrid PBE069

functional (MAE 5.4 kcal/mol).
The PBE functional lays just outside the region of minimum

MAEs and gives a mean absolute error of 14.5 kcal/mol. A very
poor performance for the AE6 test is found, as expected, for the
mPBEsol functional, which strongly overestimates atomization
energies, because of its reduced X-nonlocality (ΛmPBEsol = 0.75).
Interestingly, the PBE performance can be improved, increasing

the X-nonlocality by either increasing the value of the μ parameter,
yielding APBE (ΛAPBE = 1.09), or increasing the value of the k
parameter, yielding revPBE (ΛrevPBE = 1.24). However, a too
pronounced X-nonlocality (functionals in the top-right region of
Figure 1) makes the result worse (significant underestimation).
This appears also from the comparison of APE and revPBE
results. Indeed, the values of μ and k defining the APBE
functional correspond approximately to a minimum for the
MAE of the AE6 test.12

In Figure 2, we show theMAE for the TMAE4 test as a function
ofμ andk. A similar trend is observed as in the case of the AE6 test,
but the region with lower MAE is shifted toward lower μ and k.
Thus, a slightly lower X-nonlocality of the functionals is required:
in fact, the smaller errors (about 6�7 kcal/mol) are obtained for
functionals with Λ ∼ 1.04�1.1. This finding is not surprising, as
theTMAE4 test considers large atoms. In fact, even a slightly lower
nonlocality might be expected to be needed if larger systems are
considered.71

Both the PBE (MAE 6.3 kcal/mol) and APBE (MAE 6.1
kcal/mol) functionals perform very well and better than the

Figure 1. Mean absolute error (kcal/mol) for the atomization energy of
molecules of the AE6 set as a function of μ and k. The positions
corresponding to PBE, APBE, revPBE, and mPBEsol are denoted by
white boxes.

Figure 2. Mean absolute error (kcal/mol) for the atomization energy of
the TMAE4 set, as a function of μ and k. The positions corresponding to
PBE, APBE, revPBE, and mPBEsol are denoted by white boxes.
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TPSS meta-GGA functional (MAE 6.6 kcal/mol). The re-
vPBE functional yields a MAE that is about 1.5 kcal/mol
higher than PBE, mainly because of its excessive X-nonlo-
cality, given by a too high value of the k parameter in
combination with μ = 0.2195. On the other hand, the
mPBEsol functional yields again a rather poor result
(overestimated atomization energies), because of its too
low degree of X-nonlocality.
In Figure 3, the MAE for the MCAE6 test is shown. Unlike

the previous two tests, in this case, a higher level of X-non-
locality is necessary to appropriately describe the metal com-
plexes’ atomization energies. The region of the minima is in fact
significantly moved toward the top-right corner of the plot,
corresponding to PBE-like functionals withΛ ∼ 1.35. None of
the commonly used PBE-like functionals possesses such a high
level of X-nonlocality, and therefore none of them yields results
close to the best possible performance. The smallest MAE is
found with the revPBE functional (MAE 6.3 kcal/mol), which
improves with respect to PBE because of the higher value of k,
and it is close to the best GGA, i.e., OLYP with a MAE of
5.4 kcal/mol. Rather good results are also found for the APBE
functional (MAE 7.4 kcal/mol), which performs better than
TPSS (MAE 7.7 kcal/mol) and PBE0 (MAE 10.3 kcal/mol).
The PBE functional gives instead a MAE of 10.5 kcal/mol and
turns out to be unable to provide a completely reliable
description of these systems. Finally, mPBEsol displays very
poor performance (overestimating atomization energies).
To have a global assessment of all atomization energies, in

Figure 4, we report the global mean absolute error for the
atomization energies of the AE6, TMAE4, and MCAE6 test sets,
normalized to the PBE value (taken as a reference value), i.e.

GMAEðμ, kÞ ¼ 1
3∑i

MAEiðμ, kÞ
MAEiðPBEÞ ð12Þ

where i runs over AE6, TMAE4, and MCAE6. An inspection
of the figure shows that for the GMAE there exists an almost
continuous distribution of minima, all with very similar
GMAEs (about 0.7). The locus of these minima can be

described well by the relation

k ¼ a þ b
μγ

ð13Þ

with a = 0.7457, b = 6.532� 10�6, and γ = 6.968. Equation 13
defines a family of PBE-like functionals optimized for the
atomization energies of molecular systems and is shown in
Figure 4 as a green dashed-line. We note that eq 13 was
obtained considering test sets including only small molecules;
therefore, it may be expected to reflect a slight preference for
moderately high levels of nonlocality. Indeed, the need for a
slightly reduced nonlocality in PBE-like functionals was
already evidenced in the case of gold nanostructures of
increasing size.71 Moreover, eq 13 is only a simple empirical
fit to the data of Figure 4; therefore, it cannot be employed to
obtain accurate numerical results (note also that eq 13,
because of its form, is prone to numerical noise). Never-
theless, we can use eq 13 to discuss some important results:
(i) For accurate atomization energies, k displays a lower

bound (kg a = 0.7457) close to the nonempirical kPBE.
Thus, we can extrapolate that a PBE-like functional with
μf∞ and k = a = 0.7457 will give extremely high total
energies of atoms and molecules but still will be accurate
for atomization energies. This shows that the atomiza-
tion energies are dominated by the valence regions where
the reduced gradient is relatively big (s g 2).

(ii) For μ = μGE2 = 10/81, we can extrapolate k ≈ 14.7
(eq 13might not be very accurate in this region; thus, the
following discussion is only qualitative). This very large
value of k violates largely the Lieb�Oxford bound48 and
has little physical meaning, showing that accurate ato-
mization energies cannot be recovered by any reason-
able PBE-like functional when μ = μGE2 (they can be
however obtained by relaxing slightly the PBE form, as in
the PBEint functional44). Additionally, we note that a
functional with μ = μGE2 and k≈ 14.7 would yield very
overestimated total energies and also extremely poor

Figure 3. Mean absolute error (kcal/mol) for the atomization energy of
the MCAE6 test set, as a function of μ and k. The positions correspond-
ing to PBE, APBE, revPBE, and mPBEsol are denoted by white boxes.

Figure 4. Global mean absolute error for the atomization energies of
AE6, TMAE4, and MCAE6, normalized to the PBE value. The
positions corresponding to PBE, APBE, revPBE, and mPBEsol are
denoted by white boxes. The family of functionals defined by eq 13 is
shown with a green line.
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results for solid-state systems, worsening much over
mPBEsol because of its very high X-nonlocality measure
(Λ = 3.2).

(iii) Both APBE and revPBE are practically members of the
PBE-like family defined by eq 13. APBE is however
closer to the curve than revPBE. In fact, the GMAE for
atomization energies (see eq 12) is 0.74 and 0.82 for
APBE and revPBE, respectively.

(iv) The functionals defined by eq 13, although yielding very
similar globalMAEs for the atomization energies, possess a
very different X-nonlocality measure. Using eqs 11 and 13,
we find in factΛ(μ,k) = (aμ + b/μγ�1)1/2/(μPBEkPBE)

1/2,
which is very high for small values of μ and close to 1.1
for 0.22 e μ e 0.3 (it has a minimum of 1.094 at
μ = 0.243). This implies that only the functionals with
a relatively high value of the μ parameter, and corre-
spondingly k ∼ 0.8, e.g., APBE, can be expected to
work well for atomization energies as well as for
problems that require a rather reduced level of X-non-
locality such as bond lengths and solid-state properties
(see later).

3.1.2. Bond Lengths. To perform an assessment for the bond
lengths of organic molecules, we divided the systems of the
MGBL1954 into two groups: The HBL9 test set contains bonds
that involve at least one hydrogen atom; the NHBL10 test set
instead contains only bonds which do not involve hydrogen. The
two sets in fact turn out to have completely different behaviors
and need to be analyzed separately (see Figure S2 in the
Supporting Information).
In Figure 5, we report the results of the HBL9 test for the bond

lengths of several organic molecules containing hydrogen. In this
case, unlike for the atomization energies, the results of the test do
not appear to be directly related to the X-nonlocality measure of
the functionals, and the figure does not show the characteristic
hyperbolic pattern of the previous cases. The results are almost
independent from the value of the k parameter and only vary
with μ. In more detail (see Figure S2 in Supporting Information),
using higher values of μ leads to a reduction of the bond lengths,
especially for the H�H bond. Thus, because all of the bond

lengths in this test are generally overestimated, a better agree-
ment with the reference values is found at high μ. As a result, the
smallest MAE is found, for standard PBE-like functionals, at the
APBE level, with 9.6 mÅ.
In Figure 6, we report the results of the NHBL10 test for the

bond lengths of several organic molecules, excluding bonds with
hydrogen atoms. The plot, in contrast to Figure 5, shows the
characteristic hyperbolic pattern already observed for the atomi-
zation energies and indicates that the best performance is
achieved by functionals having a rather small X-nonlocality
measure. Among the standard PBE-like functionals, in fact,
mPBEsol yields the smallest MAE (5.6 mÅ), while the worst
results are obtained by revPBE (MAE 11.1 mÅ). The bond
distances in the NHBL10 test set are all increased when the

Figure 5. Mean absolute error (mÅ) for the equilibrium bond lengths
of theHBL9 test set, as a function of μ and k. The positions corresponding
to PBE, APBE, revPBE, and mPBEsol are denoted by white boxes.

Figure 6. Mean absolute error (mÅ) for the equilibrium bond lengths
of the NHBL10 test set, as a function of μ and k. The positions
corresponding to PBE, APBE, revPBE, and mPBEsol are denoted by
white boxes.

Figure 7. Mean absolute error (mÅ) for the equilibrium bond lengths
of the TMBL4 test set, as a function of μ and k. The positions
corresponding to PBE, APBE, revPBE, and mPBEsol are denoted by
white boxes.
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X-nonlocality of the functional is increased (see Figure S2 in the
Supporting Information). Since for small values of the X-non-
locality measure most bonds are very well described, this causes a
worsening of the accuracy for high values of the X-nonlocality.
Because of the different behavior of the two tests with respect

to the variations of μ and k, good results cannot be achieved at
the same time for both sets. The best performance for all organic
molecules (i.e., the whole MGBL19 test) is obtained overall for
high values of μ and very low values of k (see Figure S3 in the
Supporting Information), because this combination best bal-
ances the two opposing trends. In this case, MAEs of about
6.5 mÅ are obtained, which compare well with the results of
TPSS (MAE 6.9 mÅ) and PBE0 (MAE 6.3 mÅ) calculations.
PBE, mPBEsol, and APBE give all the same accuracy, while
revPBE works quite badly (MAE 11.4 mÅ).
Considering together atomization energy and bond length for

organic molecular systems, Figure S4 in the Supporting Information
shows that APBE is the best choice (MAEAPBE/MAEPBE = 0.78).
APBE not only outperforms both PBE and revPBE but it has the
maximumaccuracy among all of thePBE-like functionals considered.
The MAEs of the bond lengths of the TMBL4 test set as

functions of μ and k are shown in Figure 7. The best results are
found when small values of the μ parameter are considered and,
despite the fact that when this condition is satisfied, the MAE is
rather independent of the value of the k parameter, in general a
low X-nonlocality is needed (Λ <1). Thus, the use of a small k
(∼ 0.6) and medium-small μ (∼ 0.16) yields the smallest error
for bond lengths with a MAE of 40.9 mÅ. This error compares
favorably with that obtained using the TPSS meta-GGA func-
tional (MAE 42.6 mÅ). Very large errors are found on the other
hand for functionals exploiting a high level of X-nonlocality.
According to this analysis, among the standard PBE-like

functionals, the mPBEsol functional yields the best performance
for the description of bond lengths of transition metal dimers
(MAE 43.1 mÅ). Note that mPBEsol was instead very bad for the
atomization energies of these systems (TMAE4; Figure 2).
Larger errors are found in the order PBE (MAE 52.8 mÅ) and
APBE (MAE 57.3 mÅ), because of the increasing X-nonlocality
of the functionals. The revPBE functional yields finally the

poorest performance with a MAE of 62.2 mÅ. While mPBEsol
is the best for TMBL4, it was the worst for TMAE4. Considering
together atomization and bond length for transition metal
systems, Figure S5 in the Supporting Information shows that
PBE and APBE yield high and comparable accuracy, outperform-
ing both mPBEsol and revPBE. In this case, however, Figure S5
shows that the best functional should have μ as in mPBEsol but a
very high k.
In Figure 8, we report the results of the MCBL6 test on the

bond lengths of six metal complexes. The smallest mean average
errors are found for combinations of μ and k, giving a medium
value of the X-nonlocality measureΛ∼ 1, i.e., for relatively high
values of the μ parameter and k ∼ 0.7/0.8. The APBE and PBE
functionals thus perform well with a MAE of 8.3 and 9.2 mÅ,
respectively. For comparison, MAEs of 8.1 and 14.2 mÅ are
found at the TPSS and PBE0 levels, respectively. The revPBE
(MAE 14.5 mÅ) and mPBEsol (MAE 22.4 mÅ) functionals yield
instead significantly worse results because of the too large/small
X-nonlocality of revPBE/mPBEsol. Considering together ato-
mization energies and bond lengths for metal complexes, Figure
S6 in the Supporting Information shows that APBE has the
maximium accuracy (MAEAPBE/MAEPBE = 0.80) among all of
the PBE-like functionals considered.
Figures 5�8 show overall that for bond lengths, a more

important role is played by the value of the μ parameter, which
must be high for HBL10 and MCBL6 and small for TMBL4,
while the value of the k parameter is less important. Moreover, a
moderate/small level of X-nonlocality is requested to obtain
accurate results. The importance of μ traces back to the fact that
for bond lengths a fundamental role is played by the first
derivative of the XC potential with respect to the nuclear
positions, which is related in the present context to the derivative
of the exchange enhancement factor with respect to s2. This latter
term, once the X-nonlocality measure of the functional is fixed
(μ/k≈ const.), depends in first approximation only on μ, which
is thenmainly determining the performance of the functionals for
the problem.

Figure 8. Mean absolute error (mÅ) for the equilibrium bond lengths
of theMCBL6 test set, as a function of μ and k. The positions correspond-
ing to PBE, APBE, revPBE, and mPBEsol are denoted by white boxes.

Figure 9. Global mean absolute error for the bond lengths of MGBL19,
TMBL4, and MCBL6, normalized to the PBE value. The positions
corresponding to PBE, APBE, revPBE, and mPBEsol are denoted by
white boxes. The family of functionals defined by eq 13 is shown with a
green line.
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The overall performance of different PBE-like functionals for
the computation of equilibrium bond lengths is summarized in
Figure 9, where we report the global MAE for the bond lengths
tests (see eq 12). Because different values of μ are required by
different tests, in this case, we do not find a full family of PBE-like
functionals with the same and high accuracy. Instead, the best
performance corresponds to a well-defined region at site 0.25 < μ
< 0.3 and 0.6 < k < 0.7. Therefore, among the commonly used
PBE-like functionals, the best results are given by APBE with a
GMAE (with respect to PBE) of 0.99. Note, however, that the
global performance for bond lengths results mainly from an error
balancing between the values obtained for the organic molecules
and the transition-metal dimers.
As previously discussed, the APBE functional provides also the

best compromise for the simultaneous accurate calculations of
bond lengths and atomization energies (see Figures S4�S6 in the
Supporting Information). Finally, APBE is also the best func-
tional considering together atomization energies and bond
lengths of all molecular systems, with a GMAE (with respect
to PBE) of 0.82 (see Figure S7 in the Supporting Information).
3.1.3. Vibrational Frequencies. For molecular systems, we also

consider harmonic vibrational frequencies (the F38 test). First of
all, we note that Figure 10 does not show a hyperbolic pattern, but
a strong dependence of the functionals’ performance from the
value of the μ parameter and a minor role of the k value. This
finding can be explained, in analogy with the case of bond lengths
where the first derivative of the exchange enhancement factor was
important, by the importance of the second derivative of the
enhancement factor for harmonic vibrations. This term in fact is, in
first approximation, linearly dependent on the μ parameter and
independent from the k parameter (once the X-nonlocality of the
functional is fixed, in this case, to a moderate value Λ ∼ 1.1).
Moreover, we observe that all of the functionals belonging to

the PBE family yield similar results, withmaximumdifferences on
the order of 10 cm�1, irrespective of the values used for μ and k.
None of the combinations of μ and k considered in this work
proved to be able to yield very accurate results.

In fact, the minimum MAE in Figure 10 is 52 cm�1, while the
best GGA and hybrid methods give much smaller errors (e.g.,
OLYP MAE is 40.1 cm�1, B3LYP MAE is 33 cm�1 55). However,
ref 55 shows that F38 iswell described only by the nonlocal rungs of
Jacob’s ladder (e.g., double-hybrids with a MAE of 18 cm�1),
whereas the semilocal rungs (includingmeta-GGAs) give in general
modest accuracy, so they cannot be used in spectroscopic studies.
PBE-like functionals with high values of the μ parameter and k

∼ 0.7 display the best performance, while poor results are found
for small values of μ, for any k value. As a consequence, among
the standard PBE-like functionals, the smallest MAE is obtained
with the APBE functional (55.0 cm�1), and the worst result is
achieved by the mPBEsol functional (67.4 cm�1).
3.1.4. Nonbonded Interaction. Despite the fact that GGA

functionals cannot correctly describe nonbonded interactions
due to the missing/incorrect dispersion forces,72 very good
performaces were obtained by the PBE functional for hydro-
gen-bond and dipole�dipole interaction systems.56

In Figure 11, we report the plot of the MAE of HB6/04
binding energies (kcal/mol) as a function of μ and k. In this case,
the plot resembles the one for atomization energies. In fact, both
of them are total energy differences between interacting and
noninteracting subsystems.
The best results are obtained from functionals displaying a

mediumX-nonlocalitymeasure (Λ∼ 1/1.1), while a too high/too
low X-nonlocality leads to poor results, corresponding to a general
underestimation/overestimation of the interaction energy. The
absolute minimum in our plot is found for the APBE functional
(μ = 0.26, k = 0.8) with a MAE of 0.32 kcal/mol. Note that this is,
to our knowledge, the best performance in the literature for the
hydrogen-bond problem,56 twice as good as the best meta-GGA
(TPSS MAE is 0.60 kcal/mol) and sligthly better than the best
hybrid functionals (PBE0 MAE 0.42 kcal/mol). Good results are
obtained also from the PBE functional (MAE 0.38 kcal/mol),
while poor results are found from revPBE (MAE 1.90 kcal/mol)
and mPBEsol (MAE 1.86 kcal/mol) calculations.
In Figure 12, we report the MAE of DI6/04 binding energies

(kcal/mol) as a function of μ and k. A similar behavior as for the

Figure 10. Mean absolute error (cm�1) for the vibrational frequencies
of molecules of the F38 test set, as a function of μ and k. The positions
corresponding to PBE, APBE, revPBE, and mPBEsol are denoted by
white boxes. The family of functionals defined by eq 13 is shown with a
green line.

Figure 11. Mean absolute error (kcal/mol) for the binding energies of
the HB6/04 benchmark test of hydrogen-bond interacting systems, as a
function of μ and k. The positions corresponding to PBE, APBE,
revPBE, and mPBEsol are denoted by white boxes.
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HB6/04 test is obtained, with functionals characterized by a
medium X-nonlocality measure (λ ∼ 1) performing best, while
functionals with a high/low degree of X-nonlocality tend to
underestimate/overestimate the interaction energy.
The PBE and APBE functionals yield the same MAE (0.38

kcal/mol), while larger errors are found for revPBE (1.22 kcal/
mol) and mPBEsol (1.09 kcal/mol). The results obtained from
the PBE and APBE functionals are among the best achievable at
the GGA level,56 comparable with the best meta-GGA func-
tionals and sligthly worse than the best hybrid approaches.56

3.2. Solid State. In this section, we report briefly on the
performance of PBE-like functionals for the description of
equilibrium properties of solid-state systems. In particular, we
focus on lattice constants and cohesive energies.

3.2.1. Cohesive Energies. In Figure 13, we report the MAE of
the cohesive energies of six solids as a function of μ and k. The
plot resembles roughly that of Figure 2, where the performances
for the atomization energies of transition metal dimers are
reported. The cohesive energy of a bulk solid (of the chemical
element Y) seems in fact to be the upper bound of the
atomization energy of any neutral cluster of the same chemical
element.71,73 However, in the bulk, the density is more slowly
varying than in molecular systems, and thus the set of functionals
given by eq 13 becomes too nonlocal (see Figure 13). The
smaller errors are obtained for functionals with a relatively small
X-nonlocality measure (Λ ∼ 0.9). This value of the X-nonlo-
cality is in fact needed to provide balance between the description
of the bulk solid, which is well described by rather local
functionals, and the description of isolated atoms, which require
a larger X-nonlocality in the functional.
Good results are obtained from the PBE functional with a

MAE of 0.15 eV/atom. The mPBEsol functional instead yields a
MAE of 0.21 eV/atom, because of its poor performance for the
atomic energies. On the other hand, high errors are also obtained
from APBE (MAE 0.26 ev/atom) and revPBE (MAE 0.41 ev/
atom), because of the too high X-nonlocality included in these
functionals. We note finally that both PBE and APBE perfor-
mance can be improoved reducing kappa, as found in ref 40.
3.2.2. Lattice constants. In Figure 14, we consider the ability of

PBE-like functionals with different μ and k values to describe the
lattice constant of different solids. The best performance is
obtained for the functionals characterized by small values of μ
and in general by a low X-nonlocality. In fact, for higher values of
μ, reasonably small MAEs are found in conjunction with very
small values of k, while large errors are obtained when both μ and
k are large. These findings resemble the results of the bond
lengths of transition metal dimers (Figure 7).
The mPBEsol functional is the best standard PBE-like func-

tional for this problem with a MAE of 19 mÅ, while the revPBE
functional yields very poor results (MAE 105 mÅ). Large errors
(overestrimated bond-lengths) are also found at the PBE (MAE
60 mÅ) and APBE (MAE 79 mÅ) levels because of the too high
value of μ and X-nonlocality in these two functionals. We note

Figure 12. Mean absolute error (kcal/mol) for the binding energies of
the DI6/04 benchmark test of dipole interacting systems, as a function of
μ and k. The positions corresponding to PBE, APBE, revPBE, and
mPBEsol are denoted by white boxes.

Figure 13. Mean absolute error (eV/atom) for the cohesive energies of
six solids, as a function of μ and k. The positions corresponding to PBE,
APBE, revPBE, and mPBEsol are denoted by white boxes. The family of
functionals defined by eq 13 is shown with a green line.

Figure 14. Mean absolute error (mÅ) for the lattice constants of six
solids, as a function of μ and k. The positions corresponding to PBE,
APBE, revPBE, and mPBEsol are denoted by white boxes.
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that mPBEsol represents almost a global minimum on the plot of
Figure 14 and can thus be hardly improved for this property
within the PBE GGA form.
Many studies have been carried out for the construction of

accurate GGAs for solids. The AM05 GGA74 was constructed
using the Airy gas, the uniform electron gas, and the jellium
surfaces as reference systems. The PBEsol GGA, instead, re-
covers the second-order gradient expansion of the exchange
energy, which is the right, exact constraint for solids, as also
shown in Figure 14. Several other GGAs for solids have been
proposed in refs 36, 40, 41, 46, and 75, and all of them have a
reduced X-nonlocality, showing small gradient corrections to
LSDA for small values of s. We recall that LSDA is remarkably
accurate for solid-state physics. In particular, when μ is fixed to μ
= μPBE = 0.2195, the following values of k are needed for accurate
lattice constants: k≈ 0.5 for 4d transiton metals, k≈ 0.3 for 5d
transiton metals, k ∼ kPBE = 0.804 for 3d metals.75

4. SUMMARY AND GLOBAL RESULTS

In the previous section, we conducted a survey of the PBE-like
functionals with different (μ,k) parameters (fixing β = 3 μ/π2),
for a broad set of tests and properties of molecular and solid-state
systems. We have shown that different requirements are neces-
sary in order to have PBE-like functionals accurate for different
energetic or structural properties of molecules or solids. In this
section, we summarize global results for molecular and solid-state
systems. In order to be able to compare the performace of
different functionals for different problems, we will normalize all
MAEs to the PBE value; i.e., we will consider MAE/MAE(PBE)
for each property and functional and use these to compute a
global MAE, denoted MAEPBE.

For molecular properties, including atomization energies,
bond lengths, harmonic vibrational frequencies, and noncovalent
interaction energies, we found that PBE-like functionals display-
ing a medium X-nonlocality (Λ ∼ 1/1.1) yield the best overall
performance thanks to the right balance between situations
where a relatively small X-nonlocality is favored (TMAE4, bond
lengths) and probelms where a higher X-nonlocality is needed
(AE6, MCAE6). The APBE functional is thus the best one when
a global average is considered, with a MAEPBE of 0.90 (see Table
S1 in the Supporting Information), showing performance super-
ior to that of PBE (MAEPBE = 1.00), TPSS (MAEPBE = 0.91), and
the hybrid functionals (e.g., MAEPBE of PBE0 = 1.32). The
performace of the latter is very poor because it largely fails for
transition metal dimers. This finding confirms the importance of
the semiclassical neutral atom as the reference system used in the
construction of APBE, for molecules.12 The revPBE functional
can give accurate atomization energies, although it only outper-
forms APBE for MCAE6 but is not accurate for bond lengths and
noncovalent interactions. Thus, it gives a total MAEPBE of 1.7,
showing severe limitations for broad applicability in molecular
calculations. Finally, the mPBEsol functional yields a MAEPBE of
1.97, demonstrating its limits for the description of molecular
properties.

For solid-state properties, a lower level of X-nonlocality is
required, and the best overall performance is obtained with
functionals having Λ ∼ 0.85. This value constitutes a balance
between the requirements of the cohesive-energy problem
(medium X-nonlocality) and the lattice-constant determination
(low X-nonlocality). Among the standard PBE-like functionals,
the best overall performace is obtained with the mPBEsol

functional, having a MAEPBE of 0.85 (see Table S2 in the
Supporting Information). This originates mainly from its excel-
lent performance for lattice constants, while not so accurate
results are obtained for cohesive energies at the mPBEsol level.
The opposite occurs for PBE, which shows the smallest MAE for
the cohesive energies but an error 3 times larger than that of
mPBEsol for lattice constants. In fact, a very good overall
performance is obtained using the PBEint functional (MAEPBE =
0.76), which can correctly describe the slowly varying density
regime, relevant for lattice constants and partly for cohesive
energies, and the rapidly varying density limit, which is essential
for the description of atomic energies used to evaluate the
cohesive energies. Similar results for the PBEint functional were
already found concerning the energy and structural properties of
metal clusters.71

To conclude, we report in Figure 15, the global mean
absolute error of all properties and test sets, normalized to
the PBE value. This plot shows why PBE has been the work-
horse of electronic calculations for more than a decade: this
nonempirical functional shows in fact almost the best average
accuracy for a large number of properties of different systems,
resulting in a good choice in almost any electronic-structure
problem. This finding supports the idea behind the construc-
tion of the PBE functional, which is based on a wise selection of
the most important exact constraints of the exchange-correla-
tion energy for both molecules and solids. The same global
average performance is also found for the APBE functional,
which has the same global MAE as PBE. Larger values of
MAEPBE are instead found for revPBE (1.74) and mPBEsol
(1.85), which do not show a broad applicability but must be
instead considered specialized functionals.

We note also that, among the standard PBE-like functionals,
APBE is the one which is closer, in the (μ,k) space, to the largest
number of minima for different problems considered in this work
(the name of each test in Figure 15 indicates approximately the
position of the corresponding minimumMAE). This means that,
within these functionals, it is the one that yields the best MAE for
the largest number of the properties. On the other hand, APBE

Figure 15. Global mean absolute error for all properties, normalized to
the PBE value. The positions corresponding to PBE, APBE, revPBE, and
mPBEsol are denoted by white boxes. The family of functionals defined
by eq 13 is shown with a green line.
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has a lower accuracy for NHBL10 and TMBL4, which require a
low level of X-nonlocality.

In conclusion, the APBE functional proved to be very accurate
for molecular properties, competing with meta-GGA and hybrid
approaches. This result confirms the importance of the recent
work on semiclassical theory,7�11 which brought new frontiers in
density functional theory. It supports especially the role of the
modified second-order gradient expansion (MGE2),9,11 built
from the semiclassical neutral atom theory, which can be used
at the GGA level as a powerful tool for the development of XC
and kinetic energy functionals.12

The results presented in this work are of great importance for
the assessment of PBE-like GGA XC functionals and to under-
stand the merits and limitations of the presently available PBE-like
approximations. We showed in fact the existence of an inter-
relation between the values of the μ and k parameters, whichmust
balance each other for the best performance, and the importance of
considering properly the X-nonlocality measure of the functionals.
The former property was recently also evidenced for kinetic energy
functionals with the PBE-like form.76 Thus, the present results can
serve as a guide for the development and optimization of density
functionals, in search of approximations having higher accuracy
and broader applicability. However, it appears from the present
study that there is little room for improvement within the PBE
functional form, and new developments must be based on more
flexible GGA expressions or based on higher rungs of the DFT
Jacob’s ladder. We recall that the nonempirical meta-GGAs
(TPSS,68 revTPSS,49,77 and JS78) as well the hyper-GGA13 have
all been constructed using the PBE functional form. Moreover,
optimization of the μ parameter in the TPSS functional form79

(that is responsible for the behavior of the meta-GGA at large s)
revealed that the use of μAPBE = 0.26 improves over the original
TPSS for the atomization energies of molecules, the molecular
enthalpies of formation, and the barrier heights without worsening
the XC jellium surface energies.79 Thus, further work needs to be
done for implementing the APBE ideas inmeta- and hyper-GGAs.
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ABSTRACT: This work describes a Mulliken-type partitioning of the expectation value of the spin-squared operator <Ŝ2>
corresponding to anN-electron system. Our algorithms, which are based on a spin-free formulation, predict appropriate spins for the
molecular fragments (at equilibrium geometries and at dissociation limits) and can be applied to any spin symmetry. Numerical
determinations performed in selected closed- and open-shell systems at correlated level are reported. A comparison between these
results and their counterpart ones arising from other alternative approaches is analyzed in detail.

1. INTRODUCTION

The study of procedures to decompose the expectation
value of the spin-squared operator <Ŝ2> corresponding to an
N-electron system into one- and two-center terms (local spins)
has attracted attention of a considerable number of authors in the
last years. This interest arises from the ability of the local spins
to determine the spin state of an atom or group of atoms in a
molecule, radical, cluster, etc., as well as to describe magnetic
interactions between the atoms which compose the system. In
fact, spin�spin coupling constants can be calculated by means
of two-center local spins within the well-known Heisenberg
Hamiltonian model. The partitioning of the <Ŝ2> quantity has
been performed using several approaches. One of them utilizes
the technique of local projection operators, in which the total
spin-squared operator Ŝ2 is decomposed into one- and two-
center operators associated with the nuclei of the system; then in
a subsequent step the expectation values of these operators are
evaluated for different approximations of the wave function.1�7

Alternatively, the partitioning of the expectation value <Ŝ2> has
also been performed in a direct way.8�13 Within the framework
of this last procedure the quantity <Ŝ2>, expressed in terms of
elements of reduced density matrices and related quantities, is
partitioned in the Hilbert space of the atomic basis set according
to a Mulliken-type population analysis. More recently, this
technique of partitioning has also been extended to the three-
dimensional physical space and its results compared with those
arising from the Hilbert space.14

This work deals with the partitioning of the <Ŝ2> quantity in
the Hilbert space. Determinations of local spins in that space at
the level of single Slater determinant wave functions and higher
correlation levels have been described in refs 8, 9, 11, and 13.
These reported results are satisfactory from a chemical point of
view since they show appropriate spins for the fragments at the
dissociation limit and zero local spin values for closed-shell
systems described at the restricted Hartree�Fock level. How-
ever, at correlated level, the algorithms used to get these results
depend on the spin blocks of the second-order reduced density
matrix, which, in practice, are not available in most standard
codes in quantum chemistry. Besides, these matrix elements
depend on the substate Sz corresponding to a determined spin S

for nonsinglet states. Consequently, the values of the terms
derived from that <Ŝ2> partitioning are Sz dependent. Obviously,
the partitioning of a quantity into several components is usually
not unique. Hence, it is important to consider other possibilities
which can also produce physically reasonable results in those
limit cases, provided they present additional theoretical and
practical advantages. The aim of this work is to overcome the
mentioned drawbacks, reporting an algorithm in terms of spin-
free tools, so that the local spins of a system can be calculated
for any state of any spin symmetry, fulfilling the physical
requirement of uniqueness for the spin multiplet components
(in absence of magnetic fields). Our algorithm is based on the
use of the one-electron effectively unpaired electron density
matrix15�17 and the two-electron spin-free cumulant matrix of
the spin-free second-order reduced density matrix;18,19 both
matrices are directly calculable from the spin-free first- and
second-order reduced density matrices, which can be obtained
from standard codes.

The organization of this work is as follows. The second section
describes a straightforward derivation of the formulas used in
refs 11,13 to evaluate one- and two-center local spins at
correlated level. In this way, we point out their Sz dependence
and the difficulties to access to elements of the cumulant matrix
in the spin�orbital representation, in standard codes, mainly for
nonsinglet states. In the third section, we propose an alternative
algorithm which only utilizes matrix elements of spin-free
quantities. In the fourth section, we describe the results obtained
from both Sz-dependent and Sz-independent algorithms for
some selected closed- and open-shell systems, as well as their
corresponding discussion. A study of the dependence of the
results on the degree of correlation used is also included in this
section. Finally, in the last section we summarize the concluding
remarks of this work.

2. PARTITIONING OF <Ŝ2> AT CORRELATED LEVEL

A finite basis set of orthonormal orbitals will be denoted
by {i, j, k, l, ...}; in this basis set 1Dj

i and 2Djl
ik will stand for the

Received: July 29, 2011
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spin-free matrix elements corresponding to the first- and second-
order reduced density matrices of anN-electron system in a state
Ψ, respectively. The trace of the first-order reduced density
matrix is normalized to tr(1D) = N and that of the second-order
one may be normalized to

tr 2D
� � ¼

N

2

0
@

1
A

or to tr(2D) =N(N� 1);11,13 in this work we will use the former
procedure. The expectation value of the spin-squared operator
Ŝ2, <Ŝ2> = <Ψ|Ŝ2|Ψ>, can be expressed as follows:20,21

<Ŝ2> ¼ N �N2

4
� ∑

i, k

2Dik
ki ð1Þ

Likewise, taking into account the values of those traces, eq 1 can
be written as follows:

<Ŝ2> ¼ 3
4∑i

1Di
i �

1
2∑i, k

2Dik
ik � ∑

i, k

2Dik
ki ð2Þ

The decomposition of these spin-free matrix elements accord-
ing to their spin orbitals, that is, 1Dj

i = (1Djα
iα +1Djβ

iβ) and
2Djl

ik = (2Djαlα
iαkα +2Djαlβ

iαkβ +2Djβlα
iβkα +2Djβlβ

iβkβ), and an appropriate
permutation of spin orbitals, based on the anticommutation rules
of fermion operators, leads to the following:

<Ŝ2> ¼ 3
4∑i

ð1Diα
iα þ 1Diβ

iβ Þ � ∑
i, k

2Diβkα

iβkα

� 1
2∑i, k

2Diαkα
kαiα�

1
2∑i, k

2Diβkβ

kβiβ � 2∑
i, k

2Diαkβ

kαiβ ð3Þ

A trivial but tedious algebra, which consists in relating the
second-order reduced density matrix elements in the spin�orbital
representation, with the corresponding elements of its cumulant
matrix Γjσlσ0

iσkσ0 (σ,σ0 = α,β), that is as follows:22

2Diσkσ
0

jσ lσ0 ¼ 1
2
1Diσ

jσ
1Dkσ

0

lσ0 �
1
2
1Diσ

lσ0
1Dkσ

0

jσ þ 1
2
Γiσkσ

0

jσ lσ0 ð4Þ

provides to express eq 3 as follows:

<Ŝ2> ¼ 1
2∑i, k

ðPsÞikðPsÞki þ 1
4∑i, k

ðPsÞiiðPsÞkk

þ 3
4∑i

1Diα
iα � ∑

k

1Diα
kα

1Dkα
iα þ 1Diβ

iβ � ∑
k

1Diβ

kβ
1Dkβ

iβ

" #

� ∑
i, k

2Diβkα

iβkα �
1
2
1Diβ

iβ
1Dkα

kα

� �

� 1
2∑i, k

2Diαkα
kα iα �

1
2
1Diα

kα
1Dkα

iα þ 1
2
1Diα

iα
1Dkα

kα

� �

� 1
2∑i, k

2Diβkβ

kβ iβ �
1
2
1Diβ

kβ
1Dkβ

iβ þ 1
2
1Diβ

iβ
1Dkβ

kβ

� �

� 2∑
i, k

2Diαkβ

kα iβ �
1
2
1Diα

kα
1Dkβ

iβ

� �
ð5Þ

In eq 5, (Ps)j
i =1Djα

iα �1Djβ
iβ are the elements of the spin-density

matrix and the second-order reduced density matrix has been

normalized by the value of its trace.

tr 2D
� � ¼

N

2

0
@

1
A

The derivation of this equation has required to add and to
subtract terms in order to express the <Ŝ2> quantity by means
of the spin�orbital components of the cumulant matrix of the
second-order reduced density matrix, which are the last four
brackets (see eq 4).

Formula 5, which is expressed in an orthogonal basis set, is
equivalent to those reported in refs,11 and 13 expressed in
nonorthogonal atomic basis sets; a simple basis transformation
allows one to pass from this formula to the others. The
partitioning of the quantity <Ŝ2> according to formula 5 trans-
formed to the atomic basis set, requires to know the values of the
elements of the second-order reduced density matrix in the
spin�orbital representation (2Djσlσ0

iσkσ0,σ,σ0 = α,β), which usually
are not provided by the execution of most standard codes. Apart
from this shortcoming, another aspect to take into account is
that, as is well-known, those matrix elements depend on the Sz
substate of the state Ψ and consequently the local spin results
for nonsinglet states turn out to be Sz dependent. Thus, the
requirement of uniqueness for the spin multiplet components is
not fulfilled by this partitioning. This aspect has been numerically
tested in the lowest triplet state of the system HeH+

(see Appendix A). As has been mentioned in the Introduction,
the purpose of this work is to set up a spin-free Sz-independent
algorithm that avoids these drawbacks. In the next section, we
report that algorithm.

3. SPIN-FREE TREATMENT PROPOSAL

We will express the elements of the spin-free second-order
reduced density matrix as follows:18,19

2Dik
jl ¼ 1

2
1Di

j
1Dk

l �
1
4
1Di

l
1Dk

j þ 1
2
Λik

jl ð6Þ

in which Λjl
ik stands for the elements of the spin-free cumulant

matrix of that second-order reduced density matrix. These matrix
elements are related with those of the cumulant matrix ones
(Γjσlσ0

iσkσ0) by the following:23

Λik
jl ¼ � 1

2
ðPsÞilðPsÞkj þ ∑

σ, σ0
Γiσkσ

0

jσ lσ0 ð7Þ

However, we will regard the effectively unpaired electron
density matrix u, initially defined by Takatsuka et al.15 as follows:

uij ¼ 21Di
j � ∑

k

1Di
k
1Dk

j ð8Þ

The mathematical features of this matrix have been widely
studied16,17,23�25 and utilized in a great variety of population
analysis studies.26�32 Although other formulations of the matrix
u have been proposed,33�35 in this work we will use that for-
mulated by eq 8 whose relation with theΛmatrix turns out to be
following:17

uij ¼ � 2∑
k
Λik

jk ð9Þ

The substitution of the elements 2Dik
ik and 2Dki

ik according to
eq 6 and the use of eqs 8 and 9 provide to express the quantity
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<Ŝ2> in formula 2 as follows:

<Ŝ2> ¼ 1
2∑i

uii �
1
2∑i, k

Λik
ki ð10Þ

However, in order to partition the <Ŝ2> quantity into one-
center and two-center terms it is more useful to express that
equation in the basis set of the atomic orbitals {μ,ν,λ,γ,...}

< Ŝ2 > ¼ 1
2∑μ

ðuSÞμμ �
1
2 ∑
μ, ν, λ, γ

ðSÞμλΛλν
γμðSÞγν ð11Þ

where (S)ν
μ = < μ|ν > are the elements of the overlapmatrix of the

atomic orbitals.
The decomposition of the expectation value <Ŝ2> in the

Hilbert space of atomic orbitals into one-center terms <Ŝ2>A
and two-center terms <Ŝ2>AB:

<Ŝ2> ¼ ∑
A

< Ŝ2>A þ ∑
A 6¼B

< Ŝ2>AB ð12Þ

is performed assigning every atomic function μ to one nucleus A.
Although the matrix Λγμ

λν possesses four indices, in this work we
have limited to determine only one- and two-center local spins
(excluding the three- and four-center contributions) so that two
of those indices have been mathematically removed by means
of a sum over them. Hence, the expressions for the <Ŝ2>A and
<Ŝ2>AB quantities according to eq 11 are as follows

<Ŝ2>A ¼ 1
2 ∑μ ∈ A

ðuSÞμμ �
1
2 ∑
μ∈A, ν∈A

∑
λ, γ

ðSÞμλΛλν
γμðSÞγν ð13Þ

and,

< Ŝ2>AB ¼ � 1
2 ∑
μ∈A, ν∈B

∑
λ, γ

ðSÞμλΛλν
γμðSÞγν ð14Þ

Formulas 13 and 14 provide the means to carry out numerical
determinations of one-center and two-center local spins, respec-
tively. Because the matrix elements uν

μ and Λγμ
λν are spin free,

Sz-independent quantities, the values of <Ŝ
2>A and <Ŝ

2>AB arisen
from these equations are independent of the quantum number
Sz. Consequently, local spin evaluations can be obtained for any
state of any spin symmetry, fulfilling the conditions of invariance
for all the components of a multiplet state. In practice, the
matrices Λ and u are calculated by means of eqs 6 and 8,
respectively. Hence, from a computational point of view the
unique required matrices to implement local spin determina-
tions are the overlap matrix S and the first- and second-order
reduced density matrices 1D and 2D, all of them in the spin-free
formulation, which are usually drawn from standard codes. In
the next section, we report results of local spins arising from
this procedure which are compared with those obtained in other
treatments.

4. NUMERICAL DETERMINATIONS AND DISCUSSION

The elements of the overlap matrices and those of the spin-
free first- and second-order reduced density matrices have been
obtained from a modified version of the PSI 3.3 package.36 In a
subsequent step, we have used our own codes to evaluate local
spins using eqs 13 and 14 within the spin-free treatment.We have
also performed determinations of local spins by means of eq 5,
expressed in the atomic basis sets, for singlet states with a unique
substate Sz = 0, for which the spin blocks of the second-order

reduced density matrix can be calculated from its spin-free matrix
elements.37 As has been mentioned in section 2, this procedure
was reported in refs 11 and 13. Table 1 gathers the results arising
from both algorithms (denoted by spin-free and with spin in that
Table) for singlet states, in order to carry out an appropriate
comparison between them. Likewise, in Tables 2 and 3, we report
results of systems in doublet and triplet spin symmetries respec-
tively, obtained from eqs 13 and 14. The computational details
are shown in these Tables, i.e., the basis sets and the experimental
geometries used38�42 as well as the correlation levels utilized, full
configuration interaction (FCI), configuration interaction with
single and double excitations (CISD), etc.

A survey of the results for singlet states reported in Table 1
shows that at equilibrium distances, the one- and two-center local
spins absolute values are a little lower in the spin-free treatment
than in that denominated with spin. However, these series of
values become almost coincident at distances near the dissocia-
tion limits of these molecules. As can be observed in that Table,
in both treatments the systems H2

a, Li2
a, Be2

a, and C2H4
a exhibit

values for the one-center local spins which are very close to those
corresponding to the dissociated fragments. In the case of the
ethylene molecule, the values reported for the system denoted by
C2H4

a refer to its dissociation into two triplet methylene groups
by stretching the bond distance C�C. However, for singlets at
equilibrium distances, it seems reasonable to expect that the
distribution of the <Ŝ2> quantity along the whole molecule
presents not too high local spin values and consequently, from
a genuine chemical point of view, the lower values found in the
spin-free treatment can be regarded as a favorable tendency. This
behavior is followed by all systems included in Table 1, the light
ones (H2, Li2 and Be2), the hydrides of the second row (HF, H2O
and NH3) and the hydrocarbons (CH4, C2H6, C2H4 and C2H2),
at the reported correlation levels. Another aspect to highlight is
that both treatments predict identical signs for counterpart values
of the one- and two-center local spins. As has been pointed out
in refs 11 and 13 an adequate partitioning of the <Ŝ2> quantity
requires that the atomic spins for atoms at large distances
reproduce the spins of the free atomic fragments, as well as to
predict zero spins for systems described by closed-shell restricted
Hartree�Fock (RHF) wave functions, which would correspond
to a pure covalent description. The spin-free algorithm that we
have described in section 3 fulfills both requirements, i.e., it leads
to suitable spin values at the dissociation limits and provides
values <Ŝ2>A = 0 and <Ŝ2>AB = 0 for RHF wave functions (see
eqs 13 and 14) because all the elements of the matrices u and Λ
are zero for that type of wave functions.16,19 Moreover, in the
unrestricted Hartree�Fock (UHF) case the elements of those
matrices are nonzero and a simple algebra shows that eqs 5 and
10 are transformed to an identical expression.

Tables 2 and 3 show results of local spin evaluations within the
spin-free treatment for species (molecules and radicals) doublets
and triplets at the experimental equilibrium distances, except for
systems H2

a and Li2
a (in Table 3) which refer to the lowest triplet

states at distances near the dissociation limit. These results have
also been obtained from eqs 13 and 14 since they are valid for
any quantum number S. As can be seen in Table 2, the radicals
hydroxyl, cyano and amino present high values of the one-center
contribution <Ŝ2>A in the atoms oxygen, carbon, and nitrogen,
respectively, indicating that the unpaired electron which origi-
nates the doublet spin symmetry is located on those atoms. The
NO molecule shows a distribution of the spin cloud between
the nitrogen and oxygen atoms although the value <Ŝ2>N is



3563 dx.doi.org/10.1021/ct200594f |J. Chem. Theory Comput. 2011, 7, 3560–3566

Journal of Chemical Theory and Computation ARTICLE

considerably higher than the <Ŝ2>O one, which agrees with the
well-known structural features of that molecule. The doublet
radicals CH and CH3 (in Table 2) and the triplet one CH2 (in
Table 3) also show a clear localization of the unpaired electrons
on the carbon atom. In the series of radicals ethyl, vinyl, and
ethynyl the main localization of unpaired electrons appears on
the carbon atom linked to less hydrogen atoms, denominated as
C(2) in Table 2, which is markedly larger than on the other
carbon atom C(1). The application of this methodology to the
study of the allyl radical leads to show that the carbon atoms C(1)

and C(3) (Table 2) are equivalent, presenting a higher <Ŝ2>A
value in these atoms than in the C(2) one. This behavior is well-
known in this species and explained in terms of the resonance of
double bond between the atoms C(1) and C(2) and between the
atoms C(2) and C(3). In this radical, the two-center local spin
<Ŝ2>C(1)C(3)

turns out to be 0.247 which is a positive and non-
negligible value; this fact can be interpreted in terms of deloca-
lization of the unpaired electron. The presence of this feature,
that is, positive non-negligible values for the two-center local
spins, has also been found in the triplet homonuclear diatomic
molecules O2 and C2 as well as in the B2H2 molecule (Table 3).
The explanation of these values must be done again in terms of
delocalization of unpaired electrons. The rest of the triplet
systems described in Table 3, NF, NH, and C2H4 exhibit local
spin features in agreement with those presented in Table 2 and
consequently deserve similar comments. For the two triplets
reported in Table 3 at the dissociation limit, our treatment
describes values of one-center contribution <Ŝ2>A = 0.750 for
both H2

a and Li2
a molecules. These results coincide with those

reported for these systems in Table 1 (singlet states), leading
again to right <Ŝ2> values for the dissociated atomic fragments.
However, the values of two-center contributions <Ŝ2>AB = 0.250
found for both molecules allow a right <Ŝ2> = 2 for the global
triplet states described.

In Table 4, we report numerical values of local spins in order to
check the dependence on the electronic correlation of this
methodology. In that Table, we describe results arising from
both treatments (spin-free and with spin) for the singlet systems
HF, NH3 and C2H6, using the configuration interaction (CI)
technique at several levels; single and double excitations (CISD);
single, double, and triple excitations (CISDT) and single, double,
triple, and quadruple excitations (CISDTQ). In the case of the
ethane molecule, we have kept frozen (without excitation) 26 of
the 30 orbitals forming the 6-31G basis set (the 7 lowest occupied
molecular orbitals and the 19 highest unoccupied molecular
orbitals) in the procedure denoted frozen I, and 18 orbitals
(the 3 lowest occupied molecular orbitals and the 15 highest

Table 1. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Treatments Spin-Free (eqs 13 and
14) and with Spin (eq 5 in the Atomic Basis Set) for Singlet
Systems in the Ground State at Experimental Equilibrium
Distances (a near Dissociation Limits)

system

atom/

bond

spin-free with spin basis set/

method<Ŝ2>A <Ŝ2>AB <Ŝ2>A <Ŝ2>AB

H2 H 0.100 0.116 6-31G/FCI

HH �0.100 �0.116

H2
a H 0.743 0.744 6-31G/FCI

HH �0.743 �0.744

Li2 Li 0.204 0.210 STO-3G/FCI

LiLi �0.204 �0.210

Li2
a Li 0.750 0.750 STO-3G/FCI

LiLi �0.750 �0.750

Be2 Be 0.125 0.127 STO-3G/FCI

BeBe �0.125 �0.127

Be2
a Be 0.000 0.000 STO-3G/FCI

BeBe 0.000 0.000

C2H4 C 0.477 0.544 6-31G/CISD

H 0.058 0.067

CC �0.365 �0.411

CH �0.098 �0.108

C 3 3 3H 0.042 0.041

HH 0.008 0.008

H 3 3 3H �0.005 �0.003

H 3 3 3H �0.006 �0.005

C2H4
a C 1.884 1.875 6-31G/CISD

H 0.020 0.015

CC �1.850 �1.847

C 3 3 3H �0.038 �0.038

CH 0.019 0.023

HH 0.000 0.000

H 3 3 3H 0.000 0.000

H 3 3 3H 0.000 0.000

HF F 0.050 0.059 6-31G/CISD

H 0.050 0.059

FH �0.050 �0.059

H2O O 0.121 0.141 6-31G/CISD

H 0.055 0.064

OH �0.060 �0.070

HH 0.005 0.006

NH3 N 0.226 0.257 6-31G/CISD

H 0.059 0.068

NH �0.075 �0.086

HH 0.008 0.009

CH4 C 0.428 0.470 6-31G/CISD

H 0.066 0.077

CH �0.107 �0.118

HH 0.014 0.014

C2H6 C 0.361 0.400 6-31G/CISD

(staggered) H 0.059 0.068

CC �0.130 �0.136

CH �0.094 �0.104

C 3 3 3H 0.017 0.016

Table 1. Continued

system

atom/

bond

spin-free with spin basis set/

method<Ŝ2>A <Ŝ2>AB <Ŝ2>A <Ŝ2>AB

H 3 3 3H �0.003 �0.003

HH 0.012 0.012

C2H2 C 0.603 0.699 6-31G/CISD

H 0.049 0.055

CC �0.558 �0.646

C 3 3 3H �0.036 �0.037

CH �0.081 �0.090

HH �0.003 �0.002
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unoccupied molecular orbitals) in the procedure denominated
frozen II. As has been pointed out above, in absence of correla-
tion that is, for RHF wave functions, formulas 5, 13 and 14
predict zero values for local spins of one- and two-center which is

Table 2. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Spin-Free Treatment (eqs 13 and
14) for Doublet Systems at Experimental Equilibrium
Distances

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

OH O 0.874 6-31G/CISD

H 0.063

OH �0.094

NO N 0.670 6-31G/CISD

O 0.319

NO �0.119

CN C 1.141 6-31G/CISD

N 0.452

CN �0.421

NH2 N 1.060 6-31G/CISD

H 0.069

NH �0.117

HH 0.009

CH C 0.912 6-31G/CISD

H 0.081

CH �0.122

CH3 C 1.368 6-31G/CISD

H 0.069

CH �0.151

HH 0.013

C(1)H3�C(2)H2 C(1) 0.368 6-31G/CISD

C(2) 1.226

H(CH3) 0.076

H(CH2) 0.063

CC �0.194

CH(CH3) �0.097

CH(CH2) �0.128

HH(CH3) 0.013

HH(CH2) 0.010

C(1)H2dC(2)H C(1) 0.503 6-31G/CISD

C(2) 1.251

H(CH2) 0.068

H(CH) 0.067

CC �0.469

CH(CH2) �0.104

CH(CH) �0.100

HH 0.011

C(1)HtC(2) C(1) 0.639 6-31G/CISD

C(2) 1.425

H 0.054

CC �0.646

CH �0.090

C(1)H2dC(2)H�C(3)H2 C(1) 0.753 6-31G/CISD

C(2) 0.392

C(3) 0.753

H(CH2) 0.051

H(CH) 0.051

C(1)C(2) �0.296

Table 2. Continued

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

C(2)C(3) �0.296

C(1)C(3) 0.247

CH(CH2) �0.094

CH(CH) �0.083

HH 0.008

Table 3. Local Spins of One- And Two-Centers (<Ŝ2>A and
<Ŝ2>AB) Arising from the Spin-Free Treatment (eqs 13 and
14) for Triplet Systems at Experimental Equilibrium Dis-
tances (a near Dissociation Limits)

system

atom/

bond spin-free

basis set/

method

<Ŝ2>A <Ŝ2>AB

H2
a H 0.750 6-31G/FCI

HH 0.250

Li2
a Li 0.750 STO-3G/FCI

LiLi 0.250

O2 O 0.760 6-31G/CISD

OO 0.240

NF N 1.879 6-31G/CISD

F 0.141

NF �0.010

NH N 2.277 6-31G/CISD

H 0.082

NH �0.180

C2 C 0.761 6-31G/CISD

CC 0.239

B2H2 B 0.979 6-31G/CISD

H 0.082

BB 0.245

BH �0.123

B 3 3 3H �0.030

HH �0.001

CH2 C 2.604 6-31G/CISD

H 0.083

CH �0.196

HH 0.007

C2H4 C 1.352 6-31G/CISD

(triplet) H 0.064

CC 0.072

CH �0.146

C 3 3 3H 0.005

HH 0.012

H 3 3 3H �0.002

H 3 3 3H �0.003
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a suitable chemical requirement.11,13 However, as can be ob-
served in Table 4, the presence of correlation increases the
absolute values of local spins in both procedures, although this
effect turns out to be slightly less marked in the results arising
from the spin-free treatment.

5. CONCLUSION

In this work, we have described a simple and direct partition-
ing of the expectation value <Ŝ2> corresponding to anN-electron
system into one- and two-center terms, according to a Mulliken
scheme. Our treatment, which utilizes spin-free quantities, can be
applied to states of any spin symmetry S and is valid for both
independent and correlated particle models of wave functions.
This procedure constitutes an improvement on the previously
reported treatments since it is independent of the Sz substate,
fulfilling the physical requirement of uniqueness for the compo-
nents of the spin multiplet. Another achievement of our ap-
proach, from a computational point of view, is that it avoids the
use of the spin blocks of the second-order reduced densitymatrix,
which are not usually available in most standard codes. The
results arising from several singlet state systems show lower local
spin values compared with those from other reported methods
(with spin) at the used correlation levels, although these differ-
ences are not too large. We have applied our treatment to
selected closed- and open-shell systems and the obtained results
are chemically meaningful in all studied cases. They show a

correct behavior in limit situations; adequate atomic spin values
at the dissociation limits, in agreement with those of the
respective free atoms, and zero values for all one-center and
two-center local spins for closed-shell RHF wave functions. Our
results and those of other treatments show dependence on the
electronic correlation level, although that dependence is slightly
lower in our proposal than in the Sz-dependent methods.
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ABSTRACT: Standard density functional approximations cannot accurately describe interactions between nonoverlapping
densities. A simple remedy consists in correcting for the missing interactions a posteriori, adding an attractive energy term
summed over all atom pairs. The density-dependent energy correction, dDsC, presented herein, is constructed from
dispersion coefficients computed on the basis of a generalized gradient approximation to Becke and Johnson’s exchange-
hole dipole moment formalism. dDsC also relies on an extended Tang and Toennies damping function accounting for
charge-overlap effects. The comprehensive benchmarking on 341 diverse reaction energies divided into 18 illustrative test
sets validates the robust performance and general accuracy of dDsC for describing various intra- and intermolecular
interactions. With a total MAD of 1.3 kcal mol�1, B97-dDsC slightly improves the results of M06-2X and B2PLYP-D3
(MAD = 1.4 kcal mol�1 for both) at a lower computational cost. The density dependence of both the dispersion coefficients
and the damping function makes the approach especially valuable for modeling redox reactions and charged species in
general.

’ INTRODUCTION

Many chemical phenomena are dominated by weak inter-
actions, as exemplified by the highly ordered structures of
biomolecules (stacking of DNA,1 protein folding2) and supra-
molecular assemblies,3 crystals arrangements of organic4 and
inorganic materials,5 or catalysis intermediates (see, e.g., ref
6). Because of the incomparable balance of accuracy and
computational cost, Kohn�Sham density functional theory7

has emerged as the most widely applied methodology for
investigating electronic structures and geometries of ex-
tended molecular systems. Despite this success, standard
semilocal approximations do not properly describe attractive
dispersion interactions that decay with R�6 at large inter-
molecular distances.8�11 Even at the medium range, most
semilocal density functionals fail to give an accurate descrip-
tion of weak interactions such as those dominating alkane
isomerization energies and Pople’s isodesmic bond separa-
tion equations (BSEs).12�17

Near the energy minimum, dispersion-corrected atom-
centered potentials (DCAPs)18�22 or carefully fitted density
functionals23�28 (M06-2X27 is certainly the most successful
functional originating from this approach) give satisfactory
results. Nevertheless, both approaches intrinsically lack the
ability to recover the correct long-range ∼R�6 attractive
form. The simplest conceptual remedy,29�33

first popularized
by Grimme (motivated by HF-D)34�38 under the DFT-D
acronym,33,39,40 is to correct for the missing interaction a
posteriori by adding an attractive energy term summed over
all of the atom pairs in the system. The quest for the optim-
al parametrization is, however, still an active field of
research.40�57 Recent DFT-D (e.g., D239 and D340) gives
an accurate description for intermolecular interactions, but

the proper treatment of weak intramolecular interactions is
trickier.14,40,58�60 Over the past three years, our group has
pioneered the design of corrections which give a balanced
description of both inter- and intramolecular weak interac-
tions.43,50,57,61,62 Our most recent scheme combines disper-
sion coefficients (C) computed on the basis of an approxima-
tion to Becke and Johnson’s63�69 exchange-hole-dipole
moment (XDM) formalism depending on the reduced den-
sity gradient (s)70 and a genuine density dependent damping
factor.57 The resulting density dependent correction, called
dDsC, promises substantial advantages over standard DFT
computations for a broad range of applications. Following a
careful validation of the dDsC scheme, we here introduce a
few improvements to our original density dependent damp-
ing factor57,70 and provide a comprehensive benchmarking of
the density-dependent dispersion correction scheme. dDsC is
tested on 18 diverse test sets featuring both intra- and
intermolecular weak interaction energies together with a
series of illustrative density functionals, i.e., BP86,71�73

BLYP,71,74 B3LYP,71,74�76 PBE,77 B9778 and the long-range
corrected LC-ωPBELYP.74,79�81 Results for other schemes
designed to better describe weak interactions are discussed as
well: the local response dispersion (LRD) correction com-
bined with LC-BOP,53,54 two fully nonlocal density func-
tionals, VV1082 and vdW-DF-10,83 the double hybrid
functional B2PLYP-D340,84 and M06-2X.27 The benchmark
is completed by a short assessment of the dDsC schemes on
geometries.
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’THEORY

The basic form of our correction is the Tang and Toennies
(TT) damping function85

Edisp ¼ � ∑
Nat

i¼ 2
∑
i � 1

j¼ 1
∑
n¼ 5

n¼ 3
f2nðbRijÞC

ij
2n

R2n
ij

ð1Þ

where Nat is the number of atoms in the system and b is the
TT-damping factor (vide infra). The correction is called dDsC if
only the first term is retained in the multipole expansion (n = 3,
corresponding to C6), and dDsC10 otherwise (up to n= 5, i.e., up
to C10). f2n(bRij) are the “universal damping functions”85 that are
specific to each dispersion coefficient and that serve to attenuate
the correction at short internuclear distances (to account for
overlapping densities).

f2nðxÞ ¼ 1� expð � xÞ ∑
2n

k¼ 0

xk

k!
ð2Þ

This section describes the determination of the damping
factor b in eq 1. The dispersion coefficients themselves are
obtained as described previously70 and rely on a classical
Hirshfeld dominant partitioning of the electron density among
the atomic centers.

Classical Hirshfeld weightings are defined as86

wiðrÞ ¼ Fati ðrÞ
∑n F

at
n ðrÞ

ð3Þ

where Fiat is the sphericalized free (neutral) atomic density of
atom i, weighted by the superposition of all Fi

at with all atoms n
positioned as in the real molecule. The classical Hirshfeld
dominant partitioning wi

D is obtained by assigning each point
exclusively to the atom which has the highest weight at that
particular grid point. Such a partitioning is more appealing than
the classical Hirshfeld populations, as it avoids overlapping
atomic regions that conflict with the multipole expansion that
is at the origin of the atom-pair-wise London dispersion
correction.87

A key component of dDsC is the damping factor b. We
showed previously50,57 that the performance of the TT-damping
function is improved by the introduction of a second damping
function, which prevents the corrections at regions of strong
density overlap (i.e., covalent distances) that are better described
by density functionals.61 Akin to our previous work,57 bij,asym, the
asymptotic value of b, accounts for the short-range effect through
a multiplicative function

bðxÞ ¼ FðxÞ bij, asym ð4Þ
x and F(x) are, respectively, the damping argument and function
for bij,asym, the TT-damping factor associated with two separated
atoms. bij,asym is computed according to the combination rule88,89

bij, asym ¼ 2
bii, asym bjj, asym

bii, asym þ bjj, asym
ð5Þ

bii,asym is generally estimated from the square root of (atomic)
ionization energies.90�94 However, the ionization energy does
not correlate well with the size of an atom that is a determinant
characteristic for the damping of a dispersion term.31,39,49,95

We instead propose to compute bii,asym on the basis of effective
atomic polarizabilities. Note that polarizabilities as a measure
of the “size” are extensively used in the closely related context of

Thole’s interacting dipole moments.96 After introduction of the
parameter b0, which dictates the strength of the correction in the
medium range, one obtains

bii, asym ¼ b0

ffiffiffiffi
1
αi

3

r
¼ b0

ffiffiffiffiffiffiffiffiffiffiffi
1

αi, f ree

3

s ffiffiffiffiffiffiffiffiffiffiffiffi
Vi, f ree

Vi, AIM

3

s
ð6Þ

In the above definition, b0 includes the conversion factor from Å3

to atomic units for αi.
The effective atom in molecule polarizabilities are estimated

from scaled free atomic polarizabilities97,98

αi ¼ Ær3æi
Ær3æi, f ree

αi, f ree ¼

Z
r3wD

i ðrÞ FðrÞ d3rZ
r3Fi, f reeðrÞ d3r

αi, f ree

¼ Vi, AIM

Vi, f ree
αi, f ree ð7Þ

A density cutoff of 0.002 au is applied to improve the consistency
of atomic volumes between atoms at the surface and in the
interior of a molecule.70,99

The bii,asym dependency on atomic polarizabilities (instead of
atomic ionization energies) mostly benefits the treatment of
highly polarizable atoms as shown later (e.g., neutral alkali-metal
cluster like K8 of the ALK6 test set). A similar relationship could
also be an advantage in force fields specifically designed to predict
crystal structures. In such force fields, atomic polarizabilities have
already been introduced, but bii,asym is usually determined from
the molecular ionization energy with no dependency on the
specific atom pair.92�94 Along with the modified bii,asym, the
secondary damping function is modified slightly and represented
by a (steeper) exponential decay (see ref 100 for more dis-
cussion) rather than by the previously used arctan function

FðxÞ ¼ 2
ea0x þ 1

ð8Þ

where the fitted parameter a0 adjusts the short-range behavior of
the correction.

The last element of the correction is the damping argument x

x ¼ 2qij þ
absððZi �ND

i ÞðZj �ND
i ÞÞ

rij

 !
ND
i þ ND

j

ND
i N

D
j

ð9Þ

where Zi and Ni
D are the nuclear charge and Hirshfeld dominant

population of atom i, respectively. 2qij = qij + qji is a covalent bond
index101 based on the overlap of classical Hirshfeld populations
wi(r) qij =

R
wi(r)wj(r) F(r) dr, and the fractional term in the

parentheses is a distance-dependent ionic bond index102 taken as
an absolute value. Classical Hirshfeld dominant charges in the
damping function resolve the inconvenience of classical
Hirshfeld charges that are generally too small.57,103,104 The
multiplicative factor, (Ni

D + Nj
D)/(Ni

DNj
D), serves to attenuate

the damping of bii,asym for heavier atoms (containing more elec-
trons). Note that the damping function F(x) has the adequate
form (i.e., F(0) = 1 and F(∞) = 0), given that x is large when
atoms are close to each other and goes to zero with increasing
distance rij. In the present form, approximated dDsC gradients are
available: All derivatives of the (density dependent) parameters
(the damping parameter b and the dispersion coefficients) are set
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to zero, or in other words, kept fixed at their values corresponding
to the energy of the geometry for which the gradient is being
computed. The approximation is expected to introduce only small
errors, similar to those engendered by the use of a smaller basis set
for geometry optimization, followed by energy refinement with a
larger basis set. Exact gradients are computationally more expen-
sive (although simpler than those derived for the original Becke�
Roussel exchange hole in ref 105) given that the contributions to
the Fock matrix are needed at each SCF cycle.

To summarize, the presented dDsC correction employs electro-
nic structure information to determine dispersion coefficients and
two fitted, functional dependent, damping parameters that are the
strength of the TT-damping (b0) and the steepness factor (a0).

’DETERMINATION OF THE ADJUSTABLE
PARAMETERS

In line with our former work,43,50,57 the chosen fitting
procedure ensures a successful treatment of both weak intra-
(medium-range) and inter- (long-range) molecular interactions.
The two parameters (a0 and b0) are fitted for each functional so
as to minimize the mean absolute deviation (MAD) over a
representative set of 48 reactions, assessing inter- and intramo-
lecular interactions. The detailed list of reactions in the training
set is given in the Supporting Information, but in summary, 3�6
entries are taken from the following test sets (vide infra): BSR36,
RSE43, ISO34, NBPRC, WATER27, ACONF, CYCONF,
SCONF, HEAVY28, and S22. The best fit parameters are given
in the Supporting Information for dDsC and dDsC10.

’TEST SETS

Eighteen test sets, corresponding to 341 reaction energies,
were selected out of the 30 test sets from the GMTKN30
(database for general main group thermochemistry, kinetics,
and noncovalent interactions) database106,107 from where the
geometries and reference values were taken. The sets are divided
into three categories:
i Intramolecular interactions (5 sets, 85 reactions): ISOL22

(isomerization energies of large organic molecules),108

DARC (Diels�Alder reactions energies),109 BSR36 (bond
separation reactions of alkanes),43,110 IDISP (intramole-
cular dispersion interactions),14,106,111 and AL2X (dimeriza-
tion energies of AlX3 andAlHX2 compounds, X=F,Cl, Br, and
Me).109

ii Intermolecular interactions and conformational energies
(7 sets, 108 reactions): S22 (binding energies of noncova-
lently bound dimers),112�114 ADIM6 (interaction energies
of n-alkane dimers),40 HEAVY28 (noncovalent interaction
energies between heavy element hydrides),40 ACONF
(relative energies of alkane conformers),115 SCONF
(relative energies of sugar conformers),116,117 PCONF
(relative energies of PHE-GLY-GLY),118 and CYCONF
(relative energies of cysteine conformers).119

iii Mixed category of reaction energies (6 sets, 148 reactions):
ALK6 (fragmentation and dissociation reactions of alkaline
metal clusters and alkaline�cation benzene complexes),40

BHPERI (barrier heights of pericyclic reactions),120�123

RSE43 (radical stabilization energies),124 NBPRC
(oligomerizations and H2 fragmentations of NH3/BH3

systems and H2 activation reactions with PH3/BH3),
116,125

ISO34 (isomerization energies of small and medium-sized
organic molecules),125,126 and WATER27 (binding energies
of water, H+(H2O)n and OH

�(H2O)n clusters).
127

Reaction energies and MADs for all methods tested are given
in the Supporting Information, which also includes the corrected
data with higher-order dispersion coefficients. Note that the
effects of the higher-order terms strongly depend on the type of
damping function. The TT-damping function applied herein
“simulates” the missing higher-order dispersion terms by increas-
ing the damping factor b.128

’COMPUTATIONAL METHODS

BLYP,71,74 BP86,71,72 PBE,77 revPBE,129 B3LYP,71,74�76 and
PBE077,130 computations were performed with a developmental

Table 1. Mean Absolute Deviations for All Methods Tested,
For All Test Sets (Overall), and the Three Individual Sub-
categories, i.e., Intramolecular Interactions (Intra), Inter-
molecular Interactions and Relative Conformational Energies
(Inter+Conf), and the Mixed Test Sets (Mix)a

Overall Intra Inter+Conf Mix

HF 9.05 12.62 3.10 11.34

BLYP 6.85 14.38 2.53 5.67

revPBE 6.26 11.28 2.70 5.97

B3LYP 5.70 12.22 2.20 4.50

TPSSM 4.84 10.47 1.98 3.68

vdW-DF-10 4.80 11.13 0.61 4.00

BP86 4.54 9.07 2.14 3.68

B97 4.47 9.56 1.83 3.48

BHHLYP 4.40 9.10 1.77 3.63

HF-dDsC 3.74 (3.57) 5.82 (4.87) 1.25 (1.40) 4.37 (4.41)

LC-ωPBE 3.49 6.24 1.48 3.38

PBE 3.49 7.39 1.39 2.77

LC-ωPBELYP 3.35 6.14 1.26 3.26

VV10 3.34 5.50 0.43 4.22

LC-BOP 3.32 5.36 1.45 3.52

PBE0 3.11 6.55 1.44 2.34

PW6B95 3.01 6.01 0.92 2.81

B3LYP-D3 2.96 6.82 0.28 2.70

LC-ωPBEB95 2.89 4.29 0.78 3.62

LC-BOP-LRD[10,0] 2.56 3.63 0.43 3.51

LC-BOP-LRD[10,6] 2.56 3.50 0.49 3.54

BLYP-dDsC 2.45 (2.65) 3.71 (4.26) 0.62 (0.63) 3.05 (3.21)

LC-ωPBEB95-dDsC 2.39 (2.39) 4.15 (4.11) 0.66 (0.67) 2.65 (2.66)

LC-ωPBE-dDsC 2.37 (2.37) 4.82 (4.87) 0.43 (0.41) 2.38 (2.37)

PBE-dDsC 2.19 (2.22) 1.94 (1.94) 0.52 (0.57) 3.56 (3.58)

LC-ωPBELYP-dDsC 2.14 (2.04) 2.35 (2.05) 0.71 (0.59) 3.06 (3.08)

revPBE-dDsC 2.12 (1.92) 1.83 (1.89) 0.70 (0.59) 3.32 (2.90)

BP86-dDsC 2.03 (2.01) 2.44 (2.47) 0.81 (0.72) 2.68 (2.69)

TPSSM-dDsC 1.96 (1.96) 2.54 (2.61) 0.65 (0.63) 2.59 (2.56)

B3LYP-dDsC 1.67 (1.86) 2.43 (2.85) 0.48 (0.58) 2.11 (2.23)

BHHLYP-dDsC 1.66 (1.73) 1.76 (1.81) 0.48 (0.53) 2.47 (2.55)

PBE0-dDsC 1.59 (1.66) 1.98 (2.04) 0.42 (0.52) 2.22 (2.28)

M06-2X 1.41 2.94 0.40 1.26

PW6B95-dDsC 1.39 (1.39) 1.70 (1.67) 0.62 (0.66) 1.78 (1.76)

B2PLYP-D3 1.37 3.41 0.16 1.08

B97-dDsC 1.30 (1.32) 1.78 (1.82) 0.48 (0.47) 1.62 (1.65)
aValues in parentheses refer to the correction including coefficients up
to C10 (dDsC10). All values are in kcal mol�1. Results for B2PLYP-D3
and M06-2X are taken from refs 107 and 152.
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version of ADF.131,132 HF, BHHLYP,133 Becke’s hybrid B9778

functional (that is to be distinguished from Grimme’s GGA
functional B97-D39), PW6B95,134 LC-ωPBE79�81 (ω = 0.45),
LC-ωPBELYP (ω = 0.45), LC-ωPBEB95135 (ω = 0.45), VV10
(rPW86136PBE77+nonlocal correction),82 and vdW-DF-10
(rPW86136PW92137+nonlocal correction)83 were performed in
a developmental version of Q-Chem,138 while LC-BOP,71,139�141

LC-BOP-LRD,53,54 and TPSSm142 and all geometry optimiza-
tions were run with a modified version of GAMESS.143 A patch
for GAMESS 2010 (version 1 Oct 2010) will be available on our
Web site. Due to SCF convergence problems, computations in
GAMESS use the cc-pVTZ basis set144�146 (augmented with
diffuse functions, leading to aug-cc-pVTZ in order to minimize
the BSSE for theWATER27 complexes and all but the benzene�
indole complexes of the S22 test set), except for potassium and
the heavier elements for which the def2-QZVP(-g) basis set was
used. All Q-Chem computations were done with the def2-
QZVP(-g)147 basis set except for the clusters involving OH�

from theWATER27 test set, for which the aug-cc-pVQZ basis set
was used. In GAMESS and Q-Chem, the numerical integrations
were performed on a fine 99/590 and 75/302 Euler-Maclaurin�
Lebedev grid, respectively, with an integration threshold of
10�12. In ADF, the QZ4P basis set was used for all systems
except for the OH�-containing WATER27 clusters, which
were described by the ET-QZ3P-DIFFUSE basis set. All-electron
computations in ADF for the HEAVY27 test set include
the ZORA148 relativistic corrections. The “dependency” and

“addDiffuseFit” keys were applied throughout and the integra-
tion accuracy set to 8. For the sake of clarity and brevity, only a
selection of the tested functionals is included in the figures, but
all of the statistics are collected in Table 1 and details given in the
Supporting Information.

Geometries and reference values for the peptide conforma-
tional energies (4) and the cyclization reaction (5) are taken
from ref 108 and refs 149 and 150, respectively. The Grubbs
catalysts’ (6 and 7) geometries and zero-point energy corrections
are taken from ref 151.

The dDsC corrections are applied post-SCF, using atomic
fragments computed on the fly with the same method and basis
set as the molecular computation. All DFT-D340 and M06-2X27

values are taken from the GMTKN30 Web page.107

’RESULTS AND DISCUSSION

The performance of dDsC is at first illustrated by Figure 1,
which collects seven typical reactions for which a dispersion
correction is essential. The first two reactions are taken from the
S22 test set112 and represent general π,π-stacking interactions
(adenine�thymine base pair (1), which is unbound at the
B3LYP level) and the phenol dimer (2) that features a combina-
tion of hydrogen-bond and other interactions often present in
organic molecules. The isomerization reaction of δ-valerolactone
(3a) into 2,4-penandione (3b)126 is characteristic of typical
organic isomerization reactions and is also in the training set.

Figure 1. Set of illustrative examples of reactions poorly described by standard density functionals (e.g., B3LYP and B97) and corrected by dDsC. The
reference values108,113,126,149 are computed at the CCSD(T)/CBS level, except for 5, where SCS-MP3/CBS serves as the benchmark, and for 7,
experimental values are used.153 The DFT energies for 4�7 are computed with the def2-TZVP basis set.
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The relative conformation energies of the two FGG tripeptides
(4) is another example in which modeling of weak interactions is
crucial to identifying the lower-lying conformer.149 The cascade
reaction leading to the formation of the steroid framework 5a
from the squalene precursor 5b is a striking case with an error of
almost 50 kcal mol�1 at the B3LYP level.108 Finally, the
experimental153 energy difference between the bond dissociation
energies of PCy3 from Grubbs’ first (6a) and second generation
(7a) catalysts154 are qualitatively incorrect at standard density
functional levels155 but well reproduced when improving the
treatment of medium-range correlation156 or when using a
dispersion correction.151

Reaction energies associated with a considerable change in
molecular size and shape are challenging cases for density func-
tional approximations. As discussed previously,61 the problemmay
be associated with over-repulsiveness in the short range,109,157 but
missing weak interactions in the medium and long-ranges are
the largest contributors to the errors.43,61,108,110,158 By including
reactions accounting for weak intramolecular interactions into
the training set, our aim is to (i) obtain additional informa-
tion regarding the proper form of the damping that is empirical
in nature and (ii) devise a robust correction that improves
both reaction energies and weak intermolecular interactions
that are generally the only focus of empirical dispersion
corrections.31,39,46,49,53,54

dDsC reduces the MAD of the parent functional for intramo-
lecular interactions (see Figure 2) by a factor of 3�6, depending
on the functional. The dramatically low (<1.0 kcal mol�1)
MAD(BSR36) results from the highly systematic error in bond
separation energies15,43,61 along with the relatively large number
(i.e., five) of such reactions included in the training set. The
improvements for the intramolecular dispersion in hydrocarb-
ons (IDISP) and the dimerizations of aluminum species (AL2X)
as well as for the isomerizations of large organic molecules
(ISOL22) highlight the high transferability of the density de-
pendent scheme using the present parametrization. Long-range
corrected functionals, such as LC-ωPBE, are among the best-
uncorrected approximations (see Table 1 and the Supporting
Information for more details). However, the remaining error
is less systematic than that of standard functionals, and
their combination with dDsC often leads to overcorrection.

LC-ωPBELYP-dDsC is the most accurate combination, but
the variant does not present significant advantages over standard
DFT-dDsC methods. The latter also clearly outperform the
more sophisticated nonlocal van der Waals density functionals.
The poorer performance of vdw-DF-10 as compared to VV10
is most likely related to the replacement of the local PW92 by
the PBE correlation in VV10: The PBE correlation functional
is known to capture intramolecular interactions involving
weakly interacting densities that overlap reasonably well.61 The
changes in bond types of the AL2X, DARC, and ISOL22 test
sets might be more accurate with the PBE than the PW92
correlation functional as well. LC-BOP-LRD[10,6] further low-
ers the MAD to 3.5 kcal mol�1 in this category. With a MAD of
2.9 and 3.4 kcal mol�1 over the five “intramolecular” test sets,
M06-2X and B2PLYP-D3, respectively, improve considerably
over the standard density functionals (e.g., MAD(B3LYP) =
12.2 kcal mol�1) but do not achieve the high accuracy of DFT-
dDsC, where most functionals are corrected to a MAD of
only about 2 kcal mol�1, with a minimum of 1.7 kcal mol�1

for PW6B95-dDsC.
The improved energies for systems characterized by typical

weak intermolecular interactions are collected in Figure 3. Most
atom pairwise dispersion corrections and fully nonlocal van der
Waals functionals are designed to improve the treatment of those
interactions. Accordingly, the performance of methods such as
B2PLYP-D3 is excellent, and VV10, vdW-DF-10, and LC-BOP-
LRD[10,6] give relatively low errors as well. The remarkable
performance of M06-2X is, on the other hand, illustrative of the
success of extensive fitting. With an average MAD of 0.6 kcal
mol�1 (over 13 density functionals, excluding HF-dDsC), DFT-
dDsC also performs well for diverse types of weak intermolecular
interactions and relative conformational energies (see Table 1
and Supporting Information). The small errors obtained for the
S22 test set (assessing pure dispersion to H-bonding) along with
those on the heavy atom hydrides confirm the general accuracy of
the density dependent dispersion scheme. Alkane dimers
(ADIM6) are, however, overcorrected by dDsC. Our careful
analysis suggests that ADIM6 is an exception rather than the
result of an overfitting toward intramolecular interactions dom-
inating the training set. Subtle changes in nonbonded interac-
tions such as those dictating the relative conformational energies

Figure 2. Mean absolute deviations for test sets dominated by intramolecular weak interactions.
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of alkanes (ACONF) are, for instance, well captured by dDsC,
which shows that the strong correction needed for improving
bond separation equations does not generally deteriorate longer-
range interactions. To a much lesser extent, the D3 level also
overcorrects alkane dimers, even though D3 is parametrized to
perform well for these systems (see the detailed performance of
D3 on the GMTKNWeb site107). The peculiarity of the ADMI6
test set is further illustrated by the contrasting trend in the
performance of MP2/CBS (MAD = 0.27 kcal mol�1) and SCS-
MP2/CBS (MAD = 1.05 kcal mol�1), which is opposite that of
the S22 test set.152 The modest performance of dDsC for the
Phe�Gly�Gly�peptide conformations (PCONF) is, to a large
extent, influenced by to the choice of “reference” conformer used
in the relative energy computations. Standard functionals indeed
identify the second lowest energy conformer instead of the
correct conformation (at the CCSD(T) level) as the lowest
energy one. The MADs are thus lowered by up to 50%, when
considering the second lowest lying (0.14 kcal/mol higher
according to the CCSD(T) reference values118) as the “reference
compound”!

Several additional interesting features of Figure 3 can be better
understood by considering the characteristics of the parent
functional. For instance, the accurate treatment of the relative
conformational energies of cysteine (CYCONF) relies on a
balanced description between strong (e.g., OH 3 3 3N) intramo-
lecular hydrogen bonds (that dominate some of the conformers)
and weaker interactions (e.g., NH 3 3 3 S present in other con-
formers). The good description of OH 3 3 3N and NH 3 3 3O
hydrogen bonds by PBE and BP86 versus their underestimation
of weak interactions bias the relative conformation energies and
result in the poorer performance of PBE(-dDsC) and BP86-
(-dDsC) for CYCONF than for SCONF. The relative energies of
sugar conformers, which are all dominated by strong hydrogen
bonds, are indeed better described by these levels,117 which do
not benefit from the inclusion of a dispersion correction.

Figure 4 collects errors for the “mixed” category, regrouping
six test sets, which are not all dominated by weak interactions but
are nevertheless important for typical computational chemistry

applications. The errors in radical stabilization energies (RSE43),
isomerization energies of small molecules (ISO34), and the
NBPRC test set, for instance, originate from subtle inaccuracies
in, e.g., bond energies. The inaccurate treatment of barrier
heights of pericyclic reactions (BHPERI) is generally attributed
to the self-interaction error,159�163 and to the delocalization
error109 (or the error in the repulsive wall61) that is also at the
origin of the poor assessment of the related Diels�Alder reaction
energies (see DARC in Figure 3). For “repulsive” functionals
such as BLYP or B3LYP, the dispersion correction stabilizes the
transition state and leads to a clear improvement. The barrier
heights are, however, overcorrected with more attractive approx-
imation such as PBE. The unexpected poor performance of LC-
ωPBELYP (LC-ωPBE and LC-ωPBEB95 perform better in this
case, with a MAD of about 6.7 kcal mol�1 vs 10.3 kcal mol�1, but
even BLYP (MAD= 5.8 kcal mol�1) outperforms the long-range
corrected functionals) results from a strong overestimation of
the barrier heights in line with that of HF (23.2 kcal mol�1 and
10.6 kcal mol�1 with HF-dDsC). The high error for BHPERI
along with the general difficulty of systematically improving the
LC-ωPBE functional group by a dispersion correction (vide
supra) reflects the need for a better-devised long-range correc-
tion parameter ω. A system dependence164�166 could be a strat-
egy that would, however, cause size-extensivity problems im-
portant for reaction energies. At higher computational costs, the
more balanced description of range-separated local hybrids167

represents another alternative. Note that M06-2X, with a MAD
of 2.8 kcal mol�1, is also affected by the large amount of “exact”
exchange (54%), while B97-dDsC (∼19% “exact exchange”)
performs best for these barrier heights (MAD = 1.3 mol�1).

ALK6 played an important role in cross-validating the
proposed density dependent dispersion correction: the three
benzene�alkaline cation (Li+, Na+, K+) complexes are domi-
nated by electrostatic and inductive interactions168 and are thus
well described by standard DFT levels. Such interactions are,
however, problematic for classical dispersion correction schemes,
which use dispersion coefficients and vdW radii corresponding
(approximately) to the free (neutral) atoms, and not to the

Figure 3. Mean absolute deviations for test sets featuring intermolecular weak interactions or relative conformational energies.
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cations.40 The other three systems in the test set are the de-
composition of Li8, Na8, and K8, into their respective dimers. In
our scheme, these clusters are characterized by relatively large
dispersion coefficients and are almost as polarizable as free
alkaline atoms. While most functionals underbind these clusters,
our genuine damping factor, bij,asym, successfully avoids over-
correction due to its dependence on polarizability.

The overall description of test sets collected in the “mixed”
category depends generally more strongly on the functional itself,
than on the accuracy of the dispersion correction. For instance,
the better performance of B2PLYP-D3 as compared to the dDsC
corrected variants is due to B2PLYP, rather than to D3, as clearly
illustrated by the comparison of B3LYP-D3 and B3LYP-dDsC
(MADs of 2.7 and 2.1 kcal mol�1, respectively). Similarly, even
though the LRD scheme (independently from the use of multi-
center contributions, i.e., LRD[10,0] or LRD-[10,6]) improves
the overall performance on the 18 test sets (3.32 vs 2.56 kcal
mol�1), LC-BOP and LC-BOP-LRD[10,6], have almost the
sameMAD for these “mixed” test sets (3.52 and 3.54 kcal mol�1,
respectively). The relatively large error of PBE-dDsC originates
from the overcorrected PBE energies for WATER27 and
BHPERI. A similar overcorrection is at the origin of the relatively

poor performance of VV10 (total MAD of 4.2 kcal mol�1).
PBE-dDsC gives lower MAD than PBE-D3 for two reasons:
(i) the ionic term in the damping function (eq 9) attenuates
the correction for the strong and highly polarized hydrogen
bonds of WATER27, and (ii) the polarizability-dependent
damping factor prevents the energy overcorrection for the
alkaline metal clusters (ALK6). Overall, B97-dDsC and
PW6B95-dDsC (see Supporting Information) achieve MADs
below 2.0 kcal mol�1, which illustrate that dDsC leads to
improvements for this most challenging mixed category, albeit
less impressive than for inter- and especially intramolecular
(weak) interactions.

Figure 5 provides a detailed comparison of the MADs
obtained with dDsC and the geometry-dependent D3 correction
for seven functionals (Figure 5a) and the individual test sets
(Figure 5b). The D3 correction performs better than dDsC in
cases for which the latter has a tendency to overcorrect (e.g.,
ADIM6 or BHPERI with PBE) or for which the former scheme
uses quasi-exact dispersion coefficients (HEAVY28). As ex-
pected, D3 also performs well for its targeted interactions
(weak interactions between neutral molecules and relative con-
formational energies are in the training set40). On the other hand,

Figure 4. Mean absolute deviations over test sets assessing various reaction energies and barrier heights for pericyclic reactions. For vdW-DF-10, the
RSE43 set could not be computed since it is not defined for open-shell systems.

Figure 5. (a) Performance of DFT-dDsC versus DFT-D3 for seven functionals and the 18 selected test sets from the GMTKN30 database and
(b) B3LYP-dDsC versus B3LYP-D3 with each test set as one point.
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dDsC adjusts better to a given functional and provides a more
robust performance, when considering both inter- and intramo-
lecular interactions including challenging reaction energies (e.g.,
ISOL22, DARC, BSR36, IDISP, and AL2X).

The effect of dispersion corrections on thermochemistry has
been thoroughly investigated. Geometries are usually less sensi-
tive to the level of theory applied, but intramolecular nonbonded
interactions are critical in certain cases. We thus compare the
performance of two (un)corrected functionals, B3LYP and B97,
for reproducing the geometry of five challenging molecules60,169

for which experimental structures are available: C2Br6,
170 S8

2+,171

(CH3)2NOSiF3,
172 [2.2]paracyclophane,173 and a bisthieno-

fused molecule known under its CSD entry name RESVAN
(see Figure 6).169,174�176 B3LYP and B97 are overly repulsive for
these intramolecular nonbonded contacts. The use of dDsC
improves the geometries significantly, especially for the bisthie-
no-fused compound (RESVAN), mimicking stacked thiophene
oligomers.

’CONCLUSIONS

The final parametrization and refinement of the density
dependent dispersion correction, dDsC, introducing a simple
atomic partitioning, computationally efficient dispersion coeffi-
cients, and advanced damping functions, considerably improves
the performance of standard density functionals for various
reaction energies and weakly interacting systems. With a MAD
of 1.3 kcal mol�1 over the 18 test investigated sets, B97-dDsC
performs slightly better than M06-2X and B2PLYP-D3 (MAD =
1.4 kcal mol�1 for both) but at a lower computational cost. The
performance of B97-dDsC is especially impressive for the five
intramolecular test sets (MAD = 1.8 kcal mol�1) for which M06-
2X and B2PLYP-D3 are less satisfactory (MAD of 2.9 and
3.4 kcal mol�1, respectively).

The correction is available for all elements of the periodic
table. Due to its robust performance and general accuracy
for various interactions, ranging from hydrocarbon reaction
energies to heavy-atom hydride weak interaction energies, as
well as for geometry optimization, we anticipate broad applica-
tion of the dDsC scheme in diverse fields of computational

chemistry (e.g., organocatalysis, QM/MM hybrid schemes, pre-
diction of crystal structures). The density dependence of both
the dispersion coefficients and the damping function has been
shown to be especially valuable for modeling oxygen reduction
reactions by organic reducing agents,177 the splitting of water
by metallocenes,178 as well as for the molecular receptors,179

which all involve charged species.
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ABSTRACT: Singlet and triplet vertical excitation energies from time-dependent density functional theory (TDDFT) can be
affected in different ways by the inclusion of exact exchange in hybrid or Coulomb-attenuated/range-separated exchange�correla-
tion functionals; in particular, triplet excitation energies can become significantly too low. To investigate these issues, the explicit
dependence of excitation energies on exact exchange is quantified for four representative molecules, paying attention to the effect of
constant, short-range, and long-range contributions. A stability analysis is used to verify that the problematic TDDFT triplet
excitations can be understood in terms of the ground state triplet instability problem, and it is proposed that a Hartree�Fock
stability analysis should be used to identify triplet excitations for which the presence of exact exchange in the TDDFT functional is
undesirable. The use of the Tamm�Dancoff approximation (TDA) significantly improves the problematic triplet excitation
energies, recovering the correct state ordering in benzoquinone; it also affects the corresponding singlet states, recovering the
correct state ordering in naphthalene. The impressive performance of the TDA is maintained for a wide range of molecules across
representative functionals.

1. INTRODUCTION

Time-dependent1�4 density functional theory5�8 (TDDFT)
in the adiabatic approximation is a widely used method for study-
ing molecular electronic excited states. The accuracy of a TDDFT
calculation is largely governed by the choice of exchange�correla-
tion functional. Generalized gradient approximations (GGAs)
have been largely superseded by hybrid functionals that incor-
porate a fixed amount of exact orbital exchange (hereafter
denoted exact exchange), independent of the interelectron
distance r12. [Exact exchange in the DFT context is defined as
the standard Hartree�Fock (HF) exchange energy expression,
evaluated using the Kohn�Sham orbitals.] More recently, there
has been enormous growth in the use of so-called Coulomb-
attenuated or range-separated functionals9�18 where the amount
of exact exchange depends on r12. The primary reason for this
growth is that functionals where the amount of exact exchange
increases with r12 have been shown to yield notably improved
long-range, Rydberg and charge-transfer excitation energies,
while maintaining good quality local excitations.12,14,16,17,19�26

The majority of these studies have considered excitations to
singlet excited states. The quality of excitations to triplet states
with Coulomb-attenuated/range-separated functionals, of tech-
nological importance in phosphorescence in OLEDs, bioima-
ging, etc., is less well documented.27�29

Recent work by Thiel and co-workers30�32 has provided a set
of correlated wave function [complete active space self-consis-
tent field with second order perturbation theory (CASPT2) and
linear response coupled cluster with approximate perturbative
triple excitations33 (CC3)] benchmark results on small, closed-
shell organic molecules, allowing comparison of low-lying local
singlet and triplet vertical excitation energies within the same
molecule. Among others, Silva-Junior et al.,34 Jacquemin et al.,23,27

Della Sala and Fabiano,35 and Huix-Rotllant et al.36 have assessed
the performance of various DFT-based methods for this set.
We have repeated the conventional TDDFT calculations of

refs 23, 27, and 34, using the aug-cc-pVTZ basis set (which,
unless otherwise stated, is used throughout this study), with the
PBE37 (GGA, no exact exchange), B3LYP38�43 (hybrid, fixed
20% exact exchange), and CAM-B3LYP12 (Coulomb-attenuated,
with 19% exact exchange increasing with r12 to 65%) functionals
at the same MP2/6-31G* geometries. We consider 63 vertical
triplet excitations and the 57 equivalent vertical singlet excita-
tions for which reference CASPT2/CC3 reference values are
available, using the Dalton44 and Gaussian 0945 programs. Mean
and mean absolute errors, relative to the reference values, are
presented as blue bars in Figure 1.

Figure 1. Mean errors (ME) and mean absolute errors (MAE), relative
to the reference values of ref 32, for 57 singlet and 63 triplet vertical
excitation energies. Blue bars represent conventional TDDFT errors;
green bars represent TDA errors. CAM denotes CAM-B3LYP.

Received: September 16, 2011
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The results for the singlet states illustrate the well-known
trend: The PBE GGA functional underestimates the excitation
energies, while increasing the amount of exact exchange (PBEf
B3LYP f CAM-B3LYP) beneficially increases the excitation
energies, reducing mean and mean absolute errors. For triplet
states, PBE again underestimates the excitation energies, but the
improvement upon increasing the amount of exact exchange is
much less pronounced than for the singlet states. The reason for
this different behavior is evident from an analysis of individual
excitations—while in many cases the triplet excitation energy
does (beneficially) increase with increasing exact exchange, in
many other cases it drops significantly, leading to a degradation in
accuracy. The latter behavior is not a consequence of low-overlap
charge-transfer20 failure.

It has long been known46�53 that time-dependent Hartree�
Fock theory (TDHF, 100% exact exchange) significantly under-
estimates triplet excitation energies when there is a triplet
instability problem in the ground state wave function and that
this underestimation can be largely overcome using configura-
tion interaction singles (CIS). Given the similarity between the
TDDFT and TDHF formalisms, we should anticipate similar
problems in TDDFT, particularly as the amount of exact
exchange increases, which could explain the observed under-
estimation of certain states. Bauernschmitt and Ahlrichs50 and
Hirata and Head-Gordon54 presented early examples where
hybrid functionals underestimate triplet excitation energies in
systems known to have triplet instability problems. The latter
authors also demonstrated that these errors are largely eliminated
upon application of the Tamm�Dancoff approximation,55,56

which is the TDDFT analogue of CIS.
In the present study, we explicitly quantify the influence of

exact exchange on representative TDDFT singlet and triplet
excitation energies and verify that the problematic triplet states

can be understood in terms of the triplet instability problem.
Despite being highlighted in several studies,50,54,57�59 this con-
sequence of triplet instabilities is not widely appreciated in the
TDDFT user community; it is, however, of increasing relevance
due to the growth in the use of functionals containing large
amounts of exact exchange.We propose that a stability analysis of
the Hartree�Fock wave function should be used to identify
triplet excitations for which the presence of exact exchange in the
TDDFT functional is undesirable. By analogy with the TDHF/
CIS case, and following ref 54, we then quantify the extent to
which the TDDFT triplet problems can be overcome using the
Tamm�Dancoff approximation. We also consider the effect of
this approximation on singlet states, including state ordering in
naphthalene, which is a challenging problem for approximate
TDDFT. Finally, the full error analysis in Figure 1 is repeated
using the Tamm�Dancoff approximation.

We commence in section 2 by quantifying the influence of exact
exchange on singlet and triplet excitation energies for a represen-
tative set of molecules. Section 3 relates the observations to the
triplet instability, and section 4 considers the Tamm�Dancoff
approximation. Conclusions are presented in section 5.

2. EXCHANGE DEPENDENCE OF EXCITATION
ENERGIES

To illustrate and quantify the influence of exact exchange in a
systematic manner, we first consider the evolution of vertical excita-
tion energies as a function of the fraction of exact exchange in a
conventional global hybrid functional. Following Becke,60 we define

Exc ¼ αEHFx ½j� þ ð1� αÞEBx ½F,∇F� þ ELYPc ½F,∇F� ð1Þ
where the notation [j], [F], and [3F] indicates explicit orbital,
density, and density gradient dependence, respectively; B represents

Figure 2. The variation of singlet (left panel) and triplet (right panel) excitation energies in ethene, as a function of the amount of exact exchangeα. The
lighter version of the color represents the TDDFT results, the darker version, the TDA results. Dashed lines represent reference values.
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Becke’s 198839 gradient corrected exchange functional combined in
equal proportions with Dirac/Slater61,62 LDA exchange, and LYP
represents the Lee�Yang�Parr40 GGA correlation functional.
From the benchmark set of Thiel and co-workers,32 we consider
four representative molecules: ethene, E-butadiene, p-benzoqui-
none, and naphthalene, using the same geometries as before.
Additional results for formaldehyde and formamide are presented
in the Supporting Information. To facilitate comparison with
previous studies, we adopt the molecular orientation (and hence
symmetry labels) of the earlier works.

In Figures 2�5, the left panel shows singlet excitation energies,
while the right panel shows the equivalent triplet excitation
energies (i.e., those that involve predominantly the same orbital
transitions), as a function of the fraction of exact exchange α in
eq 1. The lighter solid line of each color represents convention-
ally evaluated TDDFT excitation energies, to be compared with
the horizontal dashed lines that represent accurate reference
values, taken from ref 32. For ethene, values were not available for
all of the states we consider; comparison is instead made with the
experimentally derived reference values used in ref 63, and the
d-aug-cc-pVTZ basis set is used for the calculations. In all cases,
the GGA (α = 0) singlet and triplet excitation energies under-
estimate the respective reference values.

First consider ethene in Figure 2. As α increases, both of the
singlet excitation energies increase, and each becomes more
accurate (albeit at the expense of a less accurate relative energy).
For the 3B3u state, the variation with α is nearly identical to the
singlet transition; a significant amount of exact exchange is again
optimal. By contrast, the 3B1u state demonstrates markedly
different behavior; the excitation energy becomes significantly
less accurate with increasing α, as it drops by nearly 2 eV between
α = 0 and α = 1.

For butadiene in Figure 3, both of the singlet excitation
energies again increase with α, with notably different optimal
values. However, both of the triplet excitation energies drop in
energy, with each becoming significantly less accurate as α
increases. The 3Ag energy drops by over 1 eV while the 3Bu
energy drops considerably more, eventually yielding an imagi-
nary excitation energy (we only plot the real excitation energies).

Next, consider benzoquinone in Figure 4, where three states of
each spin are considered. All three singlet excitation energies
increase at a similar rate with α, with modest amounts of exact
exchange providing optimal results. By contrast, the three triplet
states each exhibit a different dependence on α. The 3B1g energy
behaves essentially identically to the singlet counterpart. The
3B3g energy decreases, becoming less accurate, while the 3B1u
energy drops rapidly, becoming imaginary for large α. This
differential dependence means that the triplet state ordering is
sensitive to the value of α. The GGA calculation correctly places
the 3B1g state lowest in energy, but the ordering becomes incorrect
as α increases, with first the 3B1u state and then the 3B3g state
dropping below the 3B1g.

Finally, consider naphthalene in Figure 5, where the B2u and
B3u states correspond to the La and Lb states in the usual Platt
notation. Both of the singlet excitation energies increase in
energy with α, although no value of α yields the correct ordering
of the two states. This is a well-known problem in approximate
TDDFT.20,64�68 For the triplet states, the 3B3u excitation energy
increases gradually with α and is accurately described, whereas
the 3B2u excitation energy decreases and becomes imaginary for
large α.

The results in Figures 2�5were obtained using a global hybrid
functional, where the amount of exact exchange is independent of
r12. In order to ascertain the relative importance of the long- and

Figure 3. Excitation energies of butadiene (see caption to Figure 2). The TDDFT 3Bu excitation energy becomes imaginary at large α.
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short-range components of the exact exchange on the six
identified “dropping” triplet states, we have performed additional
calculations using Coulomb-attenuated/range-separated analo-
gues of eq 1. For the long-range calculations, we considered a
series of functionals with zero exact exchange at short r12,
increasing to α exact exchange at large r12. For the short-range
calculations, we considered a series with α exact exchange at
short r12, decreasing to zero exact exchange at large r12. Both
functionals used a standard error function partitioning with
attenuation parameter μ = 0.33 bohr�1. In all cases, the variation
in excitation energy as a function of α is smooth and monotonic.
For the long-range functionals, the changes in excitation energies
between α = 0 and α = 1 are�0.23,�0.22,�0.23,�0.17, +0.15,
and �0.20 eV, for ethene (3B1u), butadiene (3Bu and 3Ag),
benzoquinone (3B1u and

3B3g), and naphthalene (
3B2u), respec-

tively. For the short-range functionals, the changes are more
pronounced, at�1.48,�1.59,�0.93,�2.49 (imaginary beyond
that point), �0.68, and �1.50 eV. We conclude that long-range
and short-range exact exchange each tend to cause these triplet
excitation energies to decrease, with the effect of the latter
(unsurprisingly) being more pronounced.

From this analysis, we would predict that both B3LYP (fixed
exact exchange) and CAM-B3LYP (fixed- and long-range exact
exchange) should underestimate the same six triplet excita-
tion energies, and we have verified that this is indeed the case.
Mean errors are�0.51 and�0.64 eV, respectively (compared to
�0.38 eV with PBE). The same would be true for any other
molecule in the benchmark set where exact exchange causes
the triplet excitation energy to drop. To understand why some,
but not all, triplet excitation energies drop with exact exchange,
we must consider the influence of the triplet instability on
TDDFT results.

3. THE TRIPLET INSTABILITY PROBLEM

The triplet instability in Hartree�Fock theory is well-
known.46,69 Figure 6a presents potential energy curves for the
prototypical molecule, H2. The

1Σg
+ spin-restricted Hartree�

Fock (RHF) ground state energy becomes too high as the
internuclear distance R increases, due to unphysical ionic com-
ponents in the wave function. The repulsive 3Σu

+ unrestricted
Hartree�Fock (UHF) state does not contain any unphysical
ionic components and so dissociates correctly. Consequently,
instead of the 3Σu

+ and 1Σg
+ states becoming degenerate at large R,

the energy of the 3Σu
+ state drops below that of the 1Σg

+ forR larger
than ∼3 bohr. Also shown is the UHF ground state solution,
which allowsmixing of triplet state character into the singlet wave
function. The UHF energy drops below the RHF energy beyond
the Coulson�Fischer (CF)70 point (∼2.3 bohr in H2), and
correct dissociation is obtained. The RHF solution is therefore
unstable with respect to spin-symmetry breaking.

Computationally, this triplet instability manifests as a negative
eigenvalue in the electronic Hessian, indicating that specific
orbital rotations of an identified space�spin symmetry will lower
the energy. Henceforth, we refer to the eigenvalues of this matrix
as “stability measures”. Figure 6b presents the lowest 3Σu

+-
symmetry stability measure of the Hartree�Fock wave function
for H2, as a function of R. It reduces to zero at the CF point and
becomes negative beyond. [The stability measures associated
with a single determinant are simple to compute and can for
instance be calculated in Gaussian45 using the “stable” keyword,
where IOp(9/41) controls the number computed.]

There are intrinsic similarities49,52 between the equations used
to determine the stability and the TDHF/TDDFT equations,
and so triplet instabilities have significant implications for excited
states determined using these methods. The eigenvectors of the

Figure 4. Excitation energies of benzoquinone (see caption to Figure 2). The TDDFT 3B1u excitation energy becomes imaginary at large α.
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electronic Hessian have identifiable analogues among the orbital
rotations associated with electronic excitations, and so it is
generally possible to associate a stability measure with each
excitation; the stability measure in Figure 6b corresponds to
the lowest 1Σg

+ f 3Σu
+ excitation. Figure 6c presents this excita-

tion energy as a function of R. The exact excitation energy
approaches zero as R f ∞. The “ΔSCF” curve, obtained from
the energy difference between the potential energy curves in
Figure 6a, becomes increasingly negative at large R, reflecting the
significant overestimation of the 1Σg

+ energy. The influence of the
triplet instability on the TDHF excitation energies is striking.
The values are reasonable for small R, but as the CF point is
approached, the values become increasingly underestimated,
reaching zero at the CF point and becoming imaginary beyond.
Analogous results (in the DFT context) have been presented by
Casida et al.57

The unphysical TDHF excitation energies obtained for large R
are exacerbated by the fact that while ground state HF theory is
variational, TDHF is not; for an arbitrary state, the TDHF total
electronic energy is no longer a rigorous upper bound on the
exact energy. A simple way to restore the variational nature of the
excited state energies is to use configuration-interaction singles
(CIS) instead of TDHF theory. Figure 6c shows that the CIS
excitation energies are close to those from ΔSCF. The excitation
energies become negative at large R, rather than imaginary, due to
the Hermitian nature of the CIS matrix equations (see section 4).

The key result of this analysis is that as the triplet stability
measure decreases toward zero, so the corresponding time-
dependent triplet excitation energy also approaches zero, thereby
increasingly underestimating the exact value; when the stability
measure becomes negative (i.e., when there is a triplet in-
stability), the excitation energy becomes imaginary. By contrast,

CIS is much less problematic. Returning to the TDDFT results in
Figures 2�5, we have determined DFT stability measures for the
α = 0 and α = 1 functionals for each of the triplet excitations;
results are presented in Table 1. For the two states that
(beneficially) increase significantly in energy with α, the stability
is large and increases between α = 0 and α = 1. For the one state
whose energy is approximately independent of the amount of
exact exchange, the stability varies only slightly. For the three
states that drop in energy, but do not become imaginary, the
stability reduces significantly. For the three states whose energy
drops and becomes imaginary, the stability again reduces sig-
nificantly and becomes negative by α = 1. The fact that the
dropping triplets are associated with a significant reduction in the
stability indicates that the drop—and the resultant underestima-
tion from functionals such as B3LYP and CAM-B3LYP—can be
understood in terms of the ground state triplet instability
problem, consistent with refs 50 and 54. Analogous results for
formaldehyde and formamide are presented in the Supporting
Information. We note that an alternative explanation for the
underestimated triplet state energies in ethene was recently
proposed by Cui and Yang.28

Given that it is the inclusion of exact exchange that exacerbates
the triplet instability problem, it is also pertinent to calculate the
stabilities of these states for the Hartree�Fock wave function.
Results are presented in Table 1, and the trend closely follows
that of the α = 1 DFT results. [We have confirmed that in cases
where the Hartree�Fock stability is large (>2 eV), TDHF and
CIS yield similar triplet excitation energies; when the stability is
small but positive, TDHF excitation energies are notably smaller
than CIS; when the stability is negative, TDHF excitation
energies are imaginary, while the CIS values remain real.] This
leads us to recommend that a Hartree�Fock stability analysis be

Figure 5. Excitation energies of naphthalene (see caption to Figure 2). The TDDFT 3B2u excitation energy become imaginary at large α. Note that the
scale of this figure is different from that of Figures 2�4.
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undertaken when computing triplet excitations, to identify states
for which the presence of exact exchange in the TDDFT func-
tional is undesirable: The analysis in Table 1 and the Supporting
Information (albeit on a limited number of molecules) suggests
that in cases where the Hartree�Fock stability is less than∼2 eV,
the inclusion of exact exchange in the functional will lead to a
decrease in excitation energy. If GGAs underestimate the triplet
excitation energy (as they often do), then such a decrease will be

detrimental. Of course, one could alternatively determine the
stability of the DFT calculation directly, but test calculations
suggest that the molecule-dependent amount of exact exchange
introduced by Coulomb-attenuated/range-separated functionals
yields a less-well-defined threshold.

4. THE TAMM�DANCOFF APPROXIMATION IN TDDFT

The CIS approximation corresponds to setting B = 0 in the
TDHF generalized eigenvalue equations

A B
B A

 !
X
Y

 !
¼ ω

1 0
0 �1

 !
X
Y

 !
ð2Þ

which is known as the Tamm�Dancoff55,56 approximation
(TDA) to TDHF. The TDDFT equations take exactly the same
form (with different matrices A and B52), and so the TDA can
equivalently be applied54 to TDDFT by setting B = 0; see ref 71
for an earlier, related concept. Physically, the TDA corresponds
to allowing only excitation between occupied�virtual orbital
pairs (given by the eigenvector X) as opposed to conventional
TDHF/TDDFT, where virtual�occupied de-excitation contri-
butions (Y) are also allowed. The form of the TDA eigenvalue
equation precludes the occurrence of imaginary excitation en-
ergies since A is Hermitian. We note that there is sometimes
concern52 regarding the validity of transition intensities (oscillator
strengths) computed from calculations involving the TDA as
they do not satisfy the Thomas�Reiche�Kuhn sum rule.72�74

However, this is of no relevance to the calculation of non-spin�
orbit coupled triplet transitions, and we therefore do not con-
sider its implications in this study. The TDA is often used as an
approximation to full TDDFT due to its relative computational
simplicity. Results are often in excellent agreement with full
TDDFT (the discrepancy is usually considerably smaller than
between CIS and TDHF), but there are instances where TDA
yields a better model of reality.53,54,58,66,75

Given that CIS is a significant improvement over TDHF when
there is a failure associated with triplet instability problems, we
now quantify the extent to which the TDA fixes the problematic
TDDFT excitations of section 2. We return to Figures 2�5 and
now consider the dark solid lines, which present results for TDA
excitation energies, as a function of the amount of exact exchange

Figure 6. (a) HF electronic energy, (b) HF 3Σu
+ stability measure, and

(c) 1Σg
+f 3Σu

+ excitation energies, for H2 as a function of bond length R,
using the d-aug-cc-pVTZ basis set.

Table 1. Stability Measures for the DFT Functionals in eq 1
with α = 0, α = 1, and for Hartree�Fock

molecule state α = 0 α = 1 HF

ethene
3B1u 3.22 0.81 0.05
3B3u 6.04 7.30 6.61

butadiene
3Bu 2.21 �0.16 �0.84
3Ag 4.06 1.88 1.16

benzoquinone
3B1u 1.89 �0.84 �1.41
3B3g 2.21 0.33 �0.30
3B1g 1.25 2.57 2.40

naphthalene
3B2u 2.24 �0.59 �1.25
3B3u 3.47 2.99 2.66
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α. We use the NWChem 6.0 program76 for the calculation of
TDA excitation energies.

First consider ethene in Figure 2. The use of the TDA leads to
a significant increase and improvement in the problematic 3B1u
excitation energies. By contrast, the 3B3u excitation energies
barely change. Notably, the TDA also leads to a shift by about
+0.5 eV in the 1B1u state energy—the singlet analogue of the
problematic triplet state—resulting in a significant improvement.
The 1B3u state is barely affected.

For butadiene in Figure 3, the TDA leads to a significant
increase in both of the problematic triplet states, greatly improv-
ing accuracy. The improvement is most pronounced for the 3Bu
state, which was the most problematic. As with ethene, the
corresponding singlet state energy is notably shifted and im-
proved, while the 1Ag state is less affected.

For benzoquinone in Figure 4, the effect of the TDA again
increases as the triplet instability problem becomes more severe
from 3B1g to

3B3g to
3B1u, leading to the correct state ordering for

small values of α; the singlet states are again shifted to higher
energy by proportionate amounts.

Finally, analogous observations are also made for naphthalene
in Figure 5. The TDA leads to a dramatic improvement in the
problematic triplet state. Significantly, the associated shift in the
corresponding singlet state fixes the state ordering for most
values of α (although the energy difference remains poor), con-
sistent with ref 66. This suggests that the origin of the incorrect
state ordering is related to the triplet instability problem associated
with the 3B2u state (see ref 68 for an alternative discussion). We
note that calculations with the CAM-B3LYP functional, which
correctly predicts the state ordering with conventional TDDFT
(by only 0.02 eV), is able to correctly increase the energy
difference between the two states once the TDA is invoked
(the difference becomes 0.18 eV).

Consistent with the findings of ref 54, the results of
Figures 2�5 illustrate the benefit of using the TDA for calculat-
ing triplet excitation energies when there is a triplet instability
problem. Perhaps less expected is the associated effect/improve-
ment of the corresponding singlet states. We end this study by
returning to the full assessment in Figure 1. We have repeated all
calculations using the TDA, and the results are presented as
green bars. The performance of the TDA is impressive, particu-
larly for the triplet states. Indeed, the only error measure that
discernibly degrades is the singlet CAM-B3LYP mean error.

5. CONCLUSIONS

In this study, we highlighted the fact that singlet and triplet
vertical excitation energies in TDDFT can be affected in different
ways by the inclusion of exact exchange in hybrid or Coulomb-
attenuated/range-separated functionals. The improvement upon
the addition of exact exchange is less pronounced for triplet
states, which can be traced to the fact that some triplet excitation
energies become significantly too low. We studied the explicit
dependence of excitation energies on exact exchange for four
representative molecules, illustrating the various behaviors
and quantifying the effect of constant, short-, and long-range
contributions.

We then used the H2 molecule to illustrate the effect of triplet
instabilities on time-dependent excitation energies. As the triplet
stability measure associated with an excitation decreases, so the
corresponding triplet excitation energy increasingly under-
estimates the exact value, possibly becoming imaginary. By

determining DFT stability measures for the states of interest in
the four representative molecules, we verified that the proble-
matic TDDFT triplets can be understood in terms of the ground
state triplet instability problem. We proposed that a Hartree�
Fock stability analysis should be carried out to identify triplet
excitations for which the presence of exact exchange in the
TDDFT functional is undesirable.

We then considered the effect of the Tamm�Dancoff approxi-
mation in TDDFT. The use of the TDA significantly improves
the problematic triplet states, recovering the correct state order-
ing in benzoquinone. It also affects the corresponding singlet
states, recovering the correct state ordering in naphthalene,
which is known to be a significant challenge for approximate
TDDFT. The impressive performance of the TDA is maintained
for the full assessment set, across representative functionals. We
are presently expanding the current work to consider the effect of
triplet instabilities and the TDA on singlet and triplet states for
the more diverse set of molecules/excitations of ref 20 and for a
more diverse set of functionals.
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ABSTRACT: The performance of computationally accessible levels of calculation for the transition states of organocatalytic
reaction has been assessed. Reference post-Hartree�Fock single point energy calculations were used as standards for the gas-phase
Born�Oppenheimer relative energies of pairs of alternative transition states that lead to the two product enantiomers. We show that
semiempirical methods cannot even be relied on to yield qualitatively correct results. The geometries (optimized, for instance, with
DFT) have a large impact on the results of high-level post-HF calculations, so that it is essential to use an adequate DFT technique
and basis set. DFT can yield quantitatively correct results that are consistent with post-HF calculations if functionals that consider
dispersion are used. Geometries for large systems show larger errors than those for smaller ones but are treated better by functionals
such as M06-2X and w97Bxd that include dispersion implicitly or explicitly. Local correlation techniques introduce errors of
comparable magnitude to those given by different levels of geometry optimization. We recommend RICC2/TZVP//M06-2X/
TZVP, RI-MP2/TZVP// M06-2X/TZVP, andM06-2X/TZVP//M06-2X/TZVP calculations in that order, depending on the size
of the system.

’ INTRODUCTION

Aims. Quantum mechanical calculations have long been impor-
tant tools in mechanistic organic chemistry. This importance has
increased with the availability of accurate modern DFT techniques.
Valuable information about the atomistic details of reaction me-
chanisms that is not available from any other source can be obtained
from calculations. Often, the structures and energies of transition
states are of most interest. These details of transition states not only
tell us qualitatively which reaction pathway is most likely but can
also provide a theoretical estimate of the product distribution in the
case of kinetic reaction control. Calculations have now advanced to
the stage that they can be used to evaluate proposed reaction
pathways or to predict the properties of unknown systems, as has
been shown successfully for several enantioselective organocatalytic
reactions.1,2 It is therefore of paramount importance to be able to
assess the reliability and probable error limits of different calcula-
tional methods for typical organic reactions systems. This is especially
important as quantum mechanical calculations are now routinely
applied to systems large enough that dispersion interactions between
nonpolar residues become important.3�5 Surprisingly, there have
been relatively few systematic studies of the quality of commonly used
methods. While several methodological benchmarks have been
carried out that focus either on achiral activation barriers6�8 or on
relative conformational energies,9 to our knowledge only two studies
on relative enantiomeric or diastereomeric transition-state energies

have been carried out to date, by Breslow and co-workers10 and
Simon andGoodman11 (a concise review ofDFTbenchmark studies
has been published by Ramos et al.12). The reaction yield and its
enantio- or diastereoselectivity are the quantities of most interest to
experimentalists. Whereas the yield is only marginally suitable for
theoretical prediction (because it can be affected bymany extraneous
factors such as competing reactions), selectivities have long been the
goal of predictive calculations at many levels.2,11 We therefore
concentrate on this aspect of the calculations, i.e., the difference
between activation energies, rather than accurate prediction of their
absolute values, because it provides an estimate of the quantity most
needed in synthetic research.
Breslow and co-workers concentrated on single-electron trans-

fer and radical reactions, and their primary aim was to optimize
predictions of enantioselectivities. Their work considered only two
parametrized DFT methods, B3LYP13 and M06-2X,14 and con-
centrated on the suitability of different solvent treatments for
improving the quantitative prediction of reaction products. Pre-
dictions were good for all systems for which gas-phase UB3LYP/
6-31G(d) energies alone gave good agreement with experimental
findings, but the authors also noted the shortcomings of their
approach for systems in which dispersion interactions are impor-
tant. In these cases, even the newer of the two functionals, M06-2X,
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which treats dispersion effects implicitly, did not improve the results.
However, the results of this study are unlikely to be applicable to the
closed-shell electrophile/nucleophile reactivity usually involved in
organocatalysis. As we were carrying out this study, Simon and
Goodman reported a benchmark study on a large set of DFT
methods, which they used to model known transition states that
have been characterized in the literature.11 They point out thatmost
hybrid andmeta-GGA functionals yield similar results for optimized
structures. Because they did not carry out high-level reference
calculations, they could not identify a recommended functional
for optimizations but did focus on the vibrational free-energy
corrections for the calculated structures and found that the resolu-
tion of the integration grid in the Hessian calculation is vital for
accurate free-energy corrections. They also noted that the deviations
in energies and geometries can be high throughout the spectrum of
functionals.
These two studies,10,11 while instructive, are limited in that

they focus on improving results that already agree well with
experimental results. Our aim was to benchmark practical
methods with the ultimate aim of predicting stereoselectivity,
rather than to find the best corrections to apparently accurate
gas-phase Born�Oppenheimer energies. We have therefore
focused on a larger set of basis sets, DFT functionals, post-HF
methods, and semiempirical Hamiltonians in order to identify
practical techniques that agree well with the highest-level calcula-
tions. Here, we therefore first consider the fundamental problem
of how to calculate good gas-phase data, which can then be
combined with appropriate solvent and free-energy corrections
to allow us to design versatile computational models for quanti-
tative predictions for a large number of important reactions.
As our aim is to identify reliable computational predictions for

routine studies, we focus on four known enantioselective and/or
diastereoselective organocatalytic reactions from the work of
Houk and Bahmanyar,15 Tomassini et al.,16 Pap�ai et al.,17 and
Tsogoeva et al.18 These are two proline-catalyzed aldol addition
reactions with 40�47 atoms in the reaction system, a nitro-
Michael reaction via an enamine intermediate with 67 atoms, and
a thiourea-catalyzed nitro-Michael reaction via an amine inter-
mediate with 81 atoms. These varied systems allow us to study
the influence of different intermolecular interaction patterns on
the quality of the results. While the small proline-catalyzed
reactions are dominated by covalent and H-bond interactions,
dispersion interactions play a more important role for the larger
nitro-Michael reactions.

’METHODS

In order to test a wide spectrum of computationally economic-
al techniques, we have investigated three commonNDDO-based
semiempirical molecular-orbital (MO) techniques, AM1,19

PM3,20,21 and PM6;22 Hartree�Fock (HF) ab initio theory;
and six popular DFT functionals. The six DFT methods are
PBE23 as a pure generalized gradient approximation (GGA)
functional, B3LYP13 as a hybrid-GGA functional, TPSS24 and
TPSSH24 as meta-GGA functionals (pure and hybrid), and, as
newer representatives, Head-Gordon and Chai’s more recent
wB97xd functional, which includes an explicit empirical dis-
persion correction,25 and M06-2X by Zhao and Truhlar,14

which implicitly corrects for dispersion and for which very high
accuracy for small organic transition states was reported.26 All
DFT calculations were carried out with the Pople 6-31G(d)
double-ζ27,28 and the Ahlrichs TZVP triple-ζ29 basis sets.

In order to provide benchmark results for comparison, we also
performed ab initio post-HF single-point calculations. Since
direct MP230,31 and CCSD32 scale poorly,33 we used RI-MP234

and RI-CC235 (note that RICC2 employs the CC2 approxima-
tion36 in addition to RI). The resolution of identity (RI) appr-
oximation allows us to calculate single-point energies even for the
largest systems with a polarized triple-ζ basis set. Geometry
optimizations beyond RI-MP2 or single-point calculations with
larger basis sets on systems of this size remain prohibitive.
Unfortunately, CCSD(T), which is often referred to as the “gold
standard” in quantum chemistry, is computationally still too
costly to be used for the systems considered here.37 The
localized, and therefore theoretically linear scaling, LCCSD(T)
ansatz of Werner and Sch€utz38�43 was used to test the influence
of triple excitations for the electronic energies. LCCSD(T)
calculations were performed using Dunning’s cc-pVTZ basis
set.44 Different polarized triple-ζ basis sets were used for RI
and LCCSD(T) calculations because of the authors’ recom-
mended fitting basis sets. We could perform LCCSD(T) single-
point calculations for all but the largest system.

’CALCULATED TRANSITION STATES IN DETAIL

Aldol Reactions.The transition states used in this study can be
divided in two groups, the smaller aldol addition systems and the
larger nitro-Michael additions. The first group consists of systems
1 and 2 (Scheme 1) from the work of Houk and Bahmanyar15 and
of system 3 (Scheme 2) from the work of Tomasini et al.16

Systems 1 and 2 consist, in turn, of two sets of two diastereomeric
transition states 1a,b and 2a,b (see Scheme 1).
System 3 consists of two diastereomeric transition states 3a,b

and a third 3c, which only differs from 3b by a proline ring flip
and is known to be very similar in energy to 3b16 (see Scheme 2).

Scheme 1. Transition States for the Aldol Reaction Systems 1
and 2

Scheme 2. Transition States for the Aldol Reaction System 3
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In all cases, the major interactions between the catalyst and the
reacting system are either covalent or hydrogen bonds. Both the
C�C-bond formation and a simultaneous proton transfer must
be described correctly for this reaction. The size of the systems
ranges from 41 (20 non-hydrogen) to 67 (33 non-hydrogen)
atoms with molecular weights ranging from of 225 g mol�1 to
301 g mol�1 (i.e., 150�160 electrons; 384�408 basis functions
with 6-31G(d) and 526�562 basis functions with TZVP).
Nitro-Michael Reactions. For the larger systems, we used the

transition states of two thiourea-catalyzed nitro-Michael reac-
tions, published by Tsogoeva et al. (4)18 and Papai et al. (5).17

The nitro-Michael reaction 4 (Scheme 3) consists of the two
diastereomeric transition states 4a and 4b. Stereocontrol is
achieved mainly by covalent and H-bond interactions. For
transition state 4a, we can also expect the formation of a π�π-
interaction pattern between the phenyl groups of the nitrostyr-
ene and the catalyst, in contrast to 4b, for which this interaction is
not possible The size of the system leads us to expect dispersion
interactions between the reaction partners to be more important
than for the aldol reactions. System 4 consists of 67 atoms
(33 non-hydrogen) and has a molecular weight of 464 g mol�1

(250 electrons; 643 basis functions with 6-31G(d) and 871 basis
functions with TZVP).
For 5 (Scheme 4), two pairs of diastereomeric transition states

5a and 5b and 5c and 5dwere investigated. This system is mainly
controlled by H-bond interactions, and we can also expect
dispersion interactions to be important. In comparison to 4,
system 5 is expected to show increased flexibility of the alignment
of the two reactants at the catalytically active site. This was
reported by P�apai et al., who observed low-energy normal modes
for bending of the reactants in reactant complexes and the
transition state.17 TS 5 is the largest system considered, with
81 atoms (41 non-hydrogen) and a molecular weight of 662 g
mol�1 (346 electrons; 831 basis functions with 6-31G(d) and
1123 basis functions with TZVP).

’RESULTS AND DISCUSSION

Reference Energies. As definitive a reference calculation as
possible is necessary in order to be able to judge the quality of the
results. The experimentally observed product distributions can
only provide guidance, since the conditions of the gas-phase
calculations do not necessarily correspond to the experimental
ones. This is particularly important, as small effects (entropy,
solvation) can control kinetic enantioselectivity, which reacts
extremely sensitively to small changes in activation energies. In
our case, gas-phase Born�Oppenheimer geometries and ener-
gies are the relevant target properties. We decided to use (RI-)
MP2 and CCSD (as RI-CC2 or LCCSD) and local LCCSD(T)

single-point calculations as our references. The systematic nature
of these post-HF calculations allows us to approach the con-
verged relative energies, so that they provide a good control for
the DFT methods. As optimizations with the higher post-HF
methods are too expensive, only single-point calculations were
used systematically for all systems. However, we were able to
optimize systems 1�4 using MP2. We expected a large influence
of the optimization level on the post-HF energies, so that single-
point energies were calculated for the optimized geometries
obtained with each functional. The cheaper MP2 single points
were carried out on all DFT double-ζ and triple-ζ geometries,
while the more extensive RICC2 and LCCSD(T) energy calcu-
lations were limited to DFT triple-ζ optimized geometries. All
single-point calculations were carried out using augmented
triple-ζ basis sets, which are sufficient to give accurate interaction
energies and low basis set superposition errors (BSSE).45 In the
ideal case, the CCSD single-point energy differences should not
vary strongly for geometries optimized at different levels.
Although CCSD/TZVP energies are not definitive, they should
not deviate strongly from the “correct” values, so that they
provide at least a strong indication of the reliability of other
techniques. The same is true for the LCCSD(T)/cc-pVTZ
calculations, which are formally more accurate than the CCSD
values (because they include a perturbational correction triple
excitations) as long as the local-orbital approximation is applic-
able and accurate enough for our systems.
In order to test whether the local approximation is suitable for

our purposes, TheMP2 and CCSD single points can be compared
with their local LMP2 and LCCSD equivalents. We can safely use
the local approximations if the energies agree by significantly less
than the change caused by the perturbational triples correction.
All energies discussed in this section are differences between

the electronic energies of pairs of transition states optimized at
the different DFT levels and are denoted ΔΔETSA‑TSB:

ΔΔETSA-TSB ¼ ΔE/A �ΔE/B ð1Þ

Scheme 3. Transition States for the Nitro-Michael System 4 Scheme 4. Transition States for the Nitro-Michael System 5
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where ΔEA
* and ΔEB

* are the calculated Born�Oppenheimer
energies for transition states A and B, respectively.
The reason for using this difference as the target value is

explained above. We first compare the DFT energy differences
with reference values and also the effect of using geometries
optimized with different DFT functionals on the corresponding
MP2 and CC2 single points. Table 1 shows the mean and the
standard deviations of theΔΔE values from themean for all pairs
of comparable transition states for the DFT/MP2, DFT/CC2,
and MP2/CC2 pairs. The mean values indicate how well each
calculational level reproduces the values calculated at higher
levels, and the standard deviations indicate the spread of the
results caused by using different functionals for the DFT
methods and the different DFT-optimized geometries for the
post-HF calculations.
Table 1 shows that the differences in electronic energy for the

pairs of transition states (ΔΔE) vary considerably between the
methods considered. The variation between the DFTmethods is
the largest, as expected, because both the geometries and the
functionals used vary. For the sets of comparable transition
states, the ΔΔE values vary on average by (0.95 kcal mol�1.
For the ab initio single points, the deviation is still in the range
of (0.66 (for RI-MP2) to (0.77 kcal mol�1 for (RI-CC2). If
the largest system is omitted, the deviation is smaller at (0.39
(for RI-CC2) to (0.51 kcal mol�1 (for LCCSD). We can thus
conclude that the DFT-optimized geometries cause non-negli-
gible differences in the calculated single-point energies for
reactivity studies on enantioselective systems. Remarkably, the
deviations caused solely by the different geometries in the single-
point calculations are almost as high as those found among the
DFT methods themselves. Including the largest system, 5, for
which we expect the largest geometric deviations, leads to an
increase in the deviation of the single-point energies. The choice
of an appropriate economical level of calculation for geometry
optimizations is therefore important and will be considered below.
It is known that the errors caused by the RI approximation

with accurate fitting basis sets can be kept well below the basis set
errors but increase linearly with the number of basis functions.46

For the systems studied, MP2 optimizations without density

fitting were possible for systems 1a,b and 2a,b. An average
difference from the RI-MP2 single points of 0.18 kcal mol�1 is
found, well below the standard deviation of 0.66 kcal mol�1

between the RI-MP2 single-point energies (Table 1). We can
therefore conclude that the error induced by the RI approxima-
tion is well below that introduced by optimizing the geometry at a
more economical level of theory.
We also examined whether localized-orbital approximations

introduce errors that would affect the accuracy of our predictions
for the systems considered. The results are shown in Table 2
with the statistics for the comparison of RI-MP2 and MP2
calculations.
The local-RI and standard-RI results show significant devia-

tions in the energies between LMP2 and MP2 and between
LCCSD and RI-CC2. As we can see from Table 2, the deviation
for the local approach is always comparable to or significantly
larger than the additional perturbational triples corrections.
We thus cannot expect to improve the results in our case using
the local approach. The most reliable method for single-point
energies in this case is thus RI-CC2.
In 11 of the 13 transition states, full optimization at the RI-

MP2 level was possible. The root-mean-square difference of
interatomic distances (geometric RMS) between all pairs of
atoms was used to compare the geometries optimized at the
different DFT levels to those optimized with MP2. As shown in
Table 3, the best agreement with MP2 geometries is given by
M06-2X, with average and maximum geometric RMSDs of only
0.11 Å and 0.27 Å, respectively. The next best functional in terms
of the average RMSD is wB97xd (0.31 Å), but it gives the largest
RMSD from theMP2 geometry of all (1.47 Å) for transition state
4b. The same trend can be observed for energies. RI-MP2 single-
point energies on DFT-optimized geometries show very good
agreement with RI-MP2 optimized energies for M06-2X and
wB97xd. RI-MP2 single points on optimizations withM06-2X lie
within 2.05 kcal mol�1 (maximum error) of the energies
obtained for the RI-MP2-optimized geometries (mean error:
0.94 kcal mol�1). For pairs of transition states, the average error
cancels out to only 0.16 kcal mol�1. wB97xd performs relatively
well. wB97xd/TZVP//RI-MP2/TZVP single-point calculations

Table 1. Mean Electronic Energy Differences ΔΔETSA‑TSB with Standard Deviations (all values in kcal mol�1)a

DFT RI-MP2 RI-CC2 L-MP2 LCCSD LCCSD(T)

1a�1b 0.81( 0.54 1.49 ( 0.11 1.50 ( 0.15 1.14 ( 0.33 0.54 ( 0.22 0.55 ( 0.25

2a�2b 3.56( 0.86 5.08 ( 0.25 5.36 ( 0.32 4.93 ( 0.12 4.84 ( 0.35 4.83 ( 0.33

3a�3b 0.11( 0.40 0.78 ( 0.53 0.68 ( 0.39 0.67 ( 0.83 0.28 ( 1.00 0.72 ( 0.89

3a�3c 1.02( 0.15 0.97 ( 0.04 1.35 ( 0.17 1.37 ( 0.24 0.79 ( 0.18 0.98 ( 0.11

3b�3c 1.14( 0.37 1.75 ( 0.54 2.03 ( 0.33 2.04 ( 0.73 1.07 ( 1.11 1.71 ( 0.93

4a�4b 3.14( 1.54 5.60 ( 1.07 4.87 ( 0.97 3.10 ( 0.77 4.15 ( 0.21 3.58 ( 0.24

5a�5b 3.79( 1.31 5.46 ( 1.01 6.05 ( 1.24

5a�5c 3.27( 0.85 5.39 ( 0.89 5.77 ( 1.34

5a�5d 0.17( 1.25 0.97 ( 1.24 1.71 ( 1.36

5b�5c 7.06( 1.79 10.85 ( 0.55 11.82 ( 1.14

5b�5d 3.96( 1.59 6.42 ( 1.05 7.76 ( 1.15

5c�5d 3.09( 0.76 4.43 ( 0.61 4.06 ( 0.66

average standard deviation

all data 0.95 0.66 0.77

1�4 only 0.64 0.42 0.39 0.50 0.51 0.46
aThe DFT column shows the statistics for fully optimized geometries using the different DFTmethods (PBE, B3LYP, TPSS, TPSSH, w97XD, and M06-2X
with the TZVP basis set). The other columns illustrate the effect of using the different DFT-optimized geometries onΔΔETSA‑TSB at the given level of theory.



3590 dx.doi.org/10.1021/ct2002013 |J. Chem. Theory Comput. 2011, 7, 3586–3595

Journal of Chemical Theory and Computation ARTICLE

show an average deviation in total energy from fully optimized
RI-MP2/TZVP calculations of 1.44 kcal mol�1, which cancels
out to 0.20 kcal mol�1 for the ΔΔETSA‑TSB energy differences
between pairs of transition states.
Table 4 shows that the differences ΔΔE between pairs of

transition states for MP2 and CC2 are also smallest for the geom-
etries optimized with M06-2X (mean value: 0.19 kcal mol�1).
The same value is found for the geometries optimized with the
wB97xd functional. For all other DFT methods, both values
increase rapidly. In combination with the excellent agreement of
M06-2X geometries with MP2 geometries, these results suggest
that geometries optimized with M06-2X are most suitable for
higher-level single-point calculations. We have therefore used
CC2/TZVP//M06-2X/TZVP energies as the reference for asses-
sing the performance of further methods.
Semiempirical MO Techniques. Semiempirical MO techni-

ques can handle very large systems easily47 and would therefore

be extremely useful for fast scans to provide guidance for experi-
mental studies if the results were reliable enough. Chart 1 shows
the results obtained for the semiempirical MO techniques tested.
The results for the different systems vary for the semiempirical

methods. While at least qualitatively correct descriptions are
possible for the two nitro-Michael reactions, the case for the two
aldol reactions is less encouraging. In contrast to a synchronous
formation of the new C�C and O�H bonds found in the DFT
optimizations, AM1 and PM3 find the reaction proceeds via a
multistep path with separated C�C-bond formation and proton-
transfer steps, as can be shown by relaxed PES scans along the
newly formed C�C and O�H bonds. The energies shown in
Chart 1 and listed in Table S1 of the Supporting Information
suggest that the qualitative prediction for the selectivity is often,
but not reliably and consistently, correct.
Of the semiempirical methods tested, only PM6 gives results

that are qualitatively consistent with the DFT calculations for the
small systems 1�3. For the larger systems, none of the semi-
empirical methods give reliable energies. Remarkably, the geo-
metries optimized with PM6 are quite accurate in some cases.
The RMSD of all interatomic distances relative to the MP2-
optimized geometries is 0.42 Å for 4a and 0.61 Å for 4b,
comparable to or better than most DFT optimizations for these
systems (see Table 6 for DFT results).

’DFT-METHODS

Energies. The results shown above suggest that some DFT
methods can provide results that are consistent with post-HF ab

Table 2. Mean Absolute Deviation of ΔΔE (kcal mol�1) for Local and Nonlocal Approaches for Pairs of Transition States
Compared with the Effect of Higher Order Excitationsa

1a�1b 2a�2b 3a�3b 3a�3c 3b�3c 4a�4b mean ( std dev.

LMP2-MP2 0.40 0.26 0.69 0.36 0.72 1.68 0.69 ( 0.52

LMP2-LCCSD(T) 0.58 0.30 0.46 0.48 0.69 0.73 0.54 ( 0.16

LCCSD-CC2 0.95 0.52 0.75 0.56 1.20 0.74 0.79 ( 0.25

LCCSD-LCCSD(T) 0.13 0.04 0.45 0.19 0.63 0.57 0.34 ( 0.25
aAs for Table 1, the values given are the mean of the values calculated using all DFT levels for geometry optimization.

Table 3. RMS Difference of Interatomic Distances between Geometries Optimized at the DFT/TZVP and RI-MP2/TZVP Levels
(all values in Å) and MP2 Single-Point Energy Differences on Both Geometries, Calculated for Individual Transition States and
Pairs of Transition States

RMS difference of interatomic distances [Å]

functional

PBE TPSS B3LYP TPSSH M06-2X wB97xd

average 0.42 0.41 0.47 0.42 0.11 0.31

maximum 1.18 0.93 1.27 1.16 0.27 1.47

energy deviation from the RI-MP2/TZVP: energy differences between pairs of transition states [kcal mol�1]

PBE TPSS B3LYP TPSSH M06-2X wB97xd

average 0.29 0.48 0.77 0.86 0.16 0.20

maximum 0.90 1.75 2.72 1.72 0.92 0.36

individual TS 5.91 5.40 4.49 3,71 0.94 1.44

average

maximum 11.26 10.54 9.17 7.52 2.05 2.82

Table 4. Mean Absolute Deviation of ΔΔE Values (kcal
mol�1) Calculated with MP2 and CC2 at the DFT-Optimized
Geometries from Those Optimized with RI-MP2

ΔΔE MP2 � ΔΔE CC2

geometry

PBE TPSS B3LYP TPSSH M06-2X wB97xd

mean absolute deviation 1.07 1.03 1.18 1.08 0.19 0.19

maximum deviation 3.60 2.97 3.15 2.71 0.54 0.51
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initio data. A question of practical relevance is how to achieve
quantitatively correct results at the least computational expense.
In this section, we investigate the performance of less computa-
tionally expensive methods relative to reference (CC2/TZVP//
M06-2X/TZVP) data. We present the results of DFT optimiza-
tions with double- and triple-ζ basis sets and MP2/TZVP single
points on the DFT-optimized geometries. The calculational
protocol can be simplified by calculating MP2 in place of CC2
single points because MP2 is approximately 10 times faster than
CC2 for the cases tested. A second possibility is to use the DFT
results directly, which avoids the post-HF single point calcula-
tions, which are particularly expensive for large systems. If a
further increase in efficiency is necessary for the largest systems,
either smaller basis sets or less computationally expensive levels
of DFT can be used. In particular, pure GGA and meta-GGA
calculations can benefit from density fitting in RI approaches,
which can lead to an acceleration of up to a factor of ten48 (>30 in
combination with multipole approximations49).

Reducing the level of the single-point calculations from CC2
to MP2 hardly affects the results, as shown in Table 5.
Table 5 and Chart 2 (bottom right graph) show that MP2/

TZVP//M06-2X/TZVP calculations have an average deviation
from the reference energies of only 0.20 kcal mol�1 (with only
one case with a deviation larger than 0.50 kcal mol�1, data shown
in the Supporting Information). Using geometries optimized at
other DFT levels leads to a significant degradation in perfor-
mance, giving both larger average deviations and strong outliers.
Only for the small systems (1�3) is PBE an economical
alternative to M06-2X, with an average deviation of 0.19 kcal
mol�1

Surprisingly, using a different basis set hardly changes the
situation. We expected less accurate energies for single-point
calculations on DFT/6-31G(d) optimized geometries. The
errors calculated for MP2 single points on DFT-optimized
geometries with the TZVP (Chart 2, bottom-right) and 6-31G-
(d) (Chart 2, top-right) basis sets show that this is true in most

Chart 1. ΔΔE (kcal mol�1) Calculated with Semiempirical Molecular Orbital Theory for All Pairs of Transition Statesa

aLeft: aldol reactions. Right: nitro-Michael reactions. AM1 and PM3 results are estimated from relaxed PES scans because these methods predict
multistep reactions. Reference energies calculated at the CC2/TZVP//M06-2X/TZVP level.

Table 5. Mean Absolute Deviation ofΔΔE (kcal mol�1), Calculated at DFT andMP2 Levels Based onDFTGeometries, from the
Reference Level (RICC2/TZVP//M06-2X/TZVP) for All Pairs of Transition States

geometry optimization energy calculation PBE TPSS B3LYP TPSSH M06-2X wB97XD

all systems

DFT/6-31G(d) RI-MP2/TZVP 0.83 1.12 1.01 1.47 0.72 0.44

DFT/6-31G(d) 1.45 1.38 1.48 1.41 1.28 0.86

DFT/TZVP RI-MP2/TZVP 0.68 0.67 1.02 0.99 0.20 0.74

DFT/TZVP 1.88 2.20 2.32 2.15 1.06 0.75

aldol reactions (1�3)

DFT/6-31G(d) RI-MP2/TZVP 0.22 0.67 0.33 1.69 0.06 0.31

DFT/6-31G(d) 1.02 1.10 1.21 1.14 0.37 0.47

DFT/TZVP RI-MP2/TZVP 0.19 0.3 0.30 0.99 0.07 0.20

DFT/TZVP 1.18 1.37 1.63 1.36 0.36 0.53

nitro-Michael reactions (4�5)

DFT/6-31G(d) RI-MP2/TZVP 1.18 1.38 1.39 1.35 1.10 0.50

DFT/6-31G(d) 1.70 1.54 1.63 1.57 1.80 1.08

DFT/TZVP RI-MP2/TZVP 0.95 0.88 1.43 0.99 0.26 1.06

DFT/TZVP 2.28 2.68 2.72 2.60 1.46 0.88
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cases. However, the smaller basis set gives lower errors (0.44 kcal
mol�1) for wB97xd. These are even better than those found
with M06-2X geometries optimized with the smaller basis set
(0.72 kcal mol�1).
The computational protocol can be simplified further for vary

large systems by using DFT energies. Chart 2 shows that using
DFT energies, rather than those fromMP2 single points, leads to
a significant increase in the deviations from the reference
energies. The average deviation is larger than 1 kcal mol�1 for
all functionals except wB97xd, for which an error of 0.86 kcal
mol�1 is found with the double-ζ and 0.75 kcal mol�1 with the
triple-ζ basis set. The M06-2X functional performs marginally
less well for energies (mean error = 1.06 kcal mol�1 with the
TZVP basis set) but might be preferred because it gives better
geometries for MP2 single points.
Geometries. For the conventional DFT methods (PBE,

B3LYP, TPSS, and TPSSH), energy differences calculated with
the double and triple-ζ basis sets do not show any improvement
for the triple-ζ basis, but rather the opposite. In order to explain
these findings, the similarity of the geometries optimized at the
different DFT level was studied. The results are shown in Table 6.
For the small systems 1 and 2, PBE, TPSS, B3LYP, and

TPSSH give consistently better results with the smaller basis set.
The opposite is true for M06-2X, and wB97xd performs similarly
with the two basis sets. The results are more mixed for the largest

aldol reaction 3, although on balance, optimizations with the
larger basis set are slightly better. The larger nitro-Michael
reactions 4 and 5 give consistently better results with the larger
basis set for all functionals except wB97xd, which performs
similarly with the DZ and TZ basis sets. Statistically, M06-2X
performs best, followed by wB97xd, as outlined above. However,
both, but especially the latter, show a significant degradation in
performance as the size of the system increases. Nevertheless, the
two functionals that include dispersion implicitly or explicitly
perform better for large systems than the others. Dispersion is the
probable cause of this effect, although it is possible that MP2/
TZVP is overestimating dispersion and therefore contributing to
the error.

’COMPUTATIONAL METHODS

Semiempirical calculations were carried out using VAMP
10.0.50 Transition states where characterized by calculating the
normal vibrations within the harmonic approximation. Restric-
ted potential energy surface scans for the systems 1�3 were
carried out using MOPAC0951 using the distance between the
pairs of atoms defining the two newly formed covalent bonds as
fixed reaction coordinates in steps of 0.1 Å.

DFT and HF calculations were carried out using Gaussian
09.52 All transition states were fully optimized using the PBE,23

TPSS,24 B3LYP,13 TPSSH,24 M06-2X,14 and wB97xd25 functionals

Chart 2. Absolute Deviation and Mean Absolute Deviation (( one standard deviation) of ΔΔE (kcal mol�1) Calculated at DFT
and MP2 Levels on the Basis of DFT Geometries, from the Reference System (RICC2/TZVP//M06-2X/TZVP) for All Pairs of
Transition States (blue, small systems; yellow, large systems)
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in combination with the 6-31G(d)27,28 and TZVP29 basis sets. The
transition states were characterized by calculating the normal
vibrations within the harmonic approximation. All pure GGA
functionals with TZVP basis set were calculated using the density-
fitting approach as implemented in Gaussian 09.

RI-MP2 optimizations and RI post-HF single-point calcula-
tions were carried out with Turbomole 6.2.53 All-electron MP2
and CCSD calculations used the RI (resolution of identity)
approximated approaches RI-MP2 and RI-CC2 with the (def2-)
TZVP54 basis sets.

All localized correlation methods were carried out with
MOLPRO 2010.155 using the Dunning cc-pTZV56 basis set.

The geometrical RMSD between two structures was calcu-
lated as the unweighted RMS deviation of all interatomic
distances.

’CONCLUSIONS

Semiempirical MO theory proved not to be suitable for
calculating ΔΔE values, as neither energies nor geometries are
accurate enough to describe the reactions correctly.

In comparison, DFT methods perform better. The DFT
results are qualitatively correctly rank-ordered for all cases
examined, except for those with energy differences lower than
1 kcal mol�1. However, large quantitative differences exist. Only
the wB97xd and M062X functionals, which consider dispersion
either implicitly or explicitly, gave acceptable energies quantita-
tively consistent with MP2 and CCSD single points, whereby
M06-2X performs best for our test set. CC2/TZVP//M06-2X/
TZVP calculations were used as the most reliable reference
calculations because M06-2X gives geometries that resemble
those obtained with the post-HF ab initio techniques closely.

The gas-phase energy differences for single-point calculations
converge to the correct result at the MP2 level of theory;
additional explicit correlation hardly improves the results.

BSSE effects can be observed when the smaller (6-31G(d))
basis set is used. Remarkably, using the larger TZVP basis set only
improved the results for the modern intrinsic or explicitly
dispersion-corrected functionals. For the conventional DFT
methods, more accurate energies are found for the smaller basis
set. For these functionals, the BSSE contribution apparently
cancels part of the missing dispersion energy. Conventional DFT
methods give good geometries for small systems, but their
performance degrades significantly with increasing system size.
This trend is also found with M06-2X and wB97xd but is less
pronounced, especially for M06-2X.

We were able to show that geometries optimized with the
M06-2X density functional with a triple-ζ basis set can be used in
subsequent post-HF single-point calculations to give very accu-
rate gas-phase energies. Our work complements that of Friesner
et al.10 on the best techniques for calculating solvent effects and
of Simon and Goodman11 on accurate free-energy corrections to
provide an accurate and economical calculational protocol for
predicting the results of kinetically controlled organocatalytic
reactions.

We therefore recommend RICC2/TZVP//M06-2X/TZVP,
RI-MP2/TZVP//M06-2X/TZVP, and wb97xd/TZVP or M06-
2X/TZVP, depending on the size of the system, for calculating
energy differences between alternative transition states in stereo-
selective organocatalytic reactions.

’ASSOCIATED CONTENT

bS Supporting Information. Detailed plot of optimized gas
phase energies at the DFT MP2/DFT and CC2/DFT level
(Chart S1), Table S1 containing semiempirical transition state
energies plotted in Chart 1, gas-phase energies of the individual
structures (Table S2�S10) and energy differences between pairs
of transition states (Table S11), and geometric RMS and C�C
bond length formation data (Table S12). This information is
available free of charge via the Internet at http://pubs.acs.org.
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ABSTRACT:Time-reversible velocity predictors (TRVPs) with increasing orders of the time-reversibility error are developed to be
used with the Verlet integrator for equations of motion with the right-hand side depending on velocities. The method performs
outside a possible SHAKE algorithm to constrain bond lengths and does not require repeated SHAKE iterations nor RATTLE. We
have tested the TRVPs with the Nos�e�Hoover thermostat on four model systems (coupled harmonic and anharmonic oscillators,
liquid argon, SPC/E water, and a small peptide), comparing them to the Gear integrator with the Lagrangian formulation of
constraint dynamics, the Martyna, Tuckerman, Tobias, and Klein (MTTK) method, and the velocity iteration method. The TRVP
method performs similarly to the iteration method. In addition, we discuss three methodology improvements: (i) We tested several
formulas for the kinetic energy compatible with the Verlet/SHAKE algorithm and found that the leapfrog velocities are usually the
best; (ii) we proposed two modifications of the MTTK method; and (iii) we suggest that thermostats directly controlling the
translational kinetic temperature may give more accurate values of some thermodynamic quantities.

1. INTRODUCTION

The Newton equations of motion for atomistic systems relate
accelerations to forces which are functions of positions only, not
velocities. Although many smart methods have been proposed, a
great deal of existing molecular dynamics (MD) code relies on
the simplest Verlet integrator.1,2

Extended Lagrangian methods, as the Nos�e�Hoover thermostat
and Andersen barostat, add a velocity-dependent term to the
equations ofmotion; hence, using the Verlet integrator and its clones
(leapfrog, velocity Verlet, Beeman) directly is no longer possible
because the velocities at time t are known after the forces at time
t have been evaluated. Alternative integration methods include
the predictor�corrector methods,3 of these the Gear integrators4 are
most popular. The integrators, based on the Trotter decomposition
of the Liouville operator,5 may be viewed as an extension of the
Verlet integrator andmay be combinedwith SHAKE andRATTLE.
If one wants to adhere to the Verlet scheme, either iterations can be
used to obtain the velocities or some approximation of these.6

The time reversibility error leading to a drift in the total energy
(Hamiltonian) which should be conserved is worst in the Gear
methods. The MTTK method5 (see Section 2.7.3) is time
reversible, although not symplectic: There is no drift in the total
energy, but the mean quadratic error grows as the square root of
time. In the iteration methods, there is a small drift decreasing
with an increasing number of iterations.

In this paper we propose a velocity predictor so that iterations
can be avoided. The predictor is of the second order (as the
Verlet method), and the main requirement for its construction is
time reversibility. During extensive testing of the methods, we
found several improvements of the simulation methodology.

2. THEORY

2.1. Notation and Kinetic Temperature. Let us consider a
system ofN atoms with massesmi, positions described by vectors rBi,
and velocities by _r! i, i = 1, ..., N. The force acting on particle
i is denoted as fBi. The kinetic temperature is then defined by formula:

Tkin ¼ 1
f k ∑

N

i¼ 1
mi

_r!2

i ð1Þ

where k is theBoltzmann constant, and f=Nd+ fξ� fc is the number
of degrees of freedom. In this formula, d denotes the space
dimensionality, fξ the number of additional degrees of freedom with
quadratic term for the kinetic energy, and fc denotes the number of
constraints, typically bond lengths and conserved quantities
(momentum, angular momentum, and also total energy).
2.2. Nos�e�Hoover Thermostat. We use the Nos�e�Hoover

thermostat as amodel of equations of motion with the right-hand
side containing velocities. The equations of motion of this system
at temperature T are7,8

::
r!i ¼

fBi

mi
� _r!iξ_ ð2Þ

ξ€¼
1
τ2

Tkin

T
� 1

� �
ð3Þ
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Here, ξ is the additional dynamic variable and τ the typical
correlation time of the thermostat. The particle accelerations
depend on all velocities (including ξ

·
which we consider a velocity,

although it is not a velocity in the original Lagrangian formalism7),
whereas the acceleration of the additional variable depends on the
real degrees of freedom only. The equations of the Andersen
barostat1,2 (not considered here) have the same structure.
During integration the following total energy (derived from

the Hamiltonian7) is conserved

ENH ¼ Ekin þ Epot þ f kT ξ þ
τ2ξ_2

2

 !
ð4Þ

whereEkin is the kinetic energy andEpot the potential (configurational)
energy.
2.3. Verlet Method. The Verlet method for eqs 2 and 3 is

respectively

rBiðt þ hÞ ¼ 2 rBiðtÞ � rBiðt � hÞ þ fBiðtÞ
mi

� _r!iðtÞξ_ðtÞ
" #

h2 ð5Þ

ξðt þ hÞ ¼ 2ξðtÞ � ξðt � hÞ þ 1
τ2

TkinðtÞ
T

� 1

� �
h2 ð6Þ

where h is the time step. Various approximations for the
unknown velocities _r! i(t) and ξ

·
(t) as well as the kinetic

temperature Tkin(t) (depending on the velocities) will be
discussed below.
The Verlet method can be rewritten in the leapfrog form using

definition:

_qðt þ h=2Þ ¼ qðt þ hÞ � qðtÞ
h

ð7Þ

where q stands for any coordinate component or ξ. It may be even
advantageous in a computer code to use difference q(t + h)� q(t)
instead of _q(t + h/2). All these variants yield identical trajectories
and need not be distinguished, provided that eq 7 is treated as a
formal definition of symbol _q(t + h/2) (which approximates the
velocity at time t + h/2 up to the order of O (h2)).
2.4. Time-Reversible Velocity Predictor. We propose to

calculate the unknown velocities _qp(t) from the knowledge of
the history (previous positions) by the following predictor:

_qpðtÞ ¼ 1
h ∑
k þ 1

i¼ 0
Aiqðt � ihÞ ð8Þ

where k stands for the (additional) predictor length. For k = 0 the
predictor uses only information known within the Verlet algorithm
at time t, namely q(t) and q(t � h).
To determine constants Ai, i = 0, ..., k + 1, we will use the

method described elsewhere.9 Let us Taylor expand the right-
hand side of eq 8:

∑
k þ 1

i¼ 0
Aiqðt � ihÞ ¼ 1

j! ∑
∞

j¼ 0
Xjq

ðjÞhj

where

Xj ¼ ∑
k þ 1

i¼ 0
ð � iÞjAi

Equation 8 should give the velocity _qp(t) correct up to the second
order (the order of the Verlet method). The following three

equations must be thus satisfied

X0 ¼ ∑
k þ 1

i¼ 0
Ai ¼ 0 ð9Þ

X1 ¼ � ∑
k þ 1

i¼ 0
iAi ¼ 1 ð10Þ

X2 ¼ ∑
k þ 1

i¼ 0
i2Ai ¼ 0 ð11Þ

There is no solution for k = 0, therefore the minimum predictor
length is k = 1. The first error term in eq 8 is then X3h

2; it is even
and therefore it does not cause time irreversibility. The next term,
X4h

3, causes time irreversibility of the third order O (h3); it
means that running a simulation with doubled time step multi-
plies the energy drift eight times.
If we consider k > 1, we can achieve a better time reversibility

by nullifying the terms at odd powers of h:

X2j ¼ ∑
k þ 1

i¼ 0
i2jAi ¼ 0, j ¼ 1, 2, :::, k ð12Þ

The solution of eqs 9�12 is

A0 ¼ 2k þ 1
k þ 1

A1 ¼ �2ð2k þ 1Þ 1
k þ 2

A2 ¼ þ2ð2k þ 1Þ k
ðk þ 2Þðk þ 3Þ

A3 ¼ �2ð2k þ 1Þ kðk� 1Þ
ðk þ 2Þðk þ 3Þðk þ 4Þ

l

or in a compact form

Ai ¼ ð� 1Þið1� δ0i=2Þ
2k þ 2
k þ 1� i

 !
=

2k
k

 !

where δ stands for the Kronecker delta.
2.4.1. Proof.To prove the above statement, let us first consider

expressions forX2j, j = 0,1, ..., k. They are composed of termsAii
2j,

i > 0, which we write as

Aii
2j ¼ 1

2
½Aið � iÞ2j þ Aið þ iÞ2j�

The equation for X2j, j > 0, then becomes

2
2k
k

 !
ð � 1Þk þ 1X2j ¼ þ 2k þ 2

0

 !
ð � k� 1Þ2j

� 2k þ 2
1

 !
ð � kÞ2j þ 2k þ 2

2

 !
ð � k þ 1Þ2j

� 3 3 3
2k þ 2
2k þ 2

 !
ðk þ 1Þ2j ð13Þ

This is the operator of the (2k + 2)-th difference applied to
function f(j) = (j� n� 1)2j, and therefore the result is 0 for 2k +
2 > 2j, i.e., je k.3 (The difference operator is defined by Δf(j) =
f(j)� f(j � 1). A degree of a polynomial is decreased by one by
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applying this operator. The sum in eq 13 then equals Δ2k+2f(j)
because the powers of the difference operator contain binomial
coefficients with alternating signs, as can be shown by using the
Pascal triangle.)
It remains to calculateX1. After inserting for Ai, eq 10 becomes

2k
k

 !
X1 ¼ 2k

k

 !

¼ 2k þ 2
k

 !
� 2

2k þ 2
k� 1

 !

þ 3
2k þ 2
k� 3

 !
� þ 3 3 3 ð14Þ

To prove it, we recursively expand the binomial coefficient:

2k
k

 !
¼ 2k þ 1

k

 !
� 2k

k� 1

 !

¼ 2k þ 1
k

 !
� 2k þ 1

k� 1

 !
þ 2k

k� 2

 !

l

¼ 2k þ 1
k

 !
� 2k þ 1

k� 1

 !
þ 2k þ 1

k� 2

 !

� þ :::

and then apply the same recursive expansion to every term in the
last expression.
2.4.2. Final formula for TRVPs. It may be useful to express _qp(t)

using the first differences. The advantages include smaller round-
ing errors and easier conversion to the Gear-type methods. The
algorithm is then closer to the leapfrog form:

h _qPRðtÞ ¼ ∑
k

i¼ 0
Bi½qðt � ihÞ � qðt � ½i þ 1�hÞ� ð15Þ

It holds B0 = A0 and

Bj ¼ ð� 1Þjð2k þ 1Þ kðk� 1Þ 3 3 3 ðk þ 1� jÞ
ðk þ 1Þðk þ 2Þ 3 3 3 ðk þ 1 þ jÞ

or recursively

B0 ¼ 2k þ 1
k þ 1

ð16Þ

Bj ¼ � Bj�1 � k þ 1� j
k þ 1 þ j

, j > 0 ð17Þ

which can be easily coded.
The drift in the total energy is of the order of h2k+1.
2.5. Velocity Estimators and Kinetic Temperature. Several

approximations of velocities can be used to calculate the kinetic
temperature, eq 1. The simplest possibility is the difference
formula which is equivalent to the so-called velocity Verlet
(VV) algorithm:

_r!VV

i ðtÞ ¼
_r!iðt � h=2Þ þ _r!iðt þ h=2Þ

2

¼ rBiðt þ hÞ � rBiðt � hÞ
2h

ð18Þ

The “harmonic approximation” (HA):

_r!HA

i ðtÞ2 ¼ _r!iðt � h=2Þ 3 _r!iðt þ h=2Þ

¼ ½ rBiðt þ hÞ � rBiðtÞ� 3 ½ rBiðtÞ � rBiðt � hÞ�
h2

ð19Þ
gives exactly constant total energy when the Verlet method is
applied to a harmonic oscillator.
The “leap-frog approximation” (LF) makes an average of the

approximated kinetic energies at midpoints:

_r!LF

i ðtÞ2 ¼
_r!iðt � h=2Þ2 þ _r!iðt þ h=2Þ2

2

¼ rBiðt þ hÞ � rBiðtÞ
h

" #2
þ rBiðtÞ � rBiðt � hÞ

h

" #2

ð20Þ
Finally, one can use the predicted velocities, _r! i

PR(t), see eq 15,
to calculate the kinetic temperature. This choice, denoted
hereafter as PR, is independent of the particular form of the
right-hand side. In contrast, options VV, HA, and LF require a
particular right-hand side, eqs 2 and 3 or similar, as algo-
rithmized below.
2.6. TRVP Algorithm. The proposed method can be easily

combined with the SHAKE algorithm to maintain constraints
(typically bond lengths). It can be written in several equivalent
forms. Because of reduced numerical errors, we store the history
of differences q(t)� q(t� h), q(t� h)� q(t� 2h), etc., rather
than the positions. One step from t to t + h of the combined
predicted velocity Nos�e�Hoover Verlet integration with op-
tional SHAKE method is then summarized below:
(1) Calculate the potential energy and forces fBi(t) from

known positions rBi(t).
(2) Predict velocities _q (q = {rBi,ξ}) from known history

q(t)� q(t� h),q(t� h)� q(t� 2h), ...,q(t� kh)� q(t�
[k + 1]h), using eqs 15, 16, and 17.

(3) Perform one step of the Verlet method, eq 5, to get rBi(t + h).
(4) Run the SHAKE algorithm; rBi(t + h) are modified.
(5) Calculate new differences rBi(t + h) � rBi(t).
(6) Calculate the kinetic temperature by one of four available

eqs 18�20 and 15; below we will recommend eq 20.
(7) Perform one step of the Verlet method, eq 6, for ξ to get

ξ(t + h).
(8) Calculate the total energy at time t.
(9) Advance time, t := t + h.
The algorithm does not need iterations (except those inside

SHAKE). At the integration start the history needed for Step 2 is
not known, and shorter predictors (k=0,1,2, ...) must be used. Since
a typicalMD run includes equilibration, this will rarely be a problem.
2.7. Other Methods. We compare the proposed TRVP

method with several known methods.
2.7.1. Gear Integration and Lagrangian Constraint Dy-

namics. The Gear integration method1,4 is based on storing the
history in the form of a vector of higher derivatives at time t, (q(t),
h _q(t),(h2/2)€q(t), ...), from which the positions and velocities at
time t + h are predicted by the Taylor expansion. The integration
step thus has an easy access to velocities, and the method is
straightforward unless constraints are to be satisfied.
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For systems with constrained bonds we use the Lagrangian
formulation of the constrained dynamics.10 It is based on
evaluation of the constraint forces by Lagrange multipliers; the
set of linear equations is solved by the conjugate gradient
method.11 Since the constrains are satisfied only up to the order
of the method and rounding errors, they are corrected by the
same method at every step.
2.7.2. Verlet with Iterated Velocities. As already mentioned,

the Verlet-family integrators suffer from a chicken-or-egg pro-
blem: The velocities needed in an integration step are known
after the integration step is finished, i.e., the velocities are given
implicitly by a set of equations. These equations can be solved by
iterations.6 The algorithm reads as12

(1) Calculate the potential energy and forces fBi(t) from
known positions rBi(t).

(2) Initial approximation:
Version 1: _r! i(t) := [rBi(t)� rBi(t� h)]/h, ξ

·
(t) := [ξ(t)

� ξ(t � h)]/h.
Version 2: _r! i(t) := 0, ξ

·
(t) := 0.

(3) Repeat the following loop:
(a) Perform one step of the Verlet method, eq 5, to get

rBi(t + h) (using velocities _r! i(t)).
(b) Run the SHAKE algorithm; rBi(t + h) are modified.

(Omitted in the first iteration of Version 2.)
(c) Calculate new velocities _r! i(t) := [rBi(t + h) �

rBi(t � h)]/(2h).
(d) Calculate the kinetic temperature by one of eqs

18�20.
(e) Perform one step of the Verlet method, eq 6, to get

ξ(t + h).
(f) Calculate the new velocity ξ

·
(t) := [ξ(t + h) �

ξ(t � h)]/(2h).
(4) Calculate the total energy at time t.
(5) Advance time, t := t + h.
The number of iterations (Step 3) may be either fixed or

controlled by a predefined accuracy of the velocities. Note that
the forces are calculated once per step, however, SHAKE
iterations must be repeated (although less iterations are then
needed). One pass (iteration) of Version 1 is equivalent to TRVP
(k = 0), which is not accurate enough.
2.7.3. MTTK Method. A smart method keeping the Verlet

scheme for positions but replacing the integrator of ξ has been
proposed.5 The algorithm is12

(1) ξ
·
(t + h/4) := ξ

·
(t) + (h/4)a(t), where a(t) = [Tkin(t)/

T � 1]/τ2.
(2) _r! i

*(t) := _r! i(t) sym[�(h/2)ξ
·
(t + h/4).

(3) ξ
·
(t + h/2) := ξ

·
(t + h/4) + (h/4)a*(t), where a*(t) is

calculated from the velocities calculated in the
previous step.

(4) _r! i(t + h/2) := _r! i(t) + (h/2) fBi/mi.
(5) rBi(t + h) := rBi(t) + h _r! i(t + h/2).
(6) Run (the first part of) the RATTLE algorithm.
(7) Calculate forces fBi(t + h) from rBi(t + h).
(8) _r! i(t + h) := _r! i(t + h/2) + (h/2) fBi(t + h)/mi.
(9) Run (the second part of) the RATTLE algorithm.
(10) ξ

·
(t + 3h/4) := ξ

·
(t + h/2)+ (h/4)a(t +h), where a(t + h)

is calculated from the RATTLE velocities.
(11) _r! i

*(t + h) := _r! i(t +h)/sym[(h/2)ξ
·
(t + 3h/4)].

(12) ξ
·
(t + h) := ξ

·
(t + 3h/4)+ (h/4)a*(t + h), where a*(t + h)

is calculated from the velocities calculated in the
previous step.

In the original work the function

symðxÞ ¼ expðxÞ ð21Þ
is derived by the Trotter decomposition of the Liouville operator.
We will denote this version by letter e.
2.7.4. Modification of MTTK Method. It follows from reading

theMTTK algorithm in the bottom-up direction that themethod
is time reversible for any function sym(x). However, sym(x) ≈
1 + x is required to maintain the order of the method. We thus
propose two computationally less expensive functions:

symþðxÞ ¼ 1 þ x ð22Þ

sym�ðxÞ ¼ 1=ð1� xÞ ð23Þ
The speed gain is marginal for large atomic systems but may be
significant for simple enough systems. We will denote these
versions by symbols + and �, respectively.
2.7.5. Berendsen Thermostat. The Berendsen (friction)

thermostat1,2 is used for comparison. The equations of motion
are modified by a friction term:11

::
r!i ¼

fBi

mi
� lnðTkin=TÞ

2τ
_r!i

In a simulation of a dilute system (ideal gas), the temperature
relaxes to the thermostat value T exponentially with the
correlation time of τ. In the simplest implementation to the
Verlet scheme, velocities _r! i(t +h/2) are multiplied by factor
exp[�ln(Tkin(t)/T)h/(2τ)] after every step.
2.8. Simulation Details. 2.8.1. Potential Cutoff. In molecular

models of argon and water we use a smoothly truncated Lennard-
Jones potential given by the formula:11

uLJðrÞ≈
4ε½ðσ=rÞ12 � ðσ=rÞ6� for r < C1

Aðr2 � C2
2Þ2 for C1 < r < C2

0 for C2 < r

8>><
>>:

where C1 and A are calculated from the cutoff C2 so that both the
potential and the forces are continuous. Standard cutoff correc-
tions for the potential energy and pressure are calculated using
the usual assumption that the radial distribution function is unity
beyond C1.
The SPC/E water model13 contains partial charges. In order to

avoid additional errors inherent to more sophisticated methods
(Ewald summation, reaction field) and also to gain speed, we use
a simple truncated formula14 to approximate the electrostatic
forces. The 1/r term in the Coulomb energy is replaced by

1
r
≈

1=r� s for r < C1

ðr � C2Þ3ðA þ BrÞ for C1 < r < C2

0 for C2 < r

8>><
>>: ð24Þ

where C1 = 0.7C2. The shift s and parameters A and B are
determined so that the potential, forces, and the derivative of
forces are continuous. The electrostatic force is thus neglected
beyond the cutoff, shifted at short separations, and smoothly
interpolated in between.
2.8.2. Mechanical Quantities. The averaged potential energy,

Epot, also called residual internal energy, can be regarded as the
most important and simplest mechanical quantity.
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The second mechanical quantity of interest is pressure, which
is calculated from the virial of force. This is straightforward for
liquid argon. For constrained models there are two possibilities.
To evaluate the instantaneous pressure in the TRVP, Gear, and
Berendsen methods, we use the atom-based formula:

P ¼ 1
3V

ð2Ekin þ ∑
i < j

rijfijÞ ð25Þ

where we use notation |rB| = r. The sum runs over all interacting
pairs of particles (with the distance calculated by the nearest
image convention). Forces fij include the constraint forces
calculated within the SHAKE procedure or given by Lagrange
multipliers. This pressure thus depends on velocities.
To evaluate the pressure in the iteration and MTTKmethods,

we use the molecule-based formula:

P ¼ 1
3V

2Etr þ ∑
n < m

∑
i
∑
j

ð RBnm 3 rBni,mjÞ
Rnm

fni,mj

2
4

3
5 ð26Þ

where RBn is the position of a reference point (for water we use
oxygen) in molecule n. Position of atom i at molecule n is denoted
as rBni and rBni,mj = rBmj� rBni (with the nearest-image rule). Instead of
the total kinetic energy, only the translational part is used

Etr ¼ 1
2 ∑

N

n¼ 1
MnV

2
n

where Mn (Vn) is the mass (velocity) of the center-of-mass of
molecule n. Both methods give the same results up to the order of
the integrator.
The virial of electrostatic forces is the same (but sign) as the

electrostatic energy. However, if the electrostatic forces are
approximated by eq 24, this relation is only approximate. We
use a direct evaluation of the virial because it has been shown14

that it gives a better approximation of the true pressure.
2.8.3. Control Quantities. The drift in the total energy ENH,

eq 4, is an auxiliary control quantity which is sensitive to time
irreversibility. We calculate it by linear regression from the
ENH(t) dependence.
The quality of the canonical distribution of particle velocities

can be generally monitored by moments. All odd moments are
zero because of symmetry. The second moment, variance of
velocity (averaged over particles), is proportional to the kinetic
temperature. The next nonzero moment is the kurtosis:

kurtosis ¼ Æv4æ
Æv2æ2

� 3 ð27Þ

Here v represents any component of the velocity and Æ 3 æ includes
averaging over all equivalent degrees of freedom. The kurtosis is
zero for the Gaussian distribution.
Since we use different approximations of velocity, eqs 15

and 18�20, it is “natural” to use the same definition also for
kurtosis. This is easy because only a squared velocity appears in
eq 27. For some purposes (e.g., the velocity autocorrelation
function), the velocity versions HA and LF are not directly
applicable, and therefore either the simple leapfrog _r!(t � h/2)
or VV must be used instead of the “natural” definition. It then
makes sense to determine kurtosis also for these alternate
definitions.
The variance of the kinetic temperature is an important quantity

related to heat capacity. Unlike kurtosis, which is a single-particle

property, the variance of temperature depends on the whole
configuration. From the Maxwell�Boltzmann distribution one
can easily calculate that

varTkin ¼ 2T2

f
ð28Þ

It is important in simulations of complex systems that both
slow and fast degrees of freedom are well equilibrated. For
systems of small molecules the translational degrees of freedom
can be easily separated from rotations. We thus define the
translational temperature:

Ttr ¼ 2
kð3N � 3ÞEtr ð29Þ

The number of degrees of freedom is 3N� 3, taking into account
momentum conservation. The rotational temperature is then

Trot ¼ Tkin � Ttr

Both temperatures should be the same.
2.8.4. Diffusivity. The diffusivity, as the simplest example of

kinetic quantity, was calculated by the Einstein formula from
squared displacements averaged over all particles, coordinates,
and overlapping blocks 100 ps long with the coverage (overlap)
factor three times; correlations of the consecutive data were
taken into account in error estimation.15 First, the dependence
of the mean squared displacement on time calculated over
shorter blocks and averaged over all simulations was plotted,
and the initial nonlinear part determined. For argon we omitted
the first 2 ps and for water 20 ps, and the rest was fitted to a
linear function. The obtained diffusivity is not corrected for
finite size errors.
2.8.5. Gyration Tensor and Shape Anisotropy. Conformation

changes of a singlemolecule can be studied by the gyration tensor
and related shape descriptors.16 We use the mass-weighted
tensor:

Sab ¼ 1
M∑i

miri, ari, b ð30Þ

where indices a,b run over coordinates x,y,z, index i labels atoms,
the atom coordinates are with respect to the center of mass, and
M = ∑imi is the molecule mass. The radius of gyration is given by
the tensor trace, Rgyr

2 = Sxx + Syy + Szz. To obtain shape descriptors,
the tensor must be diagonalized so that in the new coordinates
(main axes of inertia) it writes as S = diag(λxx,λyy,λzz). The relative
shape anisotropy k is then defined by

k2 ¼ λ2xx þ λ2yy þ λ2zz � λxxλyy � λyyλzz � λzzλxx

ðλxx þ λyy þ λzzÞ2
ð31Þ

Note that 0e ke 1 and that λxx + λyy + λzz = Rgyr
2 because of trace

invariance.

3. NUMERICAL TESTS

3.1. Ring of Oscillators. The first testing system is small—a
ring of N = 6 particles of unit mass in one direction. The
neighboring particles interact via either harmonic or anharmonic
terms:

UhðrÞ ¼ Kx2=2
UaðrÞ ¼ Kðx2=2 þ x4=4Þ
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where K is the force constant. We used values Ki,i+1 = (N + i)/N,
where i = 0, ..., 5 and i = 6 is identical to 0 so that a ring is created.
Themomentum is conserved; since the numerical noise becomes
detectable in long runs, we reset the total momentum to zero
after every integration step. The number of degrees of freedom is
f = N � 1.
For each method we ran three numerical tests with time steps

of h = 1/16, 1/32, and 1/64, and the correlation time τ = 0.3; in
addition, results for τ = 0.2 and 0.5 are presented in the
Supporting Information. Each run lasted 225 time units.
The inspection of trajectories shows that the harmonic

oscillator simulations exhibit rather poor ergodicity. It is not
surprising because this system is similar to the path-integral
molecular dynamics, which is known to require a Nos�e�
Hoover chain for ergodic thermostatting. Both harmonic and
anharmonic simulations with the longest time step using a
predictor also for energy (eq 15) are unstable and crash with
infinite values. The MTTK methods are more (but not 100%)
prone to bad ergodicity. Better time reversibility and longer τ
improve ergodicity.
The drift in the total energy is shown in logarithmic scale (as

log10|Edrift|) in Figure 1. The drift diminishes if: (i) the time step
decreases, (ii) the predictor length or the number of iterations
increases, and also (iii) τ increases (see the Supporting In-
formation). The TRVP and iteration methods are similar if we
use a sufficient predictor length or equivalently increase the
number of iterations (increasing the predictor length as well as
the number of iterations by 1 decreases the irreversibility error
byO (h2)). The MTTK method is uniformly good even for the
longest time steps where the above methods may be unstable.
The original Trotter-based version with sym = exp is the best for
the harmonic oscillators but worst for the anharmonic ones.
The Gear method exhibits the biggest drift, especially for the
anharmonic oscillators. We should, however, bear in mind that
the drift is only a control quantity and never a final result of
interest.

The averaged kinetic temperature (see the Supporting In-
formation) equals the nominal thermostat value with a better
precision than the estimated statistical uncertainty for all meth-
ods using the same single kinetic temperature in the right-hand
side, namely TRVP, iteration, and Gear methods. The original
MTTKmethod, eq 21, gives the average temperature distinguishable
from the nominal value only for the longest time step. The modified
MTTKmethods, eqs 22 and 23, lead to second-order differences; the
biggest difference of 0.0025 for h = 1/16 and τ = 0.2 drops to 2.5�
10�5 for h = 1/64 and τ = 0.5.
The variance of temperature is varTkin = 0.4 for both oscillator

rings. The results are shown in Figure 2 along with standard
errors (68% confidence level) estimated from blocks. The
iteration method with only two iterations fails to yield the
canonical distribution at all, the longest-time step version fails
even with four iterations (whereas three iterations give satisfac-
tory results); however, the fully iterated version is satisfactory.
The Gear method does not give the canonical distribution either.
The predictor method is slightly better, and the longer predictor
results are satisfactory. The MTTK method is uniformly good.
The results are much better for the more ergodic anharmonic
ring, unless the time step is too long and at the same time the
reversibility poor. The best results are for theMTTKmethod and
iterations with the HA kinetic energy, then for predictions with
the VV kinetic energy. The Gear method converges poorly and
needs a short time step.
As seen from Figure 3, the kurtosis is sensitive to ergodicity

problems. For the more ergodic anharmonic oscillator, the
MTTK method works well for all time steps, the TRVP method
needs kg 2, and the iteration method i = 3 or more iterations to
converge well. Different velocity definitions give results differing
in the second-order term. Particularly, the LF kinetic tempera-
ture but VV velocity is the best with the TRVP method.
The potential energy (see the Supporting Information) gives

similar results. The harmonic results are scattered witnessing
about poor ergodicity. The MTTK method works well, and the

Figure 1. The drift in the total energy (as logarithm of absolute value; negative drifts are open blue circles, positive solid red) for a ring of harmonic (left)
and anharmonic (right) oscillators integrated by variousmethods. The triplets connected by dotted lines are from left for time steps 1/16, 1/32, and 1/64
time units (if the simulation with 1/16 failed, only a doublet is shown). Label ‘TRVP’ denotes the proposed Nos�e�Hoover integration with velocity
predictor, the numbers below denote the value of k. Label ‘iter’ denotes the iteration method (Version 1), the numbers below denote the number of
iterations. Symbols ‘VV’, ‘HA’, ‘LF’, and ‘PR’ refer to the kinetic temperature version, eqs 15 and 18�20. MTTK is the Martyna et al.5 method, and the
symbol below defines function sym(), eqs 21�23. Label ‘G’ denotes theGearmethod (m= 4). Error bars are not shown for clarity, they become apparent
for |Edrift| < 10�8.
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TRVP and iteration methods need several iterations or a
longer predictor and are not reliable with long time steps.
The anharmonic case, more similar to a typical many-particle
atomistic simulation, shows a clearer picture—the systems are
ergodic. The best results are obtained with the LF formula for
the kinetic energy. The iteration method is the best, followed
by the predicted velocities (with k g 2) and then the MTTK
methods.
3.2. Liquid Argon. The second testing system is liquid argon

modeled by the Lennard-Jones potential with parameters ε/k =
119.8 K and σ = 3.405 Å. The simulated temperature was 143.76
K (reduced temperature 1.2) and density 1.3443 g cm�3

(reduced number density 0.8). We used N = 200 atoms in the
standard periodic cubic box, smooth potential cutoff C2 = 10 Å,
time steps h = 20, 10, and 5 fs, and τ = 0.1 ps; more results with
τ = 0.3 and 0.5 ps are presented in the Supporting Information.
Trajectory length of each point was 200 ns.

We compare the propose predictor method with the iteration
method controlled by the error limit in velocity of 10�6 reducedunits
per particle, the Gear integrator (m = 4), and also the Berendsen
thermostat (with both the Verlet integrator as well as Gear).
Figure 4 collects the basic thermodynamic results—internal

energy and pressure. Error bars were omitted because they
are comparable to symbol sizes. It is seen that all methods
converge well, however, using the LF kinetic temperature gives
the best results, even better than the MTTK method. This
observation applies to all methods (TRVP, iterations as well as
Gear and also the Berendsen thermostat). The Gear values are
shifted because of the finite-size ensemble error; this difference
will diminish for larger systems. The TRVP method with the
shortest predictor k = 1 is sufficient; only if the kinetic energy
was calculated from the predicted velocities (version PR), a
longer predictor would be needed, but this version is not
recommended anyway.

Figure 2. The variance of temperature for a ring of oscillators. See Figure 1 for symbol explanation. Note the different scales of the vertical axes.

Figure 3. Kurtosis of the velocity distribution averaged over all 6 oscillators. Left: harmonic, right: anharmonic. Black solid circles: “natural” velocity, red
open circles: single leapfrog velocity [r(t)� r(t� h)]/h, blue cross: VV ([r(t + h)� r(t� h)]/(2h)), if differs from the “natural” velocity. See Figure 1
for symbol explanation. Note the different scales of the vertical axes.
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Figure 5 shows, along with the temperature variance, also
kurtosis of the distribution of velocities; note that the kurtosis
is calculated from the “natural” velocity definition for the
TRVP method (see Section 2.8.3), whereas from the VV
formula for iterations. It is seen that all the Nos�e�Hoover
methods converge to the correct values (at least within error
bars, which are for the variance several symbol sizes). The
Berendsen values are out of the graph because this method is
not canonical. The TRVP method gives better temperature
variance with k = 2 than k = 1, however, increasing the
predictor length to k > 2 gives only a marginal improvement.
The MTTK results are the best even for large time steps. The
VV velocity (eq 18) works best with TRVPs while the HA
velocity (eq 19) with iterations.

The results for diffusivity, Figure 6, are subject of larger errors
than for mechanical quantities. All methods and both thermo-
stats converge well, only the TRVPs with the harmonic and
predicted temperatures perform worse with long time steps.
Both the TRVPs and iterations with the VV and LF tempera-
tures are acceptable. Surprisingly, the Gear integration (both
with the Nos�e�Hoover and Berendsen thermostats) wins the
comparison.
3.3. Liquid Water. The third testing system consists of

N = 200 SPC/E13 water molecules in a cubic box simulated
at ambient conditions (density 997 kg m�3, temperature
300 K). Both the Lennard-Jones and electrostatics cutoffs
were set to C2 = 9 Å. We further utilized h = 2, 1, and 0.5 fs
and τ = 0.1 ps, and the runs took 50 ns. Selected results

Figure 4. Averaged potential energy (left) and pressure (right) for liquid argon. The triplets connected by dotted lines correspond (from left)
to time steps 20, 10, and 5 fs. Label ‘TRVP’ denotes the proposed Nos�e�Hoover integration with velocity predictor, the numbers below denote
the value of k. Label ‘iter’ denotes the iteration method (Version 2) with the number of iterations controlled by precision. Symbols ‘VV’, ‘HA’,
‘LF’, and ‘PR’ refer to the kinetic temperature version. MTTK is the Martyna et al.5 method and the symbol below defines function sym(),
eqs 21�23. Label ‘G’ denotes the Gear method (m = 4), either with Nos�e�Hoover (NH) or Berendsen thermostat. Error bars are comparable
to symbol sizes.

Figure 5. Variance of temperature and kurtosis of the velocity distribution for liquid argon. The horizontal lines represent the respective theoretical
values. See Figure 4 for symbol explanation.
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with τ = 0.3 and 0.5 ps are presented in the Supporting
Information.
The results for the potential energy, Figure 7, are similar as for

argon: the TRVP and iteration methods are equivalent. It is more
important to choose the kinetic energy formula. The LF version
is the best, the VV version is worse and of the same accuracy as
the MTTK method (using internally the same velocity ap-
proximation). The Gear integrator performs surprisingly well.
The results for pressure are different, for TRVPs (and also

Berendsen thermostat) the VV kinetic temperature overper-
forms the LF one. However, this result can be explained by a
“dynamic” atom-based algorithm, eq 25, used here for pressure.
Of course, both formulas give results differing by a term propor-
tional to h2.
The variance of temperature, Figure 8, is in spite of 50 ns

runs and a relatively small system, a subject of large errors.
Essential all methods, perhaps with the exception of the

harmonic approximation for the kinetic temperature (and of
course the Berendsen thermostat), give satisfactory results.
The kurtosis is worse for the HA and LF temperatures and
long time steps.
The equipartition of translational and rotational kinetic

energies, Figure 9, depends on the time step and the kinetic
temperature formula, but not on the integration method:
the LF version is the best, followed by VV, whereas HA and
PR are not so good. The diffusivity, Figure 10, behaves in the
same way, only the data are more noisy. To a great extent also
the potential energy and (with the “static” eq 26) also pressure
follow the same pattern. This observation is not surprising
because most thermostats keep the averaged (translational
and rotational) temperature constant, whereas the Verlet inte-
gration errors increase the translational temperature. The
center-of-mass velocities are then bigger, and the diffusivity
increases. Similarly, the energy and pressure dependmainly on
the interparticle energy. One may ponder that Nos�e�Hoover
and Berendsen thermostats with only the translational kinetic
energy could give (some) thermodynamic quantities more
accurately.
3.4. Peptide. As the last testing system we chose a small

peptide in vacuum, hexaalanine modified by acetyl at the
N-terminus and N-methylamide at the C-terminus (CH3�
CO�[NH�CHCH3�CO]6�NH�CH3) because: (i) a complex
set of bonds provides a comprehensive test of constraint dy-
namics; (ii) it has a sufficiently rich conformational space to check
for possible ergodicity problems; and (iii) a relatively small
number of atoms facilitates sampling of all important confor-
mations. The molecule was modeled by the GROMOS9617

force field version 43A1 (with united-atom approximation for
the CH3 and CH groups). However, for simplicity of coding we
did not apply nonbonded fixes (exceptions) for 1�4 non-
bonded interactions and included them in full. This change
has a minor impact on the peptide properties. We also replaced
the torsion term around the peptide bond by a locally equiva-
lent harmonic potential and prohibited thus the cis conforma-
tions at all, because in trial runs with the original dihedral
potential, we detected the trans�cis conversion at a hundred

Figure 7. Averaged potential energy (left) and pressure (right) for liquid SPC/Ewater. The triplets correspond to time steps of 2, 1, and 0.5 fs, for other
symbols see Figure 4.

Figure 6. Diffusivity of liquid argon. See Figure 4 for symbol explana-
tion. The error bars denote estimated standard errors.
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nanosecond scale, which spoiled the statistics. Note that our
aim is not to obtain an accurate realistic representation of this
peptide but a model system reasonably close to realistic
biomolecules, yet simple enough to allow for accurate compar-
ison of methods.
The peptide with constrained bond lengths was simulated

at 450 K for 1 μs using three time steps and the Nos�e�Hoover
or Berendsen correlation times of τ = 0.1 ps. The TRVP
method and Berendsen thermostat were implemented using
MACSIMUS,11 for the iterated velocity, and for the MTTK
method we used DL_POLY;12 only the VV version of the kinetic
temperature, eq 18, and the originalMTTKmethod are available.
The momentum and angular momentum were periodically reset
to exact zero and do not contribute to the number of degrees of
freedom.

The internal energy is the least noisy variable of interest, see
Figure 11 left. All canonical methods converge as the time step
decreases, whereas the Berendsen value is off as expected for this
small system of only 79 degrees of freedom. The leapfrog version
of the kinetic energy definition is again the best.
The variance of temperature, see Figure 11 right, converges to

the correct value similarly as for other investigated systems;
because of a small number of degrees of freedom, the results are
less noisy than for liquids. The values for the noncanonical
friction thermostat are off the graph scale.
The averaged radius of gyration and averaged shape anisotro-

py show a similar pattern of convergence as the potential energy;
only the data are more noisy (Figure 12). The TRVP method
with both major kinetic energy definitions, VV and LF, performs
well even for the longest time step and so do the benchmark
methods, iterations (with VV), and MTTK. The Gear integrator
is satisfactory with the shortest time step only.

Figure 10. Diffusivity of liquid water. See Figure 7 for symbol explana-
tion. The error bars denote estimated standard errors.Figure 9. Equipartition of the translational and rotational temperatures

for liquid water. See Figure 7 for symbol explanation.

Figure 8. Variance of temperature and kurtosis of the velocity distribution for liquid water. The horizontal lines represent the theoretical values.
See Figure 7 for symbol explanation.



3606 dx.doi.org/10.1021/ct200108g |J. Chem. Theory Comput. 2011, 7, 3596–3607

Journal of Chemical Theory and Computation ARTICLE

4. CONCLUSIONS

4.1. TRVPMethod.The proposed TRVPmethod, see Section
2.6, is themain result of this work. It has been successfully applied
to the Nos�e�Hoover thermostat and Verlet integrator for many-
particle atomistic systems, including those with constrained bond
lengths. Themethod quality and speed are similar to the iteration
method, and the decision which method to use may thus rather
depends on algorithm subtleties. The TRVP method can be
coded outside the existing Verlet + SHAKE algorithm, which
may simplify the code design. Only one set of SHAKE iterations
is needed, and thus measuring some quantities (e.g., the pressure
tensor) does not interfere with repeated calculations. On the
other hand, the TRVP method requires more memory than the
iteration method. Often the shortest predictor (k = 1) is
sufficient, although k = 2 is never worse.
The MTTK method is for large atomistic systems comparable

to both the above simple Verlet-based methods. As it is more

complex, the kinetic energy is calculated four times per step, and
for constrained systems it requires the RATTLE algorithm that is
more CPU consuming than the SHAKE algorithm. For small
systems, it performs better than both the TRVPs and iterations,
avoiding many ergodicity problems; on the other hand, it is
slower.
4.2. Velocity Estimates in Verlet Schemes. The TRVP and

iteration methods are of the second order in the time step. At the
same time there are several formulas, eqs 15 and 18�20 available
to approximate velocities and in turn the kinetic temperature.
They yield different coefficients at the second-order error terms
for different quantities. We found that the LF eq 20 gives the
overall best results for quantities of interest (energy, pressure,
diffusivity), although the quality of the canonical distribution is
worse. The method accuracy may depend on the details of the
algorithm, e.g., an atom-based formula for pressure for con-
strained systems is better with the VV kinetic energy, eq 18,

Figure 12. Radius of gyration (left) and relative shape anisotropy k (right) for modified hexaalanine in vacuum at 450 K. The triplets correspond to time
steps of 2, 1, and 0.5 fs, for other symbols see Figure 4.

Figure 11. Averaged potential energy (left) and variance of temperature (right) for modified hexaalanine in vacuum at 450 K. The triplets correspond to
time steps of 2, 1, and 0.5 fs, for other symbols see Figure 4. The horizontal line is the theoretical value of temperature variance, eq 28.
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probably because this formula depends on the constrained forces,
which depend on velocities.
4.3. Modification of MTTK Algorithm. We proposed two

modifications of theMTTK algorithm, see eqs 22 and 23, which
avoid evaluating the exponential functions and therefore run
faster. The speedup is insignificant for large atomistic sys-
tems but may be worth considering in some special cases, like
Nos�e�Hoover chains for simple systems. The kinetic tempera-
ture derived from the velocities available within the algorithm
is (inconsistently) off by a second-order term in the time step,
however, other observable quantities are not affected. One might
consider alternating sym+ and sym� in the Nos�e�Hoover chain
in order to decrease the kinetic temperature error. Compromise
functions sym() better approximating exp() than eqs 22 and 23
are also possible.
4.4. Translational Temperature. In the simulations of liquid

water we found that the values of many quantities (energy,
pressure, diffusivity) depend mainly on the translational tem-
perature, eq 29. Using this temperature in the thermostat may
compensate for large time step errors of the Verlet integration. A
similar correction for equipartition errors might be possible for
the internal vibrations instead of rotations.
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ABSTRACT:Most implicit solvationmodels require the definition of amolecular surface as the interface that separates the solute in
atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent
accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient
numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson�Boltzmann
methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and
intimately coupled to the finite-difference Poisson�Boltzmann methods to fully take advantage of its existing data structures. Our
analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS
areas. Specifically, in our comprehensive test of 1555 molecules, the average unsigned relative error is 0.27% in the SES area
calculations and 1.05% in the SAS area calculations at a grid spacing of 1/2 Å. In addition, a linear correlation analysis was found to
improve the accuracy of the coarse-grid SES areas, with the average unsigned relative error reduced to 0.13%. These validation
studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the
numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the
molecular surface for additional solvation energetics and force calculations.

’ INTRODUCTION

Water is crucial to the functions of biological molecules such as
nucleic acids and proteins. The solute�solvent interactions can
be accurately modeled by explicit solvent models in biomolecular
simulations. Nevertheless, extra computational cost has to be
paid to handle thousands to millions of extra degrees of freedom
in the explicit solvent. This is because a system of higher
dimensions requires more sampling to achieve equilibrium and
to cover a sufficient number of biologically interesting conforma-
tions. Alternatively, the solvent molecules can be treated im-
plicitly as in the implicit solvent models to capture average
solvent behaviors. Most modern implicit solvent models require
the definition of an interface that separates the solute in atomic
detail from the solvent approximated as a continuum medium.
The solvation free energy and force are both sensitively depen-
dent on the interface location and presentation.

The interface is often based on a molecular surface definition.
Well-known molecular surface definitions are the solvent acces-
sible surface (SAS), the solvent excluded surface (SES), and the
van derWaals surface (VDWS). The SAS was defined by Lee and
Richards as a union of atomic spheres with radii augmented by
the probe radius for a given molecule.1 The SES was introduced
by Richards in 1977.2 It is more complex, with two types of
surfaces, the contact surface that consists of solvent exposed
portions of van der Waals spheres and the re-entrant surface that
consists of the inward-facing surface of the solvent probe sphere
as it rolls over the molecule. Finally, the VDWS represents the
molecular interior as the union of the atomic spheres with van der
Waals radii. In contrast to the hard sphere definition of atomic
volumes in the above surface definition, a smoothly varying

dielectric boundary using the Gaussian(-like) density approach
has also been reported.3,4

Recent analyses have shown that the numerical Poisson�
Boltzmannmethods with the SES definition are reasonable in the
calculation of electrostatic solvation energetics and forces with
respect to explicit solvent simulations.3�7 Unfortunately, the SES
is not differentiable with respect to atomic positions, making it
difficult to adopt in molecular dynamics simulations.5 The SAS
definition has difficulty reproducing the electrostatic energetics
in the explicit solvent models due to its much enlarged atomic
cavities, but the SAS definition has been used to estimate the
nonpolar hydration energy with great success.6�14 The SAS is
also more efficient than the SES and differentiable with respect to
atomic positions.7,15�20 The VDWS definition is both efficient
and smooth over time, making it advantageous to molecular
simulations. However, it has been pointed out that the VDWS
definition has the tendency to assign a much higher value to the
apparent protein interior dielectric constant, as in the pKa

calculations which may or may not be wanted.21�26 On the
other hand, Zhou and co-workers have shown that the electro-
static free energies using the VDWS definition as the dielectric
boundary are in better accord with the experimental data and the
explicit solvent simulation results for a series of tests, including a
single mutation to the folded protein,27 protein�protein
complexes,28,29 and protein�RNA complexes.30

Given a surface definition, an important issue is how to
evaluate the surface area or surface integration for biomolecular
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simulations. Due to the efficiency of the SAS definition, signi-
ficant prior efforts have been invested to develop analytical met-
hods15,16,18,20,31�45 and numerical algorithms.46�51 The analyti-
cal SAS methods can be further divided into two types,
exact15,16,18,20,32�38 and approximate.31,39�45 A comprehensive
review of the SASmethods can be found in ref 45. In contrast, the
SES methods are less common. The first analytical algorithm on
the SES area was proposed by Connolly.32 It was implemented
into AMS and later other programs such as PQMS52 and Amber/
MOLSURF.53 Due to the complexity of the SES definition and
the resulting self-intersecting regions of the surface, there had
been no improvements on the analytical algorithm until Sanner
et al.’s work in 1996.54 Sanner et al. proposed a new method to
detect the self-intersecting singularities with the assistance of the
reduced surface elements.54 Although the new method may
successfully compute the areas for most molecules, it does
encounter errors in certain molecular structures and has to be
restarted with modified atomic radii.54 A different analytical
approach was derived from the α shape theory in computational
geometry.55,56 It uses Delaunay complexes and their filtrations to
describe the topological structure of a molecule, which can
facilitate the computation of the surface area by removing
redundant terms in the direct inclusion�exclusion method.38

In contrast, more methods exist to compute the SES area
numerically.47,57�66 Available programs include GEOPOL,47

MASKER,66 MOLSURF,65 and USURF.64 Numerical methods
use geometrical objects, such as dots, triangles, cubes, and
polyhedrons, to tessellate the surface or fill the interior volume.
They more easily circumvent the pathological singularity cases
but inevitably sacrifice accuracy.

In this work, we propose a numerical algorithm to compute
the molecular surface area or surface integration for both the SES
and SAS definitions. Different from previous numerical ap-
proaches of a geometrical nature, our algorithm is physics-
inspired. The algorithm is implemented as an integral part of
our PBSA program67�70 and is based upon the finite-difference
Poisson�Boltzmann (FDPB) methods where a grid labeling
step, i.e., mapping the molecular surface to the grid points, is
necessary before computing the surface area. The pioneer work
on the grid labeling was proposed by You and Bashford71 and
later improved upon by Rocchia et al. in efficiency.72 Our
mapping strategy followed Rocchia et al.’s basic idea but tried
to record additional information, such as the locations of the
intersection points of the grid and the analytical surface, for the
subsequent determination of dielectric constants.73 In the fol-
lowing, we first go over the development of our algorithm. This is
followed by detailed numerical tests to validate the accuracy,
convergence, and timing of the numerical algorithm.

’METHODS

Overview of the Algorithm. Our algorithm is based on the
observation that a molecular surface, either in the SES definition
or in the SAS definition, can be treated as a union of partial
spheres of different centers and radii. The SAS is strictly a union
of solvent exposed portions of extended van der Waals spheres,
i.e., spheres of van der Waals radii augmented by the solvent
probe radius. The SES ismore complexwith two types of surfaces—
the contact surface that consists of solvent exposed portions of
van der Waals spheres and the re-entrant surface that consists of
inward-facing portions of the solvent probe sphere as it rolls over
the molecule. The re-entrant surface can be further classified into

two types according to how many atoms the solvent probe is in
contact with simultaneously: (1) saddle surfaces if two atoms are
in contact with the probe and (2) spherical triangles if three atoms
are in contact with the probe. A re-entrant surface formed by the
probe’s concurrent contact withmore than three atoms can always
be divided into multiple spherical triangles. Contact surfaces and
re-entrant spherical triangles are partial spheres, but re-entrant
saddle surfaces are clearly not. However, the latter can be
considered as consisting of small partial spheres of the solvent
probe at different probe sites located on discretized solvent
accessible arcs from the numerical point of view, for example in
numerical surface definitions proposed for FDPB.71,72 Apparently,
in the numerical surface definitions, the number of the solvent
probe sites has to be finite. Therefore, at each site, the probe is
responsible for an area on the approximate saddle surface in the
shape of a partial sphere.71,72 Given the numerical representation
of the molecular surface, if it is possible to compute the surface
area/surface integration for each partial sphere, no matter how
small it may be, the total surface area/surface integration is simply
the sum of the contributions from all of the partial spheres.
In the following, we first describe the terminologies used in the

finite-difference discretization. Then, we validate our aforemen-
tioned assumption that the saddle surfaces in the SES definition
can be numerically treated as unions of partial spheres. This is
followed by how to compute the surface area with our physics-
inspired strategy and its numerical implementation for the finite-
difference discretization. Finally, its extension to the surface
integrations of both scalar and vector fields is discussed.
Finite-Difference Discretization. Without a loss of general-

ity, we focus on Poisson’s equation in this study since the
Boltzmann term is nonzero only outside the Stern layer, which
is typically set 2 Å away from the molecular surface. The partial
differential equation

∇ 3 ε∇ϕ ¼ � F ð1Þ

establishes a relation between the charge density (F) and the
electrostatic potential (ϕ) given a predefined dielectric distribu-
tion function (ε) for a solvated molecule.
A commonly used numerical method to solve Poisson’s equation

is the finite-difference method where a uniform Cartesian grid is
used to discretize a rectangular box containing the molecule. The
grid points are numbered as (i, j, k), i = 1, ..., xm; j = 1, ..., ym; and
k = 1, ..., zm, where xm, ym, and zm are the numbers of grid points
along the x, y, and z axes, respectively. The spacing between
two neighboring grid points is uniformly set to be h. With the
finite-difference discretization, eq 1 can be written as

εi�1=2, j, kðϕi�1, j, k � ϕi, j, kÞ þ εiþ1=2, j, kðϕiþ1, j, k � ϕi, j, kÞ

þ εi, j�1=2, kðϕi, j�1, k � ϕi, j, kÞ þ εi, jþ1=2, kðϕi, jþ1, k � ϕi, j, kÞ

þ εi, j, k�1=2ðϕi, j, k�1 � ϕi, j, kÞ þ εi, j, kþ1=2ðϕi, j, kþ1 � ϕi, j, kÞ

¼ � qi, j, k=h ð2Þ

Use of eq 2 requires the dielectric constant ε to be defined at the
grid edge centers between two neighboring grid points (denoted
as grid index(1/2 above). In this study, the dielectric constant is
defined in the following way: if the grid edge center is in the solute,
the dielectric constant is equal to the solute permittivity otherwise,
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the dielectric constant is equal to the solvent permittivity. It also
requires mapping the point charges onto the grid points. The
solution is the potentials on the grid points. More detailed
implementation information specific to this study can be found
in our recent publications.5,67�70

Spherical Representation of Saddle Surfaces. Suppose two
atomic spheres of radii r1 and r2, respectively, are in contact with the
solvent probe sphere of radius rp. The distance between the two
atoms is d. In a typical finite-difference scheme, only a finite number
of solvent probe sites are used to represent the solvent accessible
circle formed by the two atoms. Here, the resolution of the
discretized solvent accessible circle in radian is denoted byψ. Each
probe contributes a small partial sphere to the spherical representa-
tion of the saddle surface between the two atoms, and the area of
each partial sphere can be computed with the following integral,
provided that the centers of the two atoms are on the z axis:

Sψ ¼
Z a

�b
2 arcsin

l sinðψ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p � z2

q �ψ

0
B@

1
CArp dz ð3Þ

where l is the radius of the discretized circle of probe sites and l =
{(rp + r1)

2� [(d/2) + (β/d)]2}1/2, a= rp[(d/2) + (β/d)]/(rp + r1),
b = rp[(d/2) + (β/d)]/(rp + r2), and β = (2rp + r1 + r2)(r1� r2)/2.
To evaluate the error of the above approximation of the correspond-
ing analytical saddle surface area, we expand eq 3 with the Taylor
series at ψ = 0 and obtain

Sψ ¼ ψrpl arcsin
a
rp

þ arcsin
b
rp

 !
�ψrpða þ bÞ

þ ψ3rpl

24
l2

r2p

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p � a2

q þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p � b2

q
0
B@

1
CA� arcsin

a
rp

0
B@

� arcsin
b
rp

1
CA þ Oðψ5Þ ð4Þ

where the first two terms are the exact area of the saddle surface.
Therefore, the third term is the leading error of the spherical
representation of the saddle surface. Omitting the higher-order
terms in eq 4, the relative error can be computed as

Δψ ¼ ψ2

24
l2

r2p
d� l arcsin

a
rp
� l arcsin

b
rp

 !

= l arcsin
a
rp

þ l arcsin
b
rp
� a� b

 !
ð5Þ

Equation 5 demonstrates that the spherical representation of
the saddle surface is second-order accurate. It can be shown that
the relative error of the approximate saddle surface area reaches
the maximum when one atom is buried in the other, and the
relative error becomes

Δψ, max ¼ ψ2ðr1r2 þ r1rp þ r2rpÞðr1 þ rpÞðr2 þ rpÞ
12r2pð2r1r2 þ r1rp þ r2rpÞ

¼ ψ2ðmn þ m þ nÞð1 þ mÞð1 þ nÞ
12ð2mn þ m þ nÞ ð6Þ

where m = r1/rp and n = r2/rp. In typical molecular simulations,
rp = 1.4 Å, and r1 and r2 are between 1 and 2 Å. Since Δψ,max is
monotonically increasing as eitherm or n increases, themaximum
relative error can be estimated as

Δψ, max ¼ 0:35ψ2, if m ¼ 1:43 and n ¼ 1:43 ð7Þ
As the distance d increases, the saddle surface reduces to two self-
intersecting parts, to which eqs 3�5 can no longer be applied.
Here, the singularity in the SES definition is not considered
because it ismuch less common than the saddle surface. However,
it can be shown that the maximum relative error of using discrete
probe arcs in the singular parts is actually smaller than the error
given in eq 7.
Next, we further assess the error quantitatively in the framework

of the PBSA program. The density of the solvent probe sites in the
PBSA program is determined by the arcres option, defined as the
arc length between two neighboring probe sites. The relation of
arcres and the probe site resolution ψ introduced here is

2πl
arcres

¼ 2π
ψ

or ψ ¼ arcres
l

ð8Þ

Provided that the self-intersecting region is not considered, l = rp =
1.4 at the upper bound of d. On the other side, as the two atoms
approach each other, l decreases and reaches zero when one atom
is buried in the other. To estimate the error in the spherical
representation of the saddle surface in realistic situations, we
further assume that the lower bound of d also gives l = rp = 1.4.
This corresponds to an interatomic distance larger than the
difference of the radii of the two atoms by at most 0.15 Å. This
assumption is reasonable according to the atomic radii and bond
lengths in the AMBER force fields.74 The default arcres in the
PBSA program is 1/16 Å, corresponding to

Δψ, max ¼ 0:35ψ2 e 0:35
1=16
1:4

� �2

¼ 6:98� 10�4 ð9Þ

Therefore, the spherical representation of saddle surfaces is an
appropriate approximation in the calculation of the molecular
surface area. Note that the maximum error in eq 9 is under-
estimated when a smaller probe is used because the curvature will
needmore grid points to resolve, which is a general problem in the
finite-difference scheme.
Now that both the SAS and SES can be treated as the union of

partial spheres with good accuracy, we are ready to introduce our
new algorithm to compute the surface areas of partial spheres.
Field-View Method. Suppose there is a point charge Q at the

center of a sphere of radius R in the vacuum. The flux Φ of the
electric displacement through any closed surface containing the
charge is given by the integral form of Gauss’s law, which is equal
to the total free charge inside, i.e.,

Φ ¼ Q ð10Þ
By definition we have

Φ ¼
ZZ

S

ε0 EB 3 n̂ dS ð11Þ

where ε0 is the vacuum permittivity,EB is the vacuum electric field,
and n̂ is the normal direction of the infinitesimal surface element
dS. Given the central symmetry of the radial field due to a point
charge at the spherical center, the flux on a spherical surface at
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radius R can be computed with

Φ ¼ ε0ES ð12Þ
where S is the total surface area of the sphere. This is also true for
a spherical surface element δS:

δΦ ¼ ε0EδS ¼ QδS
4πR2

ð13Þ

Instead of directly computing the flux through the spherical
surface, we compute the flux via the finite-difference data structure
by exploiting the conservation of electric flux. Figure 1 is a 2-D
illustration of the finite-difference discretization of a sphere.
Consider the closed surface represented by the red dashed lines
in Figure 1. Note that each red dashed line represents a square
surface element (area = h2, with h being the finite-difference
spacing) located at the center of a grid edge that is intersected by
the sphere. Since the square surface elements at the grid edge
centers form a closed surface, the flux through the closed surface is
equal to the flux through the spherical surface. For each square
surface element, there is always a spherical surface element that
subtends the same solid angle, so that they have the same flux
passing through them (see Figure 1 for the two types of surfaces
with the same flux: spherical surface element (black solid arc) and
square surface element (red solid line)). This is the key relation
that is to be exploited below to infer the surface area of the sphere
or the spherical surface element.
The flux through each square surface element, as well as the

closed surface formed by the square surface elements, can be
computed with the double integrals as follows:

δΦi ¼
RR
Si

ε0 EBi 3 n̂i dS ¼ RR
Si

ε0Ei cos θi dS

δΦj ¼
RR
Sj

ε0 EBj 3 n̂j dS ¼ RR
Sj

ε0Ej cos θj dS

δΦk ¼ RR
Sk

ε0 EBk 3 n̂k dS ¼ RR
Sk

ε0Ek cos θk dS

Φ ¼ ∑
Ni

δΦi þ ∑
Nj

δΦj þ ∑
Nk

δΦk

ð14Þ

where the subscripts i, j, and k are the indices in the x, y, and z
directions, respectively; δΦi, δΦj, and δΦk are the fluxes

through the square surface elements at the grid edge centers in
the x, y, and z directions, respectively; Ni, Nj, and Nk are the
numbers of the square surface elements in the x, y, and z
directions, respectively; EBi, EBj, and EBk are the electrical fields at
the grid edge centers (or the centers of the square surface
elements) in the x, y, and z directions, respectively; and n̂i, n̂j,
and n̂k are the unit normal vectors of the square surface elements
in the x, y, and z directions, respectively. Finally, θi is the angle
between EBi and n̂j, θj is the angle between EBj and n̂j, and θk is the
angle between EBk and n̂k.
On the ith square surface element in the x direction, angle θi

between the direction of the radial electric field and the normal
direction of the square surface element can be computed with

cos θi ¼ jxij
ri

ð15Þ

where xi is the x coordinate of the center of the ith square surface
element in the x direction, and ri is the distance between the
center of the square surface element and the center of the sphere
(see the blue solid line OA in Figure 1, given the center of the
sphere at the origin). Similarly in the y and z directions, we have

cos θj ¼
jyjj
rj
, cos θk ¼ jzkj

rk
ð16Þ

Thus, the electric flux through the ith square surface element in
the x direction at (xi,yi,zi) is

δΦi ¼
Z zi þ h=2

zi � h=2

Z yi þ h=2

yi � h=2
ε0Eiðxi, y0, z0Þ jxij

riðxi, y0, z0Þ dy
0 dz0

¼
Z h=2

�h=2

Z h=2

�h=2

Q jxij
4π½x2i þ ðyi þ uÞ2 þ ðzi þ vÞ2�3=2

du dv

ð17Þ

Applying the Taylor series expansion to eq 17 at the center of the
square surface element, i.e., (xi, yi, zi), it can be simplified as

δΦi ¼ Q jxij
4π

Z h=2

�h=2

Z h=2

�h=2

1
r3i

þ 3
2

5y2i u
2 þ 5z2i v

2

r7i
� u2 þ v2

r5i

 ! 

þO
h4

r4i

 !!
du dv ¼ Q jxijh2

4πr3i
1 þ 3

8
� 5x2i

8r2i

 !
h2

r2i

 

þO
h4

r4i

 !!
ð18Þ

where ri = (xi
2 + yi

2 + zi
2)1/2. All of the odd functions in the

expansion in eq 18 disappear due to the symmetry of the integral
interval. The double integrals in the y and z directions in eq 14
can be expanded in the same way. Thus

δΦj ¼
Q jyjjh2
4πr3j

1 þ 3
8
� 5y2j
8r2j

 !
h2

r2j
þ O

h4

r4j

 ! !
ð19Þ

δΦk ¼ Q jzkjh2
4πr3k

1 þ 3
8
� 5z2k

8r2k

 !
h2

r2k
þ O

h4

r4k

 ! !
ð20Þ

Figure 1. A2-Ddiagram of the finite-difference discretization of a sphere
(black dashed circle). Black solid lines are grid edges, whose intersection
points denote grid points. O is the center of the sphere. A is the center of a
square surface element or a grid edge. B is an intersection point of the
sphere and a grid edge. Red dashed lines denote square surface elements
at grid edge centers. The red dashed lines can also be viewed as the finite-
difference approximation of the spherical surface. The black solid arc
represents a spherical surface element, and the red solid line represents a
square surface element that subtends the same solid angle, so they have
the same flux passing through them.
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Substitution of eqs 18, 19, and 20 into eq 14 and omission of
fourth or higher order terms give

δΦi ¼ Q jxijh2
4πr3i

ð1 þ βiÞ

δΦj ¼
Q jyjjh2
4πr3j

ð1 þ βjÞ

δΦk ¼ Q jzkjh2
4πr3k

ð1 þ βkÞ

Φ ¼ Qh2

4π ∑
Ni

jxij
r3i
ð1 þ βiÞ þ ∑

Nj

jyjj
r3j
ð1 þ βjÞ

0
@

þ ∑
Nk

jzkj
r3k

ð1 þ βkÞ
!

ð21Þ

where βi = ((3/8) � (5xi
2)/(8ri

2))(h2/ri
2), βj = ((3/8) �

(5yj
2)/(8rj

2))(h2/rj
2), and βk = ((3/8) � (5zk

2)/(8rk
2))(h2/rk

2)
are the coefficients of the second-order terms. Comparison between
eqs 12 or 13 and 21 shows that the spherical surface element areas
and the total surface area of the sphere can be written as

δSi ¼ jxijh2R2

r3i
ð1 þ βiÞ

δSj ¼
jyjjh2R2

r3j
ð1 þ βjÞ

δSk ¼ jzkjh2R2

r3k
ð1 þ βkÞ

S ¼ h2R2 ∑
Ni

jxij
r3i
ð1 þ βiÞ

 

þ ∑
Nj

jyjj
r3j
ð1 þ βjÞ þ ∑

Nk

jzkj
r3k

ð1 þ βkÞ
!

ð22Þ

Since the SES and the SAS are both composed of partial spheres
(the SAS is the union of atomic spheres and the SES consists of
atomic spheres and probe spheres), the above algorithm can be
directly used to evaluate the SES and SAS areas numerically. In
molecular applications, eq 22 becomes

δSi ¼ jxijh2R2
i

r3i
ð1 þ βiÞ

δSj ¼
jyjjh2R2

j

r3j
ð1 þ βjÞ

δSk ¼ jzkjh2R2
k

r3k
ð1 þ βkÞ

S ¼ h2 ∑
Ni

jxijR2
i

r3i
ð1 þ βiÞ þ ∑

Nj

jyjjR2
j

r3j
ð1 þ βjÞ

0
@

þ ∑
Nk

jzkjR2
k

r3k
ð1 þ βkÞ

1
A ð23Þ

where xi, yj, and zk are the relative coordinates of the ith, jth, and
kth square surface element centers (or the grid edge centers) in
the x, y, and z directions, respectively, and Ri, Rj, and Rk are the
radii of the atomic/probe spheres that intersect the ith, jth, and

kth grid edges in the x, y, and z directions, respectively. All relative
coordinates are with respect to the atomic/probe sphere centers.
We term the algorithm the field-view method in this study.
The second-order terms in eq 23 show that the zeroth-order

truncation is second-order accurate and converges quadratically.
In theory, inclusion of the second-order terms results in a
convergence of fourth order, but actually it is not guaranteed
to achieve more accurate result in the re-entrant region at coarse
grid spacings. This is because at coarse grid spacings, the leading
error comes from the spherical representation of saddle surfaces,
which will be shown in the Results and Discussion.
Surface Integration. Given the spherical surface element

areas in eq 23, it is straightforward to evaluate a surface integral
on the SES or SAS numerically. With the field-view method, the
surface integral of any vector fieldAB defined on the surface can be
written as
RR
S

AB d SB= ∑
Ni

AiδSi cos γi þ ∑
Nj

AjδSj cos γj

þ ∑
Nk

AkδSk cos γk = h2 ∑
Ni

AijxijR2
i ð1 þ βiÞcos γi

r3i

 

þ ∑
Nj

AjjyjjR2
j ð1þ βjÞcos γj

r3j
þ ∑

Nk

AkjzkjR2
kð1þ βkÞcos γk

r3k

!

ð24Þ
where δSi, δSj, and δSk are the spherical surface element areas
introduced in the field-view method; Ai, Aj, and Ak are the field
magnitudes on the spherical surface elements δSi, δSj, and δSk,
respectively; γi, γj, and γk are the angles between the vector field
AB and the normal directions of the spherical surface elements δSi,
δSj, and δSk, respectively. For any scalar field A defined on the
surface, eq 24 becomes
RR
S
A dS= ∑

Ni

AiδSi þ ∑
Nj

AjδSj þ ∑
Nk

AkδSk

= h2 ∑
Ni

AijxijR2
i ð1 þ βiÞ
r3i

þ ∑
Nj

AjjyjjR2
j ð1 þ βjÞ
r3j

0
@

þ ∑
Nk

AkjzkjR2
kð1 þ βkÞ
r3k

1
A ð25Þ

For example, if the finite-differencemethod is used to solve Poisson’s
equation or the Poisson�Boltzmann equation, eqs 24 and 25 can be
used to compute the hydrophobic solvation free energy that is often
modeled as being linearly proportional to the surface area.
Computational Details. The field-view method was imple-

mented into the Amber/PBSA program.53,67,69 Implicit solvent
models under the finite-difference scheme require the molecular
surface be mapped to the grid points using a grid labeling
algorithm.73 After mapping, the dielectric constant was set to
be 1 in the solute region and 80 in the solvent region. On the
dielectric boundary, the dielectric constant was set to be either 1
or 80 depending on whether the grid edge center was in the
solute or solvent. The solvent probe was set to be 1.4 Å.
All of the molecules in our tests come from the PBSA test set,

which includes 579 proteins,53 364 nucleic acids,70 and 622
protein�protein complexes (see the Appendix). However, 10 of
them have been left out due to the failures in the reference surface
area program Amber/MOLSURF.53 The MOLSURF program
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was implemented by Beroza according to Connolly’s analytical
algorithm.32 When possible, the orientation and the origin of the
finite-difference grid were randomized 100 times for each finite-
difference run to reduce the numerical uncertainty of reported
values.

’RESULTS AND DISCUSSION

Simple Geometries: Agreement with Exact Analytical
Solutions. To assess the accuracy of the proposed algorithm,
we first used a single sphere, double spheres, and triple spheres as
test cases because their analytical surface areas can be readily
calculated. The algorithm was tested at five different grid
spacings, 1/2 Å, 1/4 Å, 1/8 Å, 1/16 Å, and 1/32 Å, to study its
convergence behavior. The arcres option (the arc length between
two neighboring probe sites) was set to be as fine as 0.01 Å to
reduce the error introduced by limited resolution of solvent
accessible arcs.
Figure 2 shows the unsigned relative errors of the numerical

SES areas. It can be seen that at the finest grid spacing, the relative
errors of the numerical SES areas reach as low as 10�9 for the
zeroth-order truncation and 10�13 for the second-order trunca-
tion in the test case of the single sphere, but the relative errors
only reach 10�6 to 10�7 in the test cases of the double spheres
and triple spheres. This is due to the finite resolution of the
numerical representation of the re-entrant regions as a union of
partial spheres. For example, eq 5 can be used to estimate the
unsigned relative error of the re-entrant region in the double
spheres, which is 4.33� 10�6 and consistent with the numerical
analysis. The standard deviations in the numerical SES areas (not
shown in the plot) are larger than or comparable with the errors
of the means at all grid spacings in these simple test cases.
It is also interesting to note that the second-order truncation

exhibits better accuracy at the tested grid spacing (1/2 Å) in the
single sphere case only. The reason is that there are not many
square surface elements in the re-entrant region at coarse grid
spacings (such as the tested 1/2 Å), so that only a fraction of
solvent probe sites are employed even if a very high resolution is
used in the discretized solvent accessible arcs. As a consequence,
the error due to the spherical representation of saddle surfaces is
dominant. For example, the number of square surface elements
in the re-entrant region of the double-sphere test case is around
60, much smaller than the number of available solvent probe
sites, about 1300, at the default computation setting in the
Amber/PBSA program. In general, the more square surface
elements that exist in a saddle surface, the more solvent probe
sites that can be used. This is because a solvent probe contributes
to the approximate saddle surface via a spherical surface element
that shares the same flux as a square surface element, and the
square surface element is exclusively assigned to the solvent
probe at a certain site. According to eq 7, when the area of the re-
entrant region reaches its maximum (the radii of the two atoms
are both 2 Å; the distance is about 4.4 Å) and at the same time the
number of square surface elements reaches its maximum (about
150), the lowest possible error is about 0.06%. In contrast, the
truncation error of each surface element is about 1�2% for the
zeroth-order truncation and about 0.04�0.06% for the sec-
ond-order truncation. These error estimations were obtained
by comparison between the truncated Taylor series and the
exact analytical expression for a surface element area (eq 17).
Although the truncation error of each surface element at the
zeroth truncation level (1�2%) is larger than the error in the

spherical representation of saddle surfaces (can be as low as
0.06%), the errors of the surface elements tend to cancel each
other, leading to a much smaller overall error in the total
surface area. As shown in Figure 2 (top), the overall error in
the surface area of a single sphere is ∼0.01% at a grid spacing
of 1/2 Å (the error cancellation may not be so dramatic where
there is no central symmetry). As a result, the error in the
spherical representation of saddle surfaces becomes the lead-
ing error term.
Thus, at a grid spacing of 1/2 Å, numerical surface areas

computed by the zeroth-order truncation are similarly accurate
to those computed by higher-order truncations. For example, in
the double-sphere model (Figure 2 (middle)), the error of the
zeroth-order truncation is similar to the second-order truncation
(∼0.1%). Therefore, the leading error shown here is actually
from the spherical representation of saddle surfaces. Thus, in the
following tests, only the zeroth-order truncation was used to
compute surface areas.
At fine grid spacings when there are abundant square surface

elements in the re-entrant region, more solvent probe sites can be

Figure 2. Unsigned relative errors of the numerical SES areas of the
simple geometries at successively fine grid spacings. Top: A single
sphere. The radius of the sphere is 1.5 Å. Middle: Double spheres.
The radii of the two spheres are both 1.5 Å, and the distance between the
centers of the two spheres is 4 Å. Bottom: Triple spheres. The radii of the
three spheres are all 1.5 Å, and the distance between one pair of spherical
centers is 4 Å. The distances between the other two pairs of spherical
centers are both 3.606 Å. The results are obtained from 100 area
calculations with randomized grid orientations.
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utilized to resolve the re-entrant surface. Under this circum-
stance, the zeroth-order truncation may have larger error than
the spherical representation of saddle surfaces. For example, at a
grid spacing of 1/8 Å, the number of square surface elements in
the saddle surface of the double spheres increases to more than
1000, compared to around 60 at a grid spacing of 1/2 Å.
Consequently, at a grid spacing of 1/8 Å, the second-order
truncation performs better than the zeroth-order truncation in
the double sphere test case (see Figure 2 (middle)). In this case,
the higher-order terms generally help improve the accuracy of
surface areas. Therefore, we suggest that higher-order trunca-
tions be used at fine grid spacings for better accuracy and the
resolution of solvent probe sites be dependent on grid spacings
for the best performance and efficiency.
Convergence Tests on Realistic Biomolecules. Next, we

analyzed the convergence behavior of the numerical algorithm
with two realistic but small biomolecules: 1BRV (268 atoms) and
1FN2 (348 atoms). Both the SES and SAS areas were computed
at successively fine grid spacings, and the results are shown in
Figures 3 and 4, respectively. The arcres option was set to be 1/16
Å in this test, and only the zeroth-order truncation was used. The
surface areas computed by the Amber/MOLSURF program that
implements Connolly’s algorithm were used as a reference.32,53

As shown in Figure 3, the performance of the field-view
method in the calculation of SES areas of realistic biomolecules
is promising. The unsigned relative error is around 0.2% at the
grid spacing of 1/2 Å often used in FDPB calculations of
biomolecules. We also extrapolated the “converged” value using
the nonlinear curve fitting method (with the formula y = a + bhc,
where a is the predicted surface area when the grid spacing h goes
to zero and c is the convergence rate). Obviously, the converged
surface areas are highly consistent with the Amber/MOLSURF

results. Interestingly, the convergence rate is somewhat higher
than quadratic. This is because the error at a grid spacing of 1/2 Å
is mainly due to the spherical representation of saddle surfaces,
larger than the truncation error of the zeroth-order truncation,
while at fine grid spacings, the truncation error dominates, which
is quadratic, as analyzed in the Methods section. Figure 3 also
shows that the standard deviations for both molecules over 100
random grid orientations are smaller than the errors of the means
at all grid spacings.
Figure 4 shows that the field-view method performs less well

in the calculation of SAS areas. Although the unsigned relative
error is still at the same low level, the convergence rate is no
longer guaranteed to be quadratic. The reason is probably that
the finite-difference-based numerical algorithm cannot resolve
the cusps inside grid cells that are ubiquitous all over the
molecular surface in the SAS definition. The situation can be
mitigated at finer grid spacings, but it still remains significant at
the finest tested grid spacing of 1/16 Å. The standard deviation
of numerical SAS areas is also larger than that of numerical SES
areas. Although the SES definition also has cusps or self-
intersecting parts, they are much rarer and likely not the major
source of errors in the numerical calculation. Indeed, the
unsigned relative errors in SES areas computed with the field-
view method are comparable between the three analytical test
cases discussed above and the two biomolecules. Of course for
the biomolecules, the errors are larger due to the higher
proportion of the re-entrant surface.
To better appreciate the convergence quality of the new

surface area integration, we obtained the numerical surface area
and the numerical reaction field energy in the same context of
FDPB calculations, and the comparison of their convergence
behaviors is shown in Figure 5. The reaction field energy ΦRC

was calculated by the product of atomic charges and polarization

Figure 3. Convergence of the numerical SES areas versus grid spacings
for 1BRV and 1FN2, respectively. Top: 1BRV (the field-view method
converges to 1203.66 Å2, the power order is 2.30, and the MOLSURF
result is 1203.69 Å2). Bottom: 1FN2 (the field-viewmethod converges to
1952.91 Å2, the power order is 2.37, and theMOLSURF result is 1952.90
Å2). The uncertainty bars are estimated as the standard deviations from
100 FDPB calculations with randomized grid orientations. The uncer-
tainty bars for finer grid spacings are too small to be seen.

Figure 4. Convergence of the numerical SAS areas versus grid spacings
for 1BRV and 1FN2, respectively. Top: 1BRV (the field-view method
converges to 1661.15 Å2, the power order is 0.70, and the MOLSURF
result is 1660.73 Å2). Bottom: 1FN2 (the field-view method converges
to 2777.78 Å2, the power order is 2.36, and the MOLSURF result is
2778.05 Å2). Note that for 1BRV, only the data at fine grid spacings can
be used in the extrapolation of the surface area.
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charges, i.e.,

ΦRC ¼ 1
2 ∑n ∑

m

qatomm qpoln

rmn
ð26Þ

where rmn is the distance between the atomic charge (qm
atom) and the

finite-difference polarization charge (qn
pol). Here, qn

pol is computed
by a finite volume integral within a finite-difference grid cell:

qpoln ¼ hð6ϕn � ∑
6

l¼ 1
ϕn, lÞ ð27Þ

where ϕn is the potential at the center of the finite-difference grid
cell, ϕn,l, l = 1, 2, ..., 6 are the potentials at the centers of the six

neighboring grid cells, and all of the potentials are obtained from the
finite-difference solution of the Poisson�Boltzmann equation. It
has been shown that the relative error in the surface area by the field-
view method is O(h2). The error in the numerical reaction field
energy primarily originates from the polarization charge. Note that
the potential on the dielectric boundary from the FDPB method is
first-order accurate, but the polarization charge is second-
order accurate because the finite volume integration used to
compute the polarization charges cancels out the leading
error in the potential. To verify this analysis, we performed
power curve fitting on the two data sets in Figure 5. The
analysis shows that the power of the energy error curve is 1.79,
and the power of the area error curve is 2.31 (the power curve
here is a little different from that in Figure 3 (top) due to the
use of different sets of data points in the curve fitting). In
addition to the common quadratic convergence rate, the
relative errors of the two calculations are also on the same
order of magnitude.
Consistency Tests. Next, we tested the field-view method

with a diversified set of 1555 molecules and molecular complexes
to demonstrate its applicability and robustness in realistic
biomolecular applications. All test cases were run at a grid spacing
of 1/2 Å without random grid orientations. The correlation
between the numerical molecular surface areas and the Amber/
MOLSURF results is plotted in Figure 6. As in the previous tests,
the numerical SES areas computed with the field-view method
are overall more consistent with those with Amber/MOLSURF
than the numerical SAS areas. It should be noted that the
correlation coefficients are both very close to one, indicating
that the numerical algorithm is consistent with the analytical
algorithm regardless of the sizes or the structures of the tested
molecules. The average unsigned relative error (AURE) of the
numerical SES areas is 0.27%, and the AURE of the numerical
SAS areas is 1.05%. The analysis demonstrates that the field-view
method agrees well with the analytical method at the tested
coarse grid spacing often used in biomolecular applications
of FDPB.
TimingAnalysis. It is interesting to analyze the timings for the

proposed numerical algorithm. Table 1 lists the detailed timing
analysis of a FDPB calculation with the field-view method turned
on. The tested molecule was 2MRB (377 atoms), and the FDPB
calculation was repeated 100 times with randomized grid or-
ientations and origins. As expected, the time spent in computing
the surface area is negligible compared to those used by other
FDPB components in the calculation, supporting its “on-the-fly”
application in FDPB calculations.

Figure 5. Convergence rates of the numerical SES surface area and the
numerical reaction field energy of 1BRV at successively fine grid
spacings. Each result is obtained from 100 calculations with randomized
grid orientations.

Figure 6. Correlation between the numerical surface areas of 1555
molecules computed at a grid spacing of 1/2 Å and the analytical surface
areas computed with MOLSURF. Top: SES areas—AURE, 0.27%; slope,
0.99696; R-square, 1.00000. Bottom: SAS areas—AURE, 1.05%; slope,
0.97753; R-square, 0.99999.

Table 1. Timing Analysis for FDPB Calculations and the
Proposed “On-the-Fly” Surface Area Calculation of 2MRBa

SES SAS

FDPB probe generation 52.80 N/A

FDPB grid labeling 38.17 9.63

FDPB solver 509.11 506.75

FDPB force calculation 5.76 5.01

surface area calculation 0.10 0.08

MOLSURF surface area calculation 3.38 3.87
aThe timing for MOLSURF surface area calculation is also shown as a
reference. Note that the reported times of FDPB calculations (in
second) are for 100 calculations with randomized grid orientations.
The MOLSURF calculation is also repeated 100 times.
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Limitations and Possible Remedies. Despite the high-level
consistency between the coarse-grid numerical calculations and
analytical calculations, convergence errors do exist at coarse grid
spacings. Interestingly, the convergence errors in the numerical
SES areas are systematic and can be identified with a linear
regression analysis. The distributions of the signed relative errors
with respect to the analytical values before and after the linear
correction are shown in Figure 7. It can be seen that the AURE is
reduced after the correction by half from 0.27% to 0.13%.

We did not apply the linear correction strategy to the
numerical SAS areas on the basis of the following observations.
Figure 8 shows the trend of the signed relative errors of the SES
and SAS areas. If there is a systematic error that can be corrected
with a linear correction, the signed relative errors should go to a
constant as the surface area increases. If the linear correction is in
the form of yi = β1xi + β0 + ei, where yi is the analytical surface
area, xi is the numerical surface area, β0 and β1 are the regression
estimators, and ei is the residual error, the signed relative error εi
of the numerical result xi with respect to the analytical result yi
can be written as

εi ¼ xi � yi
yi

¼ ðyi � β0 � eiÞ=β1 � yi
yi

¼ 1
β1

� 1

� �
� β0 þ ei

β1yi
ð28Þ

The second term is negligible, and the signed relative error
becomes constant if the residual error ei does not have a positive
correlation with yi. Otherwise, the linear correction is unsuitable
for the numerical method. It can be seen from Figure 8 that the
signed relative errors of the numerical SES areas finally become
stable at about 0.3%, whereas the signed relative errors of the
numerical SAS areas are always negative and keep going down.
This suggests that the numerical SAS areas probably need
molecule-specific corrections.

Figure 7. Distributions of the signed relative errors of the numerical
SES areas computed at a grid spacing of 1/2 Å. Top: before correction,
AURE, 0.27%. Bottom: after correction, AURE, 0.13%.

Figure 8. Correlation between the numerical surface areas and their
signed relative errors. All of the numerical surface areas were computed
at a grid spacing of 1/2 Å. Each data point represents the average signed
relative error of the surface areas within a range of 0.5 kÅ2. Top: SES
areas. Bottom: SAS areas.

Figure 9. Average unsigned relative errors in the numerical SES areas
with the global correction and without any correction versus the
backbone root-mean-square deviation (RMSD) for the two tested
peptides. Each data point represents the average unsigned relative error
in the numerical surface areas for structures with the backbone RMSD
within a range of 1 Å with respect to the crystal structure. Top: hairpin.
Bottom: helix (grid spacing: 1/2 Å).
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We present two examples to substantiate the above claims,
each consisting of folded and unfolded structures extracted from
molecular simulations of two peptides. First, the global correc-
tions were applied to the numerical SES areas and numerical
SAS areas of those structures, as shown in Figures 9 and 10,
respectively. It is encouraging to note reduced errors in the
numerical SES areas in both folded and unfolded structures even
if these tested peptides and structures are outside the training
molecules that were used to obtain the linear correction equa-
tion. In contrast, the global correction, parametrized from the
numerical SAS areas of the 1555molecules, does not work for the
numerical SAS areas of the two tested peptides. Next, molecule-
specific corrections were applied to the numerical SAS areas.
Specifically, for each molecule, one-fifth of the structures from
the trajectory were picked as the training set for parametrization
of the linear correction, and the remaining structures were used
as the test set to validate the linear correction. The results are also
shown in Figure 10. It can be seen that the molecule-specific
correction not only reduces the error but achieves more uniform
performance over different conformations. The overall better
applicability of the molecular-specific correction to more extended
structures is mainly because the peptides unfolded shortly after the
simulations started and stayed longer in thedenatured status, resulting
in higher population of extended structures in the training set.
The cusps in the SAS definition introduce singularity and

numerical difficulty to the finite-difference approaches, especially at
coarse grid spacings. The SES definition also has pathological

self-intersecting parts that cannot be fully resolved with any finite
difference method. These situations can be alleviated by using a
finer grid, but the computational cost grows cubically with the
inverse of the grid spacing. The above linear corrections aim at
reducing errors with much less computational overhead, but the
final solution is to develop a new and physically reasonable
molecular surface definition that is both smooth and analytical
everywhere. It should be noted that the linear correction is not
required as in the application of any numerical method, i.e., the
FDPB solution of the Poisson�Boltzmann equation, where nobody
conducts any correction in biomolecular applications. Of course,
no such global correction is possible for FDPB.

’CONCLUSION

We have developed a new numerical algorithm, the field-view
method, to calculate the SES or SAS areas under the finite-
difference scheme, which is based on the observation that a
molecular surface, either in the SES definition or in the SAS
definition, can be treated as a union of partial spheres of different
centers and radii. To compute the surface area of a spherical
surface element, the algorithm exploits the central symmetry of
the radial field of a test point charge placed at the spherical center.
Specifically, the flux through the spherical surface element is
proportional to its surface area in the radial field of the point
charge. The new algorithm computes the flux on the finite-
difference grid surface element that subtends the same solid angle
as the spherical surface element by exploiting the conservation of
electric flux. Finally, the summation of the surface areas of the
spherical surface elements gives a good approximation for the
molecular surface area. Utilization of the finite-difference data
structure leads to the new algorithm’s particular suitability for the
FDPB calculations. The algorithm can also be easily adapted to
evaluate the surface integral of either a vector field or a scalar field
defined on the SES or SAS.

Two major error sources can be identified in the field-view
method: spherical representation of saddle surfaces and truncation
in the Taylor expansion used in the flux calculation. The first error
is influenced by howmany solvent probe sites are used to generate
the re-entrant surface as the probe rolls over the atoms. The
second error, i.e., the truncation error, is influenced by how many
terms are used in the Taylor expansion. The convergence rate of
the zeroth-order is quadratic, and that of the second order is in the
fourth power. We suggest using the zeroth-order truncation to
compute molecular surface areas because the leading error comes
from the first source at the typical coarse grid spacing of 1/2 Å
often used for FDPB in biomolecular applications.

The quadratic convergence of the field-view method (the
zeroth-order truncation) has been demonstrated both theoreti-
cally and numerically. The proposed algorithm can achieve very
good agreement with the analytical method as far as surface area
calculations are concerned. The additional consistency test using
a large test set of 1555 molecules and complexes shows that the
average unsigned relative error of the SES areas is 0.27% and that
of the SAS areas is 1.05% at the typical coarse grid spacing of 1/2
Å, indicating that the proposed algorithm can be applied to
biomolecules and complexes over a broad range of sizes and
structures. The timing test further shows that the algorithm takes
little additional time in the context of FDPB calculations. More
interestingly, it was found that a systematic correction can
improve the accuracy of the numerical SES areas calculated at
coarse grid spacings. For example, the average unsigned relative

Figure 10. Average unsigned relative errors in the numerical SAS areas
with the global correction, without any correction, and with molecule-
specific corrections versus the backbone RMSD for the two tested
peptides. Each data point represents the average unsigned relative error
in the numerical surface areas for structures with the backbone RMSD
within a range of 1 Å with respect to the crystal structure. Top: hairpin.
Bottom: helix (grid spacing: 1/2 Å).
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error of the numerical SES areas by the algorithm can be reduced
from 0.27% to 0.13%. In contrast, the numerical SAS areas can
only be improved by molecule-specific corrections. Considering
the poor numerical behavior of the SAS, we only recommend the
algorithm for SES surface integrations and area calculations.

At fine grid spacings, the zeroth-order truncation may have
larger error than the spherical representation of saddle surfaces.
In this case, the higher-order terms generally help improve the
accuracy of surface areas. Therefore, we have added the option to
use higher-order terms in the algorithm so that higher-order
truncations can be used at fine grid spacings for better accuracy.
Apparently the computation time increases after adopting high-
er-order terms, but the surface area calculation uses much less
time than other components in FDPB calculations. Moreover,
higher-order truncations may be advantageous to computing
molecular surface integrations due to lack of symmetry in an
arbitrary field and little chance of significant error cancellation.

’APPENDIX: TEST SET OF 622 PROTEIN�PROTEIN
COMPLEXES

The following molecular structures, in both the Amber format
and the pqr format, can be downloaded from http://rayl0.bio.
uci.edu/rayl/#Database: 1A9X, 1APY, 1AQW, 1B0N, 1B5F,
1BBZ, 1BLX, 1C1Y, 1CCW, 1CG5, 1CKA, 1CLV, 1CQ4,
1CSB, 1CZQ, 1CZY, 1D2Z, 1D3B, 1D4T, 1DDV, 1DGW,
1DKZ, 1DNU, 1DOW, 1DPJ, 1DTD, 1E1H, 1E6I, 1E6Y,
1EER, 1EEX, 1EF1, 1EG4, 1EGP, 1ELR, 1ELW, 1EMU,
1EPT, 1EUV, 1EVH, 1F2T, 1F3U, 1F47, 1F60, 1FIP, 1FLT,
1FM0, 1FS1, 1FVU, 1G1S, 1G6G, 1G73, 1G8K, 1GCV, 1GJ7,
1GK9, 1GL2, 1GL4, 1GO3, 1GUX, 1GVN, 1GYB, 1H0H, 1H2S,
1H32, 1H6K, 1H6W, 1H9O, 1HBN, 1HFE, 1HLE, 1HTR,
1I7Q, 1IHJ, 1J2X, 1J34, 1JAT, 1JBO, 1JD5, 1JDH, 1JDP,
1JEK, 1JKG, 1JLT, 1JMX, 1JNR, 1JSD, 1JSM, 1JW6, 1JWI,
1JY2, 1JYO, 1K2X, 1K5N, 1K8K, 1KQF, 1KSH, 1KVE, 1KYF,
1L2W, 1L6X, 1LB6, 1LM8, 1LQV, 1LSH, 1LUC, 1LVM, 1M1N,
1M2T, 1M45, 1M93, 1MA3, 1MFG, 1MHW, 1MIZ, 1MJU,
1MSO, 1MTP, 1MTY, 1MZW, 1N0W, 1N12, 1N13, 1N1J,
1N62, 1N7F, 1N7S, 1NH0, 1NKZ, 1NQ7, 1NRJ, 1NTV,
1NVM, 1NX1, 1O6L, 1OAI, 1OAO, 1OAQ, 1OBX, 1OEY,
1OK7, 1OO0, 1OR0, 1OR7, 1OU8, 1OV3, 1P57, 1P5V, 1PBY,
1PDQ, 1PFB, 1PK1, 1PK6, 1PQ1, 1PXV, 1PYO, 1PYU, 1Q1A,
1Q3L, 1Q40, 1Q7L, 1QAV, 1QGE, 1QOP, 1QTN, 1R0R, 1R17,
1R1Q, 1R4P, 1R8O, 1R8S, 1RBD, 1RDQ, 1REQ, 1REW, 1RM6,
1RXZ, 1RYP, 1S5D, 1S5P, 1S6C, 1SB2, 1SC3, 1SCT, 1SE0,
1SEM, 1SHA, 1SR4, 1SSH, 1SVF, 1SVZ, 1T0F, 1T0H, 1T0P,
1T15, 1T3Q, 1T61, 1T6G, 1T6O, 1TA3, 1TAF, 1TQY, 1TZY,
1U00, 1U0S, 1U7B, 1U8T, 1UGH, 1UGP, 1UGX, 1UHE, 1UJ0,
1UMD, 1UPK, 1UPT, 1UTI, 1UVQ, 1UW4, 1V74, 1V7P, 1VC3,
1VLF, 1VRA, 1W2W, 1W6S, 1W70, 1W7J, 1W85, 1W9E,
1WA5, 1WDC, 1WDD, 1WHS, 1WMH, 1WQJ, 1WUI,
1WVE, 1WXC, 1XEW, 1XG0, 1XG2, 1XK4, 1XKP, 1XU1,
1Y43, 1Y5I, 1Y7L, 1YAR, 1YC5, 1YDI, 1YFN, 1YMT, 1YPH,
1YQW, 1YRO, 1YTV, 1YUC, 1YUK, 1YWO, 1Z0J, 1Z0K, 1Z3E,
1Z5Y, 1Z6O, 1Z9O, 1ZAV, 1ZGX, 1ZHH, 1ZUD, 1ZUK, 1ZV8,
2A3I, 2A50, 2A5T, 2A9K, 2AD6, 2AIJ, 2AIR, 2AKA, 2APO,
2AQ2, 2AQ9, 2ARP, 2ASU, 2B1X, 2B3G, 2B9H, 2BBA, 2BBK,
2BCG, 2BCN, 2BEQ, 2BEZ, 2BFD, 2BGR, 2BKR, 2BKY, 2BL0,
2BLF, 2BMO, 2BO9, 2BPT, 2BR9, 2BS2, 2BUR, 2BW3, 2BZ6,
2BZ8, 2C1D, 2CCH, 2CIO, 2CJS, 2CKL, 2CNZ, 2CWG, 2CZV,
2D0O, 2D1X, 2D7C, 2DE6, 2DF6, 2DG5, 2DJF, 2DKO, 2DRM,
2DS2, 2DS8, 2DYO, 2DYR, 2DZE, 2E2D, 2E4M, 2EJF, 2EKE,

2EQ7, 2EQ8, 2ES4, 2F4M, 2F69, 2F91, 2F9I, 2F9N, 2FCW,
2FF4, 2FFU, 2FGR, 2FHZ, 2FLU, 2FMM, 2FOJ, 2FOM, 2FP7,
2FTX, 2FU5, 2FYM, 2G2S, 2G2U, 2G30, 2G5L, 2GAG, 2GBW,
2GGV, 2GH0, 2GHT, 2GIA, 2GL9, 2GPH, 2GPO, 2GSM,
2GUZ, 2GW4, 2H1C, 2H4P, 2H6F, 2H7Z, 2H88, 2H9A,
2HEY, 2HMH, 2HO2, 2HPE, 2HPL, 2HQH, 2HQS, 2HT9,
2HUE, 2HY5, 2I3S, 2IG0, 2INC, 2IUH, 2IVF, 2IZX, 2J12, 2J32,
2J6F, 2J7P, 2J7Y, 2J8C, 2J9A, 2J9U, 2JDI, 2JE6, 2JGB, 2JJS,
2JK9, 2JKH, 2KIN, 2LTN, 2NL9, 2NNU, 2NPT, 2NS1, 2NW2,
2O02, 2O4J, 2O4X, 2O5G, 2O8M, 2O9V, 2OBH, 2ODE,
2OGX, 2OIZ, 2OKR, 2OMZ, 2OQ1, 2OVH, 2OX0, 2OXG,
2OZN, 2P0W, 2P1M, 2P1T, 2P45, 2P54, 2P58, 2PA8, 2PBI,
2PBK, 2PI2, 2PQR, 2PTT, 2PU9, 2PUY, 2PV2, 2Q0O, 2Q5W,
2QA9, 2QAC, 2QDY, 2QFA, 2QIY, 2QKH, 2QM6, 2QME,
2QWO, 2R25, 2R7G, 2RHI, 2RHK, 2RI7, 2RKY, 2RMC, 2UUF,
2UWJ, 2UYZ, 2V1T, 2V2F, 2V36, 2V3S, 2V3Z, 2V52, 2V6X,
2V89, 2V8C, 2V9T, 2VGO, 2VIF, 2VLQ, 2VN6, 2VNF, 2VOF,
2VOL, 2VPB, 2VR3, 2VSM, 2VT1, 2VWF, 2VZG, 2W0P,
2W3O, 2W9R, 2WJN, 2WWX, 2YVJ, 2Z30, 2Z3Q, 2Z5B,
2Z8P, 2Z9I, 2ZA4, 2ZD1, 2ZD7, 2ZFD, 2ZMI, 2ZON, 2ZS0,
2ZSI, 2ZVV, 2ZYZ, 2ZZD, 3A1G, 3B5N, 3BC1, 3BEJ, 3BFQ,
3BH7, 3BOM, 3BP6, 3BQO, 3BRL, 3BS5, 3BU3, 3BWU, 3BX4,
3BXM, 3BZY, 3C4M, 3C6W, 3C7B, 3C9A, 3CAL, 3CF4, 3CJS,
3CLS, 3CPT, 3CV0, 3CWW, 3D1K, 3D1M, 3D32, 3D3B, 3D44,
3D9N, 3D9T, 3DAC, 3DBO, 3DD7, 3DDC, 3DGP, 3DKS,
3DLQ, 3DRA, 3DS4, 3DSS, 3DWG, 3DXE, 3DY0, 3E1R, 3EBB,
3ECH, 3EGV, 3EHU, 3EJ9, 3EJB, 3EMH, 3EMW, 3EP6, 3EQS,
3ERY, 3ET3, 3EXE, 3F02, 3F1P, 3F4Y, 3F6Q, 3F75, 3F9X,
3FAP, 3FDT, 3FGR, 3FHV, 3FIV, 3FJU, 3FP2, 3FPN, 3G2S,
3G5O, 3G9A, 3G9K, 3GE3, 3GJ3, 3GL6, 3GLR, 3GV4, 3H11,
3H6P, 3H7H, 3H87, 3H8K, 3H91, 3HDS, 3HEI, 3HHS, 3HHT,
3HNA, 3HPW, 3HQR, 3HTU, 3HXI, 3JQL, 3JRV, 3JVK, 3KB3,
3KDF, 3KDJ, 3KNB, 3PCC, 4UBP, 6RLX, 6TMN.
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ABSTRACT: We propose a pairwise compensation method for long-range electrostatics, as an alternative to traditional infinite
lattice sums. The approach represents the third generation in a series beginning with the shifted potential corresponding to
counterions surrounding a cutoff sphere. That simple charge compensation scheme resulted in pairwise potentials that are
continuous at the cutoff, but forces that are not. A second-generation approach modified both the potential and the force such that
both are continuous at the cutoff. Here, we introduce another layer of softening such that the derivative of the force is also
continuous at the cutoff. In strongly ionic liquids, this extension removes structural artifacts associated with the earlier pairwise
compensation schemes and provides results that compare well with Ewald sums.

’ INTRODUCTION

Accurate treatment of long-range electrostatics is crucial for
the reliability of molecular simulations.1 The slow convergence
of the 1/r term precludes termination at a practical cutoff
distance,2�4 as is typically done, e.g., for van der Waals
interactions.5,6 A widely accepted solution imposes an infinitely
repeating lattice that allows the slowly converging Coulomb sum
to be separated into a sum that converges rapidly in real space and
another that converges rapidly in reciprocal space.7 Collectively
known as Ewald or lattice summations,8�11 these methods rely
on the suitability of the infinite lattice.

Amore intuitive alternative has been proposed byWolf et al. in
a study of Madelung energies in perfect crystals.12 In their
approach, the electrostatic pair potentials are shifted by their
value at the cutoff distance:

USPðrijÞ ¼ UðrijÞ �UðrcÞ rij e rc
0 rij > rc

(
ð1Þ

FSPðrijÞ ¼ �dUðrijÞ
dr

rij e rc

0 rij > rc

8><
>: ð2Þ

where U is the original potential, dU/dr is its derivative with
respect to distance, rij is the distance between particles i and j,
and rc is the distance cutoff, typically chosen in the range of
9�12 Å. Physically, this adjustment amounts to placing
counterions on the cutoff sphere. Mathematically, this adjust-
ment corresponds to the previously published shifted poten-
tial (SP), which achieves continuity at the cutoff for potentials
of any form.13

In this scheme, the force (eq 2) does not “feel” the charge
neutralization and remains discontinuous at the cutoff (Figure 1).
Wolf et al.12 addressed this issue by applying damping, and Zahn
et al.14 subsequently revised Wolf’s damping to achieve energy
conservation in MD simulations. However, damping introduces
an additional arbitrary parameter. A more straightforward ap-
proach to energy conservation is the shifted force (SF),13,15

which meets two continuity requirements at the cutoff boundary,
i.e., for both the potential and its derivative (similar to the
boundary conditions applied to the Poisson�Boltzmann calcu-
lation in reaction field methods, but without the need to assume a
uniform continuum with known dielectric constant beyond the
cutoff16�18):

USFðrijÞ ¼ UðrijÞ �UðrcÞ � ðrij � rcÞ dUðrcÞdr
rij e rc

0 rij > rc

8><
>:

ð3Þ

FSFðrijÞ ¼ �dUðrijÞ
dr

þ dUðrcÞ
dr

rij e rc

0 rij > rc

8><
>: ð4Þ

Rigorous tests on this shifted force method have been
reported by Fennell and Gezelter.19 On the basis of comparisons
with Ewald energies and forces in SPC/E water20 and in high
temperature molten salts, they conclude that force shifting can be
a viable alternative to lattice sums. More recently, Toxvaerd and
Dyre reported that SF potentials permit smaller cutoffs in weakly
bound systems.6

However, problems arise when we apply SF to an unusual
ionic liquid of “molecules” that are inherently polarizable and
reactive. In this model, molecules comprise charged and inde-
pendently mobile atomic cores that are surrounded by fully
charged and independently mobile valence electron pairs.21

According to this “LEWIS” construct, a water molecule, e.g., is
composed of seven independently mobile particles: a +6
charged oxygen core, two +1 charged protons, and four �2
charged electron pairs (Figure 2, inset). These charges are an
order of magnitude larger than the partial charges of typical
empirical force fields. In this unusual ionic liquid, SF does
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better than SP but still produces significant structural arti-
facts (Figure 2). To address this problem, we take the
approach one step further, by shifting the gradient of the
force to make it continuous at the cutoff and adjusting the
force and potential accordingly:

USFGðrijÞ

¼ UðrijÞ �UðrcÞ � ðrij � rcÞ dUðrcÞdr
� 1
2
ðrij � rcÞ2 d

2UðrcÞ
dr2

rij e rc

0 rij > rc

8><
>:

ð5Þ

FSFGðrijÞ

¼ �dUðrijÞ
dr

þ dUðrcÞ
dr

þ ðrij � rcÞ d
2UðrcÞ
dr2

rij e rc

0 rij > rc

8><
>:

ð6Þ
Here, SFG stands for shifted force gradient, and d2U/dr2

denotes the second derivative of potential with respect to
distance. Note that the second derivatives appear as constants,
and they need to be evaluated only once per type of interac-
tion. Since the force remains the exact derivative of the
potential, energy is still conserved in molecular dynamics
(MD) simulations.6

We should note that a general shifting scheme was discussed
long ago by Levitt et al.22 in the form of a truncated Taylor series

expansion:

Un-shiftedðrijÞ ¼ UðrijÞ � UðrcÞ � ∑
n

m¼ 1

1
m!

ðrij � rcÞmd
mUðrcÞ
drm

rij e rc

0 rij > rc

8><
>:

ð7Þ
Levitt et al.22 explored both the n = 1 case (corresponding to

SF) and the n = 2 case (corresponding to SFG) and concluded
that the former provides a better electrostatics description in
weakly to mildly ionic systems, such as aqueous solutions of
biological macromolecules. They also argued that force shifting,
i.e., n = 1, has little influence on a hydrogen bond that is modeled
by partial charges on atom centers. Here, we show that in cases of
extreme ionicity, as encountered in novel or rare model systems,
these conclusions may be challenged, and n > 1 orders of shifting
can become necessary for proper long-range electrostatics.

’COMPUTATIONAL DETAILS

All MD simulations were performed with Gromacs software23

version 4.5.3 and analyzed using Gromacs and VMD24 (version
1.8.7). Potentials were introduced as user tabulated func-
tions with a distance increment of Δr = 0.005 Å. Ewald sums
were calculated using Gromacs’ smooth particle mesh Ewald
(SPME), implemented with fourth order spline interpolation
and a tolerance of 10�5. In these runs, the non-Coulombic
terms were handled as in eqs 5 and 6 with rc = 9 Å. Since these
terms decay rapidly, their effect in the long-range was small
compared to the Coulomb term. Following the approach of
Fennell and Gezelter,19 we take the Ewald results as our
reference.

The sodium chloride simulations used the Charmm27 force
field,26,27 such that the interaction between ions i and j is

Uij ¼
qiqj

4πε0rij
þ εminij

Rmin
ij

rij

 !12

� 2
Rmin
ij

rij

 !6
2
4

3
5 ð8Þ

where εij
min = (εi

min εj
min)1/2 and Rij

min = (Ri
min + Rj

min)/2 and the
parameter values are listed in Table 1.

Simulations were run at 2000 K where the model potentials
predict a molten liquid that still exhibits extensive structural order.

Figure 1. Three different levels of shifting on a purely electrostatic
potentialU = 1/r (top) and its force F = 1/r2 (bottom), as they approach
a cutoff of 9 Å. The unmodified potential and force are shown in black,
the SP in green, the SF in red, and the SFG in blue. In b, the inset shows a
magnified view of the cutoff region. Note that in both SF and SFG the
energies go smoothly to zero, whereas the force goes smoothly to zero
only in SFG.

Figure 2. The smooth particle mesh Ewald (SPME) oxygen�oxygen
radial distribution function of LEWIS water21 compared to the
(vertically translated) results obtained using SFG with rc = 9 Å in blue;
SF with rc = 12 Å inmagenta; and SFwith rc = 9 Å in red. The inset shows
one molecule of LEWIS water: the oxygen ion is rendered in red,
protons in white, and electron pairs in green.
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All simulations were in the NPT ensemble. The temperature was
maintained using stochastic velocity rescaling28 with a time
constant of 0.1 ps. Pressures were maintained at 1 atm using
an isotropic Berendsen barostat29 with a time constant of 10 ps
and compressibility of 4.5 � 10�5 bar�1. All NaCl runs began
with conjugate gradient energy minimization of a perfect simple
cubic 16 � 16 � 16 crystal with a lattice spacing of 2.0 Å. The
integration time step was 2 fs, and neighbor lists were updated
very frequently (every five steps) to avoid possible artifacts.
Neighbor list radii were 2 Å longer than the cutoffs. Each
simulation ran for 1 ns, and the last 800 ps were used for analysis.
Coordinates were saved every other picosecond.

Thorium(IV) tetrachloride simulations used the OPLS-AA
force field30,31 such that the interaction between ions i and j is
given by

Uij ¼
qiqj

4πε0rij
þ 4εij

Fij
rij

 !12

� Fij
rij

 !6
2
4

3
5 ð9Þ

where εij = (εiεj)
1/2 and Fij = (FiFj)1/2 and the parameter values

are listed in Table 2. Note that both the Lennard-Jones expres-
sion (eq 9) and the combination rules of OPLS are slightly
different from the CHARMM potential (eq 8). The temperature
was maintained at 1000 K. Both NVT and NPT simulations (P =
1000 atm) were run for comparison. NPT runs began with
energy minimization of 1000 ThCl4 molecules arranged in a 10
� 10 � 10 box with a lattice spacing of 8.0 Å and an
intramolecular Th�Cl distance of 2.8 Å. NVT runs began with
the final positions, velocities, and volume of the constant
pressure SPME simulation. Commensurate with larger interpar-
ticle separations than for NaCl, longer cutoffs (15 Å, 18 Å, 21 Å,
and 24 Å) were used, neighbor list radii were 3 Å longer than the
cutoffs, and the Ewald radius was 21 Å. Trajectories were
propagated for 10 ns and coordinates recorded every 20 ps.
The first 5 ns of NPT and the first 2 ns of NVT runs were
excluded from analysis.

LEWIS water was simulated under similar MD conditions,
except for a shorter time step of 0.2 fs and a lower temperature of
300 K. The 9 Å cutoff SPME run used a cubic box of 500 water
molecules (edge length∼ 24.7 Å). The 12 Å cutoff SF run used a
larger box (edge length ∼ 36 Å) of 1500 molecules. Due to the
relatively small time step and low temperature, the neighbor lists
were updated only every 100 steps. The large water box was run
for 250 ps, while all others were run for 1 ns. The first 200 ps of
each run were excluded from analysis.

’RESULTS

Our LEWIS model for water exhibits dramatic artifacts in the
O6+�O6+ correlations with the SF method. The prominent
signature of SF is the presence of an artificially dense shell just
inside the cutoff with a depletion layer just beyond (Figure 2).
The associated peak and valley in the radial distribution are
distinctive and become more prominent with smaller cutoffs. In
the case of a 9 Å cutoff, the artifact peak is higher than the physical
second and third neighbor peaks. In fact, the latter are pushed
inward and become ordered by the artificial layer so that the
hydrogen bond network is restructured. For a larger cutoff of
12 Å, the problem is less dramatic, yet the artifact is still significant.
On the other hand, SFG resolves this abnormality already for rc =
9 Å and reproduces the Ewald structure to a reasonable accuracy.
For the present model, SPME takes about 8�9% longer on a
parallel machine with 16 virtual cores.

In molten NaCl, neither SF nor SFG causes a distinct cutoff
layer analogous to the LEWISwater artifact. However, SF harshly
suppresses order beyond the cutoff, whereas SFG reproduces it
(Figure 3). On the other hand, both the SF and SFG softening
methods underestimate density with decreasing cutoff, SFG
more so than SF (Figure 3, bottom panel inset).

As charge magnitudes increase, the artifact around the SF cutoff
re-emerges. In ThCl4, the effect is very similar to that in the LEWIS

Table 2. Charges and Lennard-Jones Parameters Used in
ThCl4 Simulations (as found in the Gromacs 4.5.3 release)

q (e) F (Å) ε (kJ/mol)

Th4+ 4.00 3.30000 0.209200

Cl� �1.00 4.41724 0.492833

Figure 3. The SPME Na+�Na+ radial distribution function (black)
compared to the (vertically translated) results obtained using SF
(red) and SFG (blue), in the NPT ensemble with rc = 9 Å (top) and
rc = 12 Å (bottom). The inset in the top panel shows the full radial
distribution functions. The inset in the lower panel shows the
convergence to 1 of the ratios of the predicted densities from NPT
simulations to the SPME value (2.486 g/cm3), with increasing cutoff
radius (6, 9, and 12 Å). Peaks beyond the cutoff are better preserved
with SFG. This occurs at the expense of a mild outward shift that is
reduced with the longer cutoff.

Table 1. Charges and Lennard-Jones Parameters Used in
NaCl Simulations25�27

q (e) Rmin (Å) εmin (kcal/mol)

Na+ 1.00 2.7275 �0.0469

Cl� �1.00 3.8164 �0.0300
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water case, in the sense that it appears only in the Th4+�Th4+

correlations and becomes more pronounced and localized at
shorter cutoffs (Figure 4). SFG lifts this abnormality in the
structure. However, it does so at the expense of an under-
estimation of the density in NPT simulations or an overestima-
tion of the pressure in NVT simulations (Figure 4 insets).
Nevertheless, at constant volume, SFG predicts a structure that
is virtually identical to SPME already at a cutoff below the Ewald
radius (Figure 4, bottom panel).

’DISCUSSION

This work provides evidence that, even in extreme systems, a
pairwise compensation scheme can reproduce results similar to
those obtained with conventional infinite lattice sums that are
typically more CPU-intensive and more difficult to parallelize.
When used in conjunction with neighbor lists and cell domain
decomposition, pairwise methods can also offer linear scaling
with the number of particles N.13,19 Currently, most mainstream
lattice-sum algorithms scale as N log(N),9�11 which makes
pairwise sums advantageous as systems grow in size.

We characterize three artifacts, two associated with SF and one
with SFG. While SF can be a viable solution for weakly ionic
liquids,6 it results in an artificial layer just inside the cutoff as
charges increase in magnitude. In our highly ionic water model,
this layer appears in the homoionic correlations between +6 charged
particles, and in molten ThCl4 it appears between +4 charged

particles. It does not appear in the other correlations of these
liquids, or in any of the correlations in molten NaCl where the
ionic charges are smaller. However, SF results in a different
structural artifact in NaCl; i.e., long-range order is lost for small
cutoffs. In contrast, SFG provides a reliable liquid structure in
NVT simulations of ThCl4. On the other hand, in NPT simula-
tions, SFG causes more outward shifted correlations and greater
underestimation of the density than SF. However, it is notable
that in our strongly ionic water model, SFG obtains the Ewald
density already at a cutoff of 9 Å. While this radius is small for an
ionic liquid, it is still ∼20-fold larger than the smallest (i.e.,
intramolecular) ion separation of ∼0.3�0.5 Å in this system.
Ions of molten ThCl4 are significantly less densely distributed,
with nearest neighbor distances varying between 2.7 Å and 5.5 Å.
The cutoffs considered in this system, while large in magnitude,
remain small multiples of typical interion separations.

The observed outward correlation shifts, and related density
underestimations (Figure 3, bottom panel inset, and Figure 4,
bottom panel inset), can be rationalized by considering the
corrected potentials in Figure 1. To the extent that the potentials
that hold the system together are attenuated, less cohesion is
expected (Figure 5). Thus, the greater potential softening in the
n = 2 correction than in the n = 1 correction is consistent with the
greater correlation shifts and density underestimations. Constant
volume ensembles can circumvent this issue at the expense of
elevated pressures (Figure 4, top panel inset). Another alter-
native may be reoptimization of the force field for use with the
specific long-range correction, as has been done, e.g., for Ewald
compatibility of water models.32,33

Figure 4. Simulations of ThCl4. The SPME Th4+�Th4+ radial dis-
tribution function (black) compared to the (vertically translated) results
obtained using SF (red) and SFG (blue), in the NVT ensemble with rc =
15 Å (top) and rc = 18 Å (bottom). The artifact layer in SF is still present
with the longer cutoff, but less distinct. Insets show the dependence on
the cutoff distance (15, 18, 21, and 24 Å) of the pressure in NVT
simulations (top) and the density in NPT simulations (bottom) relative
to the SPME values (590.5 bar and 3.011 g/cm3, respectively).

Figure 5. Total energy per salt molecule (kJ/mol) as a function of cutoff
distance in NPT simulations of molten NaCl (top) and molten ThCl4
(bottom). Cohesion is reduced by both SF (red) and SFG (blue), as
compared to SPME (dashed black line).
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We arrived at SFG compensation (eqs 5 and 6), to address our
own needs for a novel, highly ionic model of water. However, the
demonstrated advantages in more conventional ionic systems
indicate that the approach may be of wider benefit for the
computational community.
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ABSTRACT: Recently, Heyden, Lin, and Truhlar (J. Phys. Chem. B 2007, 111, 2231�2241) formularized the adaptive-partitioning
schemes for quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. The adaptive-
partitioning schemes permit on-the-fly reclassification of atoms/groups as part of the QM or MM subsystems during dynamics
simulations. Test simulations of argon atoms in a periodic box with dual-level MM potentials in the microcanonical ensemble
demonstrated that the adaptive-partitioning schemes conserved energy and momentum, which is critical to ensure correct sampling
of configuration spaces of desired ensembles. In this work, we reported the extension of the adaptive-partitioning schemes to deal
with groups that are molecular fragments. The newly developed adaptive-partitioning redistributed charge scheme and adaptive-
partitioning redistributed charge and dipole schemes allow on-the-fly relocation of the QM/MM boundaries that cut through
covalent bonds during dynamics simulations. Test QM/MM simulations with a variety of QM levels of theory in the microcanonical
ensembles demonstrated that the new schemes conserve energy and momentum.

1. INTRODUCTION

The past decade has witnessed rapid growth in the applica-
tions of combined quantum mechanical and molecular mechan-
ical (QM/MM)1�15 methods. But conventional QM/MM
methods have noticeable limits.16 One of those limits is the
prohibition of on-the-fly reclassification of atoms/groups as part
of the QM orMM subsystems during molecular dynamics (MD)
simulations. For many systems with localized active sites, such a
limit is not a concern, but for other systems with nonlocalized
active sites, such as ion solvation and transport, defect propaga-
tion in materials, and diffusion on catalytic surfaces, such a limit
would require the use of large-size QM subsystems, which is very
expensive or impractical at all.

Recently, there have been increasing interests in the develop-
ment of new QM/MM schemes that go beyond this limit.17�22

Several algorithms have been published on the dynamically
partitioning of atoms/groups into QM or MM subsystems in
MD simulations.17�20 When an atom changes its QM or MM
identity, the potential energy and forces will show sudden
changes. Note that not just the force on the given atom is
changing but also the forces on all the other atoms are changing.
The discontinuities in energy and forces could lead to numerical
instability in MD simulations.19 Moreover, it could prevent
correct sampling of configuration space of the desired
ensemble.19 To cope with those discontinuities, a narrow buffer
zone (also called switching shell) is identified between the QM
subsystem (also called active zone) and the MM subsystems
(also called environmental zone). As illustrated in Figure 1, the
active zone is usually defined as a sphere of the inner radius Rmin

centered at a given primary atom (or a given spatial location
defined by the cartersian coordinates), and the buffer zone is
defined as a shell within the inner and outer radii Rmin and Rmax.
Various smoothing algorithms are applied to remove the

discontinuities in the potential energy and/or forces when
atoms/groups enter or leave the buffer zone. The smoothing
functions, which take forms ranging from simple polynomials to
complicated functions, usually depend on the distances (Ri)
between the active-zone center and the atoms/groups in the
buffer zone.

The “hot-spot” method17 developed by Rode and co-workers
in 1996 is one of those examples. Although this method does not
conserve momentum and the energy is not evaluated or defined,
for simulations in the canonical (NVT) ensemble, the kinetic
energy is approximately constant, and the numerical instabilities
are reduced. The hot-spot method has been applied in a series of
studies on the ion solvation, e.g., Li+ in ammonia,17 Ca2+,23 Na+

and K+,24 Cu2+,25,26 Mn2+,27 Ni2+,28 Li+,29 V2+,30 Fe2+ and
Fe3+,31 F� and Cl�,32,33 NO3

�,34 and HCOO� in water.35 In
2002, in discussion of the hot-spot method, Kerdcharoen and
Morokuma suggested the ONIOM-XS method,18 which does

Figure 1. Illustration of the active, buffer, and environmental zones.
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conserve momentum. The ONIOM-XS scheme was tested with
Li+ ion18 and Ca2+ ion36 in liquid ammonia in the isothermal�
isobaric (NPT) ensemble. However, the ONIOM-XS scheme
does not conserve energy in microcanonical (NVE) simulations
if two or more groups are present in the buffer zone. In 2007,
Heyden, Lin, and Truhlar19 proposed two adaptive-partitioning
(AP) schemes, the permuted AP and the sorted AP schemes.
Those two schemes were tested by MD simulations of argon
atoms in a periodic box using dual-level MM (MM/MM)
potentials—the interactions between argon atoms in the active
zone were described by a Morse potential and the interac-
tions in the environmental zone by a Lennard-Jones potential.
Simulations in the NVE ensemble demonstrated that the AP
schemes conserved energy and momentummuch better than the
other schemes in comparison. Bulo et al.20 introduced in 2009
the so-called difference-based adaptive solvation potential,
which is related to the sorted AP scheme with a different way
in constructing smoothing functions. They also put forward an
interesting idea, the continuous-force scheme, which, although
not energy conserving, retains a related conserved quantity
(energy corrected by a book-keeping term obtained by integra-
tion of forces over the trajectory). The methods were tested by
dual-level MM simulations in the NVE ensemble of a water-in-
water model system and of an acetonitrile-in-water system.

In views of the above methods, it is clear that simulations in the
NVE ensemble is a stricter test for the algorithms, because coupling
with a heat bath in theNVT andNPT simulations will help to keep
the kinetic energy approximately constant, reducing numerical
instabilities. In the thermodynamics limit, calculations in different
ensembles should converge; we have observed in ref 19 that the
methods conserving energy and momentum produced very similar
radial distribution functions in theNVE andNVT simulations of the
Ar system, while methods with poor conservation of energy and
momentum did not. Schemes that do not conserve energy or
momentum might still be useful in NVT and NPT simulations, if
proper care is taken to avoid/minimize artifacts in the results.

All methods discussed so far only deal with groups that are
whole molecules, such as water and ammonia. A question remains
unanswered: What to do if one wants to define a fragment of
a molecule as a group? For example, can we define the backbone
or side chain of a residue in a protein to be a group? Doing so
requires that one must be able to dynamically relocate the
QM/MM boundary that passes through covalent bonds during
MD simulations. Solving the problem of “fragmental group” for
QM/MM dynamics simulations is not only very interesting but
also has practical uses. For example, an enzyme active site is
usuallymodeled at theQM level in aQM/MM setup. DuringMD
simulations, side chains of residues may flip away, cofactors may
bind, productsmay be released, and solventmoleculesmay diffuse
in. It will be beneficial to dynamically vary the contents of theQM
subsystem in response to those conformational changes. Another
example is the simulations of an ion or a molecule transport
through membrane channel proteins, where it is desirable to
include the ion or molecule and its first solvation shell into the
QM subsystem. With the new development here, one could
construct a moving QM subsystem centered at the given ion or
molecule; when the ion or molecule passes by a residue or lipid,
one can add the residue or part of the lipid into theQM subsystem
or delete it from the QM subsystem as needed.

In this work, we report an extension of the adaptive-partition-
ing schemes in ref 19 to handle the fragmental groups. To our
knowledge, this is the first implementation of the schemes that allow

on-the-fly relocation of the QM/MM boundaries that cut through
covalent bonds inMD simulations. The development results in two
new QM/MM schemes, namely the adaptive-partitioning redis-
tributed charge (AP-RC) and the adaptive-partitioning redistribu-
ted charge and dipole (AP-RCD) schemes, which are described in
Section 2. Test calculations are present in Section 3. The results are
analyzed in Section 4, and discussion is given in Section 5.

2. METHODOLOGY

2.1. Adaptive-Partitioning Treatments. The algorithms of
the adaptive-partitioning QM/MM have been given in detail in
ref 19. Briefly, in the permuted AP scheme, the potential energy is
expressed in a many-body expansion manner:

V ¼ VA þ ∑
N

i¼ 1
PiðVA

i � VAÞ

þ ∑
N � 1

i¼ 1
∑
N

j¼ i þ 1
PiPjðVA

i, j � ½VA þ ∑
N

r¼ i, j
ðVA

r � VAÞ�Þ

þ ∑
N � 2

i¼ 1
∑

N � 1

j¼ i þ 1
∑
N

k¼ j þ 1
PiPjPkðVA

i, j, k � ðVA þ ∑
N

r¼ i, j, k
ðVA

r � VAÞ

þ ∑
N � 1,N

ðp, qÞ¼ ði, jÞ, ði, kÞ, ðj, kÞ
ðVA

p, q � ðVA

þ ∑
N

r¼ i, j
ðVA

r � VAÞÞÞÞ þ ... ð1Þ

where VA is the energy determined with the groups in the active
zone at the QM level, Vi

A with all active-zone groups and the i-th
buffer-zone group at the QM level, Vi,j

A with all active-zone
groups, the i-th buffer-zone group, and the j-th buffer-zone group
at the QM level, ... V1,2, ...N

A with all active-zone groups and all N
buffer-zone groups at the QM level, and Pi is the smoothing
function of the i-th buffer-zone group in terms of the dimension-
less reduced radial coordinate αi:

PiðαiÞ ¼ � 6α5
i þ 15α4

i � 10α3
i þ 1

αi ¼ Ri � Rmin

Rmax � Rmin
for Rmin < Ri < Rmax

ð2Þ

eq 1 can be conveniently rewritten as

V ¼ VAð1� ∑
N

i¼ 1
Pi þ ∑

N � 1

i¼ 1
∑
N

j¼ i þ 1
PiPj

� ∑
N � 2

i¼ 1
∑

N � 1

j¼ i þ 1
∑
N

k¼ j þ 1
PiPjPk þ ... Þ

þ ∑
N

i¼ 1
PiV

A
i ð1� ∑

N

j 6¼i

Pj þ ∑
N � 1

j 6¼i
∑
N

k¼ j þ 1 6¼i

PjPk � ... Þ

þ ∑
N � 1

i¼ 1
∑
N

j¼ i þ 1
PiPjV

A
i, jð1� ∑

N

k 6¼i 6¼j

Pk þ ... Þ þ ...

ð3Þ
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or

V ¼ VA
YN
i¼ 1

ð1� PiÞ þ ∑
N

i¼ 1
PiV

A
i

YN
j 6¼i

ð1� PjÞ

þ ∑
N � 1

i¼ 1
∑
N

j¼ i þ 1
PiPjV

A
i, j

YN
k 6¼j 6¼i

ð1� PkÞ þ ...

ð4Þ
Note the constraint that the sum of the smoothing functions is
always 1.

YN
i¼ 1

ð1� PiÞ þ ∑
N

i¼ 1
Pi
YN
j 6¼i

ð1� PjÞ

þ ∑
N � 1

i¼ 1
∑
N

j¼ i þ 1
PiPj

YN
k 6¼j 6¼i

ð1� PkÞ þ ...

¼
YN
i¼ 1

ðð1� PiÞ þ PiÞ ¼ 1 ð5Þ

In total, 2N QM calculations are to be performed. All derivatives
of the potential energy with respect to the coordinates vary
smoothly up to the same order for which the smoothing
functions Pi vary continuously. Since 0 < Pi < 1, the energy
contributions of the terms in the series in eq 1 decrease rapidly, it
may be advisible to truncate the series. The truncation signifi-
cantly reduces the number of embedded QM calculations, but it
also introduces small (but controllable) discontinuities in the
energy and the derivatives. Our test calculations showed that
the discontinuities are insignificant if the series is truncated at the
fifth order. That is, only up to five groups in the buffer zone
are included in the QM calculations, and the fifth or higher order
terms of Pi are neglected.
In the sorted-AP scheme,19 the groups in the buffer zone are

sorted in a canonical order with respect to Ri from the smallest to
largest. The QM calculations begin with the active zone only, and
the buffer-zone groups are added one at a time according to the
increasing distance, leading to in total N + 1 calculations. The
potential energy in sorted AP is given by

V ¼ ∑
N

i¼ 0
ðΦiV

A
1, 2 , ..., Nð

YN
j¼ i þ 1

ð1�ΦjÞÞÞ ð6Þ

or

V ¼ VA
YN
j¼ 1

ð1�ΦjÞ þ Φ1V
A
1

YN
j¼ 2

ð1�ΦjÞ

þ Φ2V
A
1, 2

YN
j¼ 3

ð1�ΦjÞ þ ... ð7Þ

with the smoothing function

Φi ¼ ð1� χiÞ�3

χi ¼ ∑
i � 1

j¼ 1

1� Pj
Pj � Pi

þ 1� Pi
Pi

þ ∑
N

j¼ i þ 1
Pj

1� Pi
Pi � Pj

 !

ð8Þ

and

Φ0 � 1 ð9Þ

The chosen smoothing function Φi ensures that the energy and
the gradient stay constant when two groups in the buffer change
the rank.
Comparing eqs 4 and 7 reveals the relationship between the

permuted-AP and sorted-AP. The n-th order contributions in
eq 4 comprise W(n, N) = N!/n!(N � n)! number of terms, and
the sorted-AP scheme keeps only one term—the term with the n
buffer-zone groups that are closest to the active-zone center
(presumably the biggest contribution)—with very complicated
smoothing function Φi. Note that the sum of smoothing func-
tions is also 1 in the sorted-AP scheme. It is also interesting to
note that, if one truncates eq 3 at the first order, keeps only the
constant and the linear terms of Pi, and makes the assumption
that V1

A = V2
A = ... = VN

A = (1/N)V1,2,...,N
A = (1/N)VA+B, then one

will arrive at the energy expression for ONIOM-XS.18

2.2. Fragmental groups.Next, we will focus on the issues that
are particularly related to the treatment of the fragmental groups.
To deal with the fragmental groups in calculations, one must
solve three problems. Here we illustrate the problems by using a
small model system: A butanol molecule in complex with two
water molecules. As shown in Figure 2, the butanol molecule is
divided into three fragmental groups: �CH2OH, �CH2CH2�,
and �CH3 as groups 1�3, while each water molecule forms a
group (groups 4 and 5). The O atom in group 1 is set to be the
primary atom in the QM subsystem. The distance Ri between the
primary atom and the i-th group is calculated as the distance
between the primary atom and the center of mass of the group
(or a delegate atom of the group if needed).
The first problem is how to deal with the dangling bond

at the QM/MM boundary. For example, if the boundary is
passing through the C�C bond connecting groups 1 and 2 and
if group 1 is the QM group, then group 1 will have a dangling
bond at the boundary. Various schemes are available in the
literature,2,3,16,37�52 and here we adopt the redistributed-charge
(RC) and redistributed-charge and dipole (RCD) schemes by
Lin and Truhlar,49 which are classic mechanical mimics to the
quantum mechanical description of the charge distribution near
the QM/MM boundary by the generalized hybrid orbital
(GHO) scheme by Gao and co-workers.40,53 In both the RC
and RCD schemes, the QM subsystem is capped by a hydro-
gen link atom, and the MM point charge at the M1 atom (the
MM atom that directly bounded to a QM atom) is evenly

Figure 2. Groups in the test model system of a butanol in complex with
two water molecules: group 1 is the�CH2OH fragment, group 2 is the
�CH2CH2� fragment, group 3 is the �CH3 fragment, and groups 4
and 5 are twowatermolecules, respectively. TheO atom in group 1 is the
primary atom of the QM subsystem, i.e., the center of the active zone.
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redistributed to the midpoints at the M1�M2 bonds, where M2
is the MM atom that directly bond to the M1 atom. The capped
group 1 becomes CH3OH. The redistributed charges and the
MM charges at the M2 atom are further modified in the RCD
scheme to preserve the M1�M2 bond dipoles. Despite their
simplicities, the RC and RCD schemes have been found to yield
reasonably good accuracy in energies and geometries in QM/
MM calculations.49 More details about the RC and RCD
schemes can be found in ref 49 and are not repeated here.
The second problem is how to define the zeros of QM and

MM energies for the fragmental groups, which are to be
subtracted from the raw total energy of the QM/MM calcula-
tions. The absolute energies given by the QM calculations are
several orders of magnitude larger than the MM counterparts;
properly setting the zeros of energy to be subtracted is therefore
critical to the calculations of energies and forces in the simula-
tions. The zero of QM (or MM) energy for a group that is a
whole molecule is straightforward to obtain, which we set to the
QM (or MM) energy of the isolated molecule at its geometry
optimized at the given QM level of theory (or MM force field).
For a group that is part of a molecule, the situation is more
complicated, and the zero of energy depends on how this group is
linked to other groups of the molecule. For the butanol molecule
in Figure 2, group 1 is always in the active zone, and its zero of
energy is given by the capped group 1, i.e., CH3OH:

E0ðgroup1Þ ¼ EðCH3OHÞ ð10Þ
If group 2 is present in the active or buffer zone, it will be

included in some of the calculations together with group 1. In
those calculations, group 2 will merge with group 1 to form a
“super group”�CH2CH2CH2OH. Consequently, the link atom
will cap the merged supergroup and will be located at the
boundary now between groups 2 and 3. Therefore, there will
be one capped supergroup CH3CH2CH2OH instead of two
separately capped groups CH3OH and CH3CH3 in the calcula-
tions. Accordingly, the zero of energy for group 2 is obtained as
the energy difference between the capped supergroup and the
capped group 1, each at its optimized geometries:

E0ðgroup2Þ ¼ EðCH3CH2CH2OHÞ � EðCH3OHÞ ð11Þ
Similarly, the zero of energy for group 3 is obtained as the energy
difference between the supergroup by merging groups 1 to 3 and
the supergroup by merging groups 1 and 2:

E0ðgroup3Þ ¼ EðCH3CH2CH2CH2OHÞ
� EðCH3CH2CH2OHÞ

ð12Þ

Apparently, the zero of energy of a fragmental group must be
obtained in accord to how the group is merged with other groups
in the active and buffer zones. For example, if the C atom in group
3 is set to be the primary atom of the QM subsystem, we will have

E0ðgroup1Þ ¼ EðCH3CH2CH2CH2OHÞ � EðCH3CH2CH3Þ
ð13Þ

E0ðgroup2Þ ¼ EðCH3CH2CH3Þ � EðCH4Þ ð14Þ

E0ðgroup3Þ ¼ EðCH4Þ ð15Þ
This then gives rise to the third problem, which is a technical
issue, that the computer program must be able to automatically
relocate the boundary and find the correct zero of energy based

on the topology of the system. This becomes quite cumbersome
if a group is linked to many other groups via covalent bonds.
When determining the zero of energy for a fragmental group,

it was not necessary to include groups that were present in
the active and/or buffer zones but did not covalently connect
to the fragmental group. Inclusion of those groups changed
the zero of energy slightly but seemed to have negligible
effects on the energy and momentum conservations in the MD
simulations.
The total zero of energy for the whole system, E0(sys), is the

sum of the zeros of energy for all groups, according to eq 4 for the
permuted-AP method and eq 8 for the sorted-AP method. A
group in the buffer zone has dual (QM and MM) characteristics,
so its contribution to the total zero of energy varies when its
distance to the active-zone center changes. As a result, the total
zero of energy for the whole system can change significantly
(a few to a few hundreds of hartree, depending on the system)
and rapidly (in a few tens of femtoseconds) during simulations,
presenting a challenge in maintaining numerical precision and
stabilities in long-time simulations, especially the NVE simula-
tions. (Note that the gradients due to the smoothing functions
depend on the difference between the QM and MM energies.)
Such drastic variations in the zero of energy were not present in
previous dual-level MM simulations,19,20 since the zeros of MM
energy of a group, such as a water molecule, are usually rather
small. The numerical stability also relies critically on the avail-
ability of highly accurate gradients. Therefore, for QM calcula-
tion, a tight SCF convergence is desired. In particular, for density
functional theory (DFT) calculations, fine grids for numerical
integration are recommended.
The newly developed AP-RC and AP-RCD schemes have

been implemented in a new version of the QMMM program.54

3. COMPUTATION

The energy and momentum conservations by the AP-RC and
AP-RCDmethods were tested byMD simulations on two model
systems. The first model system was the butanol molecular in
complex with two water molecules, as described in Figure 2, for
which detailed analysis would be carried out. The second and
larger model system was an extension of the first model system:
a butanol molecule solvated in one 30 � 30 � 30 Å periodic
water box of 813 water molecules, and the butanol molecule was
divided into the same three fragmental groups as in the first
model system. The MM force field was OPLS-AA55�60 for
butanol and TIP3P61 for water. Table S1 in the Supporting
Information lists the employed MM parameters. The QM levels
of theory included the semiempirical method AM1,62 the har-
tree-fock (HF) method,63 the DFT model B3LYP,64�66 and the
post-HF method MP2.67 The 6-31G(d) basis set68�72 was
employed for the HF, B3LYP, and MP2 calculations. As will be
seen in the Results Section, basically all tested QM methods
performed equally well in conserving energy and momentum
of the systems. Due to high computational costs, simulations for
the second model system were only carried out with AM1. In
addition to the adaptive-partitioning QM/MMMD simulations,
we also performed simulations at the pure-MM, the pure-QM
(for the first model system only), and the fixed-partitioning QM/
MM level. In the fixed-partitioning QM/MM simulations, group
1 (the�CH2OH group) was the QM subsystem while the other
groups belonged to the MM subsystem. Table 1 summarizes the
calculations that have been done in this work.
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TheQM/MMMD simulations were carried out by employing
the new version of the QMMM program,54 which for the QM
calculations invoked the ORCA73 program (for AM1) or the
Gaussian0374 program (for HF, B3LYP, and MP2) and for
the MM calculations invoked the TINKER75 program. Only
the simulations with the permuted-AP method are presented
here. The sorted-AP method was found to be less satisfactory in
conserving energy in the NVE simulations due to numerical
instabilities caused by two groups switching positions in the
buffer zone,19,20 and the results are omitted from this work. In the
permuted-AP simulations, we did not observe noticeable differ-
ence in energy and momentum conservation between simula-
tions employing the full energy expression and an expression
truncated at the fifth order. Consequently, all the simulations
presented here were done with the truncations at the fifth order.
The trajectories were propagated by using the velocity
Verlet algorithm,76 and the time steps were set to 0.5 fs. Smaller
time steps, such as 0.2 and 0.1 fs, had also been tested, and we
found that they did equally well as the 0.5 fs time step in the
energy and momentum conservations for the systems tested
here; therefore, those results are not shown. The trajectories
were recorded every 10 steps. Although we focused on the NVE
ensemble, we also carried out the NVT simulations for the
second model system, where the temperature was set to 300 K
and was controlled by a Berendsen thermostat77 with a coupling
constant of 2 fs. The active zone was centered at the O atom
of the butanol molecule with a radius of Rmin = 3.05 Å, and
the thickness of the buffer zone was 0.5 Å (Rmax = 3.55 Å).

The Rmin = 3.05 Å was chosen such that group 2 entered and left
the buffer zone frequently during MD simulations. The zeros of
energies for the groups in butanol and for the water group are
listed in Table S2 in the Supporting Information.

We note that the purpose of the test calculations is to verify the
energy and momentum conservations by the AP-RC and AP-
RCD schemes rather than to achieve good agreement with
experimental results or with MD simulations at the pure-MM
or pure-QM levels of theory. Such agreements are unlikely
to achieve without optimizing selected parameters describing
the interactions between the QM and MM subsystems;14,78,79

examples of those parameters include the parameters for the
van der Waals interactions between QM and MM atoms80 and
the partial atomic charge parameters that enter the effective
QM Hamiltonians (as one-electron operators for the electro-
static interaction between the nuclei and electrons of the
QM subsystem and the partial atomic charges of the MM
subsystem).16,51,52,81,82

4. RESULTS

4.1. First Model System. First, we look at the NVE simula-
tions by permuted-AP RCwith AM1 as the QM level of theory, i.
e., entry 1.4 in Table 1. An overview of the on-the-fly boundary
relocation is provided by Figure 3. The initial geometry was such
that group1 was in the active zone, groups 2 and 4 were in
the buffer zone, and groups 3 and 5 in the environmental zone.
After the simulation started, the distance between group 2 and

Table 1. List of Test Calculationsa

entry model system ensemble description QM level boundary treatment

1.0 first NVE pure-MM n/a n/a

1.1 first NVE pure-QM AM1 n/a

1.2 first NVE fixed-partition QM/MM AM1 RC

1.3 first NVE fixed-partition QM/MM AM1 RCD

1.4 first NVE permuted-AP QM/MM AM1 RC

1.5 first NVE permuted-AP QM/MM AM1 RCD

1.6 first NVE permuted-AP QM/MM HF/6-31G(d) RC

1.7 first NVE permuted-AP QM/MM HF/6-31G(d) RCD

1.8 first NVE Permuted-AP QM/MM B3LYP/6-31G(d) RC

1.9 first NVE permuted-AP QM/MM B3LYP/6-31G(d) RCD

1.10 first NVE permuted-AP QM/MM MP 2/6-31G(d) RC

1.11 first NVE permuted-AP QM/MM MP 2/6-31G(d) RCD

2.0 second NVE pure-MM n/a n/a

2.1 second NVE fixed-partition QM/MM AM1 RC

2.2 second NVE fixed-partition QM/MM AM1 RCD

2.3 second NVE permuted-AP QM/MM AM1 RC

2.4 second NVE permuted-AP QM/MM AM1 RCD

2.5 second NVT pure-MM n/a n/a

2.6 second NVT fixed-partition QM/MM AM1 RC

2.7 second NVT fixed-partition QM/MM AM1 RCD

2.8 second NVT permuted-AP QM/MM AM1 RC

2.9 second NVT permuted-AP QM/MM AM1 RCD
aThe first model system is a butanol molecule in complex with two water molecules (Figure 2), and the second model system is a butanol molecule in a
30� 30� 30 Å periodic box of 813 water molecules. In theMD simulations, each trajectory was propagated using the velocity Verlet algorithm with 0.5
fs time steps for 10 000 steps. In the fixed-partitioningQM/MMsimulations, group 1 (the�CH2OH fragment of the butanol molecule) was set to be the
QM subsystem, while all other groups were set to be the MM subsystem. In the adaptive-partitioning QM/MM simulations, the active zone centered at
the O atom of the butanol with a radius of 3.05 Å, the buffer zone had a thickness of 0.5 Å, the butanol was divided into three groups as shown in Figure 2,
and each water molecule forms a group alone. The MM force field was OPLS-AA for butanol and TIP3P for water.
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the active-zone center fluctuated around 3.07 Å due to the
vibrations of butanol, in particular, due to the bending of the
C�C�C and O�C�C angles and the torsion of the
O�C�C�C dihedral. The fast fluctuation let group 2 enter
and leave the buffer zone quickly and constantly, making the
model system a demanding test for the AP-RC (and AP-RCD)
treatment. Soon after t = 0.075 ps, group 4 moved out of the
buffer zone and stayed in the environmental zone. Group 5 then
stepped into the buffer zone and after entered and left the buffer
zone a few times, it eventually moved into the active zone and
formed a hydrogen bond with the hydroxyl group of butanol.
During the last stage of the simulation (t > 4.380 ps), group 2
walked into the active zone and resided there until the end of the
simulation; visualization of the trajectory revealed that the
butanol molecule underwent a noticeable conformational change
from the trans to the gauche form for the bond axes of
CH3�CH2�CH2�CH2OH. The conformational change shor-
tened the distances between the active-zone center and groups 2
and 3 (by 0.4 and 1.2 Å, respectively).
Figure 4 shows two snapshots of the trajectory at simu-

lation time (a) t = 0.050 ps and (b) t = 0.400 ps. In Figure 4a,
group 1 (�CH2OH) was in the active zone, while groups 2
(�CH2CH2�) and 4 (H2O) were in the buffer zone. In Figure 4
b, group 2 had entered the active zone, group 4 moved
into the environmental zone, and group 5 (H2O) entered the
buffer zone from the environmental zone. Group 2 then
merged with group 1, producing a supergroup in the active zone:
�CH2CH2CH2OH. Clearly, the QM/MM boundary had
shifted outward from at t = 0.050 to t = 0.400 ps.
The exchange of groups between the active, buffer, and

environmental zones had led to significant variations in the zero
of energy for the system E0(sys). Figure 5 shows such changes in
the zero of energy as a function of simulation time. Those
large variations (a few thousands of kcal/mol) were caused
by the water molecules due to their significant changes in R.
The contributions by group 2 were smaller, usually less than
100 kcal/mol. As pointed out earlier, E0(sys) needs to be
subtracted from the raw total energy of a QM/MM calculation.
Obtaining accurate E0(sys) is therefore crucial to the success of
the adaptive-partitioning QM/MM simulations.

The conservation of energy is readily examined by plotting the
total energies of the system as a function of simulation time,
which was done in Figure 6 for the pure-MM (entry 1.0), pure-
QM (entry 1.1), fixed-partitioning QM/MM (entries 1.2 and
1.3), and permuted-AP QM/MM (entries 1.4 and 1.5) simula-
tions; the simulations were carried out with AM1 as the QM
method. As can be seen, the performances by all methods are very
similar. The fluctuations in the total energy were generally
smaller than 0.1 kcal/mol. The adaptive-partitioning QM/MM
schemes did not yield any notable long-term drift in the total
energy during the 5 ps simulations, despite the large variations in
the zeros of the energy as discussed above. As a quick and rough

Figure 3. Respective distances between the active zone center (the O
atom in butanol) and groups 2, 4, and 5 for the first model system in the
NVE simulations by permuted-AP RC with AM1 as the QM level of
theory, i.e., entry 1.4 in Table 1. The buffer zone region was between the
dotted (Rmin = 3.05 Å) and dashed (Rmax = 3.55 Å) lines. Group 1 always
stayed inside the active zone, while group 3 was outside the buffer zone
during the simulation, and they are not plotted here.

Figure 4. Snapshots at (a) t = 0.050 ps and (b) t = 0.400 ps from the
NVE simulation by permuted-AP RC for the first model system. The
QM level of theory was AM1. Groups in the active zone are shown as
balls and sticks, in the buffer zone as licorice (thick), and in the
environmental zone as licorice (thin). The distance between the primary
atom (O in butanol) and a group (center of mass) is listed in parentheses
next to the given group. The corresponding distances for group 1, which
are not shown in the figure, are 0.65 Å in both (a) and (b).

Figure 5. The zero of energy of the first model system vs simulation
time for the NVE simulation by permuted-AP RC with AM1 as the QM
level of theory, i.e., entry 1.4 in Table 1.
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estimation, we compared the total energies averaged over the
first picosecond (E1 ps) and over the last picosecond (E5 ps). The
energy difference ΔE = |E1 ps � E5 ps| was 0.001 kcal/mol in
the permuted-AP RC and 0.006 kcal/mol in the permuted-AP
RCD simulations. For comparison, ΔE was 0.001 kcal/mol
for the pure-MM simulation, 0.050 kcal/mol for pure-QM,
0.009 kcal/mol for fixed-partitioning RC, and 0.010 kcal/mol
for fixed-partitioning RCD, respectively. Although 5 ps is not a
very long time, the above numbers do indicate that the permuted-
AP RC and RCD schemes conserve energy and momentum
reasonably well. Adaptive-partitioning QM/MM with higher
levels of QM theory HF, B3LYP, and MP2 was tested in entries
1.6�1.11, respectively, and their total energies were displayed
in Figure S1, Supporting Information. Again, very satisfactory
performance has been observed. The values ofΔE were found to
be small in all six simulations: for HF, 0.007 kcal/mol in
permuted-AP RC and less than 0.001 kcal/mol in permuted-
APRCD; the corresponding values were 0.007 and 0.005 kcal/mol
for B3LYP and 0.004 and 0.003 kcal/mol for MP2.
4.2. Second Model System. The total energies of the NVE

simulations for the second model system (entries 2.0�2.4) were
plotted in Figure S2, Supporting Information, and the tempera-
tures were shown in Figure S3, Supporting Information. Both
the energies and temperature were found very stable, although
the fluctuations were larger than those in the smaller first model
system. The performances by the permuted-AP RC and per-
muted-AP RCD schemes seemed comparable to those by the
pure-MM and by the fixed-partitioning RC and RCD schemes.
We found thatΔEwas 0.1 kcal/mol for the pure-MM simulation,
0.1 kcal/mol for fixed-partitioning RC, 0.2 kcal/mol for fixed-
partitioning RCD, 0.2 kcal/mol for permuted-AP RC, and
0.5 kcal/mol for permuted-AP RCD, respectively. For the NVT
simulations (entries 2.5�2.9), the total energies and tempera-
tures were illustrated in Figures S4 and S5, Supporting Informa-
tion, respectively. The energy and momentum were reasonably
well conserved, although the fluctuations in the total energy
were larger than those in the NVE simulation. As expected, the
fluctuations in the temperatures were smaller than those in the

NVE simulations. In a similar way to ΔE, we computed for the
NVT simulations the temperatures averaged over the first pico-
secondT1 ps and over the last picosecondT5 ps, and the difference
ΔT = |T1 ps� T5 ps| was found to be 0.008, 0.005, <0.001, 0.050,
and 0.040 K for entries 2.5�2.9, respectively.

5. DISCUSSION

The computational costs of the adaptive-partitioning QM/
MM methods depend on the number of groups in the buffer
zone.19,20 The permuted-AP treatment is the most rigorous
algorithm and provided the most satisfactory conservation of
energy and momentum in our tests. Unfortunately, its computa-
tional cost scales unfavorably as 2N, whereN is number of groups
in the buffer zone. One obvious way to lower the costs is to
reduce the thickness of the buffer zone. For an ion solvated in
water, an active zone with diameter of 9 Å and a buffer zone of 1 Å
thickness will give rise to approximately 10 water molecules in
the buffer zone, leading to 210 = 1024 QM calculations for one
time step. However, if the buffer zone can be narrowed down to
0.5 Å, there will only be 5 water molecules in the buffer zone,
requiring 25 = 32 calculations, which is a lot less. Based on what
we have found in our test calculations, the difference in the
qualities of energy and momentum conservations was insignif-
icant between a buffer of 0.5 Å thickness and one of 1.0 Å. The
0.5 Å option appeared to be a good choice. The problem of
computational cost scaling seems less severe when modeling ion
transport through channel proteins and when modeling con-
formational changes in enzyme active sites; in those examples,
the numbers of buffer-zone groups are small (likely less than 5).
Another way to reduce the computational cost of the permuted-
AP treatments is to truncate the many-body expansion-like
energy expression to a given order, as described in the Metho-
dology Section. The results obtained in this work demonstrated
that the energy and momentum were conserved reasonably well
with the truncation at the fifth order. Finally, we emphasize that
all the QM calculations for a given time step are parallel in nature,
making large-scale parallel computation very feasible, especially
on supercomputers with lots of computational nodes and CPUs.
The wall time will in principle be determined by the QM
calculations with the largest number of buffer groups.

The permuted-AP RC and RCD schemes belong to the
electrostatic embedding QM/MM schemes,39 where the QM
subsystem is embedded in a background of atomic partial charges
of the MM atoms. As a result, the QM wave function is polarized
by the MM subsystem, providing a more realistic description
than that by the mechanical embedding,39 where the QM
subsystem is computed in the gas phase. However, the gradient
calculations for the embedded-QM subsystem are very expen-
sive, especially when a large number of background point charges
enter the effective QM Hamiltonian. Using cutoff to reduce the
number of background point charges in the embedded-QM
calculations should lower the computational costs. Another
way to reduce the costs is to use the frozen density approximation
that neglects the changes in the polarization of the density caused
by the varying MM coordinates for a number of steps83 and the
density reduced to point charge approximation that uses the
electrostatic potential (ESP) fitted charges84,85 to replace the full
density in the energy and gradient calculations of the electrostatic
interactions between the QM and MM atoms.83,85�89 It will be
interesting to see how the gradients computed employing those
approximations, although will not be as rigorous as the gradients

Figure 6. Total energies of the first model system in the NVE simula-
tions at (a) the pure-MM, (b) the pure-QM, (c) and (d) the fixed-
partitioning QM/MM, and (e) and (f) the adaptive-partitioning QM/
MM levels. The QM theory was AM1. The calculations are entries
1.0�1.5 in Table 1. For the adaptive-partitioning QM/MM calculations,
the zero of energy of the system E0(sys) has been subtracted from the
raw total energy.
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computed here with full density updated every step, affect the
conservation of energy and momentum in MD simulations.

The current study is one of the steps toward our goal in
developing the open-boundary QM/MM methods,16 which will
be a combination of the flexible-boundary treatments16,52 and the
adaptive-partitioning schemes. The flexible-boundary QM/MM
methods aim to go beyond another limitation16 in conventional
QM/MM methods to permit partial charge transfer across the
QM/MM boundaries. In the flexible-boundary treatments, both
the QM and MM subsystems can have fractional numbers of
charge, which in principle provides a more realistic picture for the
charge distributions within the entire system. The marriage of
the flexible-boundary treatments and the adaptive-partitioning
schemes will make it possible for the QM and MM subsystem
to dynamically exchange partial charges as well as atoms/groups
during MD simulations. The open-boundary QM/MM would
(at least in principle) facilitate the adoption of a relatively small
QM subsystem in QM/MM molecular dynamics simulations,
which will assist the use of high-level QM theory and/or long
simulation time and could potentially lead to new insights.
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ABSTRACT: Accurate electrostatic descriptions of aqueous solvent are critical for simulation studies of biomolecules, but the
computational cost of explicit treatment of solvent is very high. A computationally more feasible alternative is a generalized Born
implicit solvent description which models polar solvent as a dielectric continuum. Unfortunately, the attainable simulation speedup
does not transfer to the massive parallel computers often employed for simulation of large structures. Longer cutoff distances,
spatially heterogeneous distribution of atoms, and the necessary 3-fold iteration over atom pairs in each timestep combine to
challenge efficient parallel performance of generalized Born implicit solvent algorithms. Here, we report how NAMD, a parallel
molecular dynamics program, meets the challenge through a unique parallelization strategy. NAMD now permits efficient
simulation of large systems whose slow conformational motions benefit most from implicit solvent descriptions due to the inherent
low viscosity. NAMD’s implicit solvent performance is benchmarked and then illustrated in simulating the ratcheting Escherichia coli
ribosome involving ∼250 000 atoms.

’ INTRODUCTION

Molecular dynamics (MD) is a computational method1 em-
ployed for studying the dynamics of nanoscale biological systems
on nanosecond to microsecond time scales.2 Using MD, re-
searchers can utilize experimental data from crystallography and
cryo-electron microscopy (cryo-EM) to explore the functional
dynamics of biological systems.3

Because biological processes take place in the aqueous envi-
ronment of the cell, a critical component of any biological MD
simulation is the solvent model employed.4,5 An accurate solvent
model must reproduce water’s effect on solutes such as the free
energy of solvation, dielectric screening of solute electrostatic
interactions, hydrogen bonding, and van der Waals interactions
with solute. For typical biological MD simulations, the solute
is comprised of proteins, nucleic acids, lipids, or other small
molecules.

Two main categories of solvent models are explicit and implicit
solvents. Explicit solvents, such as SPC6 and TIP3P,7 represent
water molecules explicitly as a collection of charged interacting
atoms and calculate a simple potential function, such as Coulomb
electrostatics, between solvent and solute atoms. Implicit solvent
models, instead, ignore atomic details of the solvent and represent
the presence of water indirectly through complex interatomic
potentials between solute atoms only.8�10 There are advantages
and disadvantages of each solvent model.

Simulation of explicit water is both accurate and natural for
MD but often computationally too demanding, not only since
the inclusion of explicit water atoms increases a simulation’s com-
putational cost through the higher atom count but also because
water slows down association and disassociation processes due to
the relatively long relaxation times of interstitial water.11 The
viscous drag of explicit water also retards large conformational
changes of macromolecules.12

An alternative representation of water is furnished by implicit
solvent descriptions, which eliminate the need for explicit solvent

molecules. Implicit water remains always equilibrated to the
solute. The absence of explicit water molecules also eliminates
the viscosity imposed on simulated solutes, allowing faster equili-
bration of solute conformations and better conformational
sampling. Examples of popular implicit solvent models are
Poisson�Boltzmann electrostatics,13,14 screened Coulomb
potential,9,15 analytical continuum electrostatics,16 and general-
ized Born implicit solvent.17

The generalized Born implicit solvent (GBIS) model, used
by MD programs CHARMM,18,19 Gromacs,20,21 Amber,22 and
NAMD,23,24 furnishes a fast approximation for calculating the
electrostatic interaction between atoms in a dielectric environ-
ment described by the Poisson�Boltzmann equation. The GBIS
electrostatics calculation determines first the Born radius of
each atom, which quantifies an atom’s exposure to solvent,
and, therefore, its dielectric screening from other atoms. The
solvent exposure represented by Born radii can be calculated with
varying speeds and accuracies25 either by integration over the
molecule’s interior volume26,27 or by pairwise overlap of atomic
surface areas.17 GBIS calculations then determine the electro-
static interaction between atoms based on their separation and
Born radii.

GBIS has benefited MD simulations of small molecules.28 For
the case of large systems, whose large conformational motions29

may benefit most from an implicit solvent description, but which
must be simulated on large parallel computers,30 the challenge
to develop efficient parallel GBIS algorithms remains. In the
following, we outline how NAMD addresses the computational
challenges of parallel GBIS calculations and efficiently simulates
large systems, demonstrated through benchmarks as well as
simulations of the Escherichia coli ribosome, a RNA�protein
complex involving ∼250 000 atoms.

Received: August 22, 2011
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’METHODS

In order to characterize the challenges of parallel generalized
Born implicit solvent (GBIS) simulations, we first introduce the
key equations employed. We then outline the specific challenges
that GBIS calculations pose for efficient parallel performance as
well as how NAMD’s implementation of GBIS achieves highly
efficient parallel performance. GBIS benchmark simulations,
which demonstrate NAMD’s performance, as well as the ribo-
some simulations, are then described.
Generalized Born Implicit Solvent Model.The GBIS model8

represents polar solvent as a dielectric continuum and, accordingly,
screens electrostatic interactions between solute atoms. GBIS treats
solute atoms as spheres of low protein dielectric (εp = 1), whose
radius is the Bondi31 van der Waals radius, in a continuum of high
solvent dielectric (εs = 80).
The total electrostatic energy for atoms in a dielectric solvent

is modeled as the sum of Coulomb and generalized Born (GB)
energies:8

EElecT ¼ ECoulT þ EGBT ð1Þ
The total Coulomb energy for the system of atoms is the sum
over pairwise Coulomb energies:

ECoulT ¼ ∑
i
∑
j > i

ECoulij ð2Þ

where the double summation represents all unique pairs of atoms
within the interaction cutoff; the interaction cutoff for GBIS
simulations is generally in the range 16�20 Å, i.e., longer than for
explicit solvent simulations, where it is typically 8�12 Å. The
reason for the wider cutoff is that particle-mesh Ewald summa-
tions, used to describe long-range Coulomb forces, cannot be
employed for the treatment of long-range GBIS electrostatics.
The pairwise Coulomb energy, Eij

Coul in eq 2, is

ECoulij ¼ ðke=εpÞqiqj=rij ð3Þ
where ke = 332 (kcal/mol)Å/e2 is the Coulomb constant, qi is the
charge on atom i, and rij is the distance between atoms i and j. The
total GB energy for the system of atoms is the sum over pairwise
GB energies and self-energies given by the expression

where the pair-energies and self-energies are defined as8

EGBij ¼ � ðkeDijÞqiqj=f GBij ð5Þ
Here, Dij is the pairwise dielectric term,32 which contains the
contribution of an implicit ion concentration to the dielectric
screening, and is expressed as

Dij ¼ ð1=εpÞ � expð � kf GBij Þ=εs ð6Þ
where k�1 is the Debye screening length, which represents the
length scale over which mobile solvent ions screen electrostatics.
For an ion concentration of 0.2 M, room temperature water has a
Debye screening length of k�1 = ∼7 Å. fij

GB is8

f GBij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ αiαj expð � r2ij=4αiαjÞ

q
ð7Þ

The form of the pairwise GB energy in eq 5 is similar to the form
of the pairwise Coulomb energy in eq 3 but is of opposite sign

and replaces the 1/rij distance dependence by 1/fij
GB. The GB

energy bears a negative sign because the electrostatic screening
counteracts the Coulomb interaction. The use of fij

GB, instead of rij,
in eq 5 heavily screens the electrostatic interaction between atoms
which are either far apart or highly exposed to solvent. The more
exposed an atom is to high solvent dielectric, themore it is screened
electrostatically, represented by a smaller Born radius, αi.
Accurately calculating the Born radius is central to a GBIS

model as the use of perfect Born radii allows the GBIS model to
reproduce, with high accuracy, the electrostatics and solvation
energies described by the Poisson�Boltzmann equation33 and
does it much faster than a Poisson�Boltzmann or explicit solvent
treatment.34 Different GBIS models vary in how the Born radius
is calculated; models seek to suggest computationally less expen-
sive algorithms without undue sacrifice in accuracy. Many GBIS
models35 calculate the Born radius by assuming atoms are spheres
whose radius is the Bondi31 van derWaals radius and determine an
atom’s exposure to solute through the sum of overlapping surface
areas with neighboring spheres.36 Themore recent GBISmodel of
Onufriev, Bashford, and Case (GBOBC), applied successfully to
MDof macromolecules37,38 and adopted inNAMD, calculates the
Born radius as

αi ¼ ½ð1=Fi0Þ � ð1=FiÞ tanhðδψi � βψ2
i þ γψ3

i Þ��1 ð8Þ
where ψi, the sum of surface area overlap with neighboring
spheres, is calculated through

ψi ¼ Fi0 ∑
j
Hðrij, Fi, FjÞ ð9Þ

As explained in prior studies,35,36,38 H(rij,Fi,Fj) is the surface area
overlap of two spheres based on their relative separation, rij, and
radii, Fi and Fi0; the parameters δ, β, and γ in eq 8 have been
calculated tomaximize agreement betweenBorn radii described by
eq 8 and those derived from Poisson�Boltzmann electrostatics.38

Fi and Fj are the Bondi31 van der Waals radii of atoms i and j,
respectively, while Fi0 is the reduced radius, Fi0 = Fi � 0.09 Å, as
required by GBOBC.38

The total electrostatic force acting on an atom is the sum of
Coulomb and GB forces; the net Coulomb force on an atom is
given by

FB
Coul

i ¼ � ∑
j
½dECoulT =drij �̂rij ð10Þ

whose derivative (dET
Coul/drij) is inexpensive to calculate. The

required derivatives (dET
GB/drij) for the GB force, however, are

much more expensive to calculate because Eij
GB depends on inter-

atomic distances, rij, both directly (c.f., eqs 5 and 7) and indirectly
through the Born radius (c.f., eqs 5, 7, 8, and 9). The net GB force
on an atom is given by

FB
GB

i ¼ � ∑
j
½dEGBT =drij �̂rij

¼ � ∑
j
½∑

k
∑
l > k

ð∂EGBT =∂rklÞðdrkl=drijÞ

þ ∑
k
ð∂EGBT =∂αkÞðdαk=drijÞ�̂rij

¼ � ∑
j
½∂EGBT =∂rij þ ð∂EGBT =∂αiÞðdαi=drijÞ

þ ð∂EGBT =∂αjÞðdαj=drijÞ�̂rij ð11Þ
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with rBij = rBj � rBi. The required partial derivative of ET
GB with

respect to a Born radius, αk, is

∂EGBT =∂αk ¼ ∑
i
∑
j > i

½∂EGBik =∂αk þ ∂EGBkj =∂αk�

þ ∑
i
∂EGBii =∂αk ð12Þ

The summations in eqs 9, 11, and 12 require three successive
iterations over all pairs of atoms for each GBIS force calculation,
whereas calculating Coulomb forces for an explicit solvent
simulation requires only one such iteration over atom pairs.
Also, because of the computational complexity of the above GBIS
equations, the total cost of calculating the pairwise GBIS force
between pairs of atoms is ∼7� higher than the cost for the
pairwise Coulomb force. For large systems and long cutoffs, the
computational expense of implicit solvent simulations can exceed
that of explicit solvent simulations; however, in this case, an
effective speed-up over explicit solvent still arises due to faster
conformational exploration, as will be illustrated below. The
trade-off between the speed-up of implicit solvent models and
the higher accuracy of explicit solvent models is still under
investigation.34 Differences between GBIS and Coulomb force
calculations create challenges for parallel GBIS simulations that
do not arise in explicit solvent simulations.
Challenges in Parallel Calculation of GBIS Forces. Running

a MD simulation in parallel requires a scheme to decompose the
simulation calculation into independent work units that can be
executed simultaneously on parallel processors; the scheme
employed for decomposition strongly determines how many
processors the simulation can efficiently utilize and, therefore,
how fast the simulation will be. For example, a common
decomposition scheme, known as spatial or domain decomposi-
tion, divides the simulated system into a three-dimensional grid
of spatial domains whose side length is the interaction cutoff
distance. Because the atoms within each spatial domain are
simulated on a single processor, the number of processors
utilized equals the number of domains.
Although explicit solvent MD simulations perform efficiently

in parallel, even for simple schemes such as naive domain
decomposition, the GBIS model poses unique challenges for
simulating large systems on parallel computers. We outline here
the three challenges arising in parallel GBIS calculations and how
NAMD addresses them. For the sake of concreteness, we use the
SEp22 dodecamer (PDB ID: 3AK8) as an example, as shown in
Figure 1.
Challenge 1: Dividing Workload among Processors. With a

12 Å cutoff, traditional domain decomposition divides the SEp22
dodecamer explicit solvent simulation (190 000 protein and
solvent atoms) into 7 � 7 � 7 = 343 domains, which efficiently
utilize 343 processors (see Figure 1A). Unfortunately, with a
16 Å cutoff for the implicit solvent treatment, the same decom-
position scheme divides the system (30 000 protein atoms) into
4 � 4 � 4 = 64 domains, which can only utilize 64 processors
(see Figure 1B). An efficient parallel GBIS implementation must
employ a decomposition scheme which can divide the computa-
tional work among many (hundreds or thousands) processors
(see Figure 1C).
Challenge 2: Workload Imbalance from Spatially Hetero-

geneous Atom Distribution. Due to the lack of explicit water
atoms, the spatial distribution of atoms in a GBIS simulation (see
Figure 2) is not uniform, as it is for an explicit solvent simulation

(see Figure 1A). Some domains contain densely packed atoms,
while others are empty (see Figure 1B). Because the number of
atoms varies highly among implicit solvent domains, the work-
load assigned to each processor also varies highly. The highly

Figure 1. Work decomposition for implicit solvent and explicit solvent
simulations. An SEp22 dodecamer is shown (front removed to show
interior) with an overlaid black grid illustrating domain decomposition
for explicit solvent (A), implicit solvent (B), andNAMD’s highly parallel
implicit solvent (C). Atoms are colored according to the relative work
required to calculate the net force, with blue being the least expensive
and red being the most expensive. The number of neighbor Pairs within
the interaction cutoff (green circle, pairs) for an atom (red circle) varies
more in implicit solvent than explicit solvent, as does the number of
atoms within a spatial domain (yellow box, Load), each domain being
assigned to a single processor (PE). (A) Because explicit solvent has a
spatially homogeneous distribution of atoms, it has a balanced workload
among processors using simple domain decomposition. (B) Domain
decomposition with implicit solvent suffers from the spatially hetero-
geneous atom distribution; the workload on each processor varies
highly. (C) NAMD’s implicit solvent model (cyan grid representing
force decomposition and partitioning), despite having a varying number
of atoms per domain and varying computational cost per atom, still
achieves a balanced workload among processors.

Figure 2. Biomolecular systems in benchmark. The performance of
NAMD’s parallel GBIS implementation was tested on six structures
(Protein Data Bank IDs shown); the number of atoms and interactions
are listed in Table 2. To illustrate the spatially heterogeneous distribution
of work, each atom is colored by the relative time required to compute its
net force, with blue being the fastest and red the being slowest.
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varying workload among processors for domain decomposition
causes the naive decomposition scheme to be inefficient and,
therefore, slow. An efficient parallel GBIS implementation must
assign and maintain an equal workload on each processor (see
Figure 1C).
Challenge 3: Three Iterations over Atom Pairs per Timestep.

Instead of requiring one iteration over atom pairs to calculate
electrostatic forces, GBIS requires three independent iterations
over atom pairs (c.f., eqs 9, 11, and 12). Because each of these
iterations depends on the previous iteration, the cost associated
with communication and synchronization is tripled. An efficient
parallel GBIS implementation must schedule communication
and computation on each processor as to maximize efficiency.
Parallelization Strategy. NAMD’s unique strategy39 for fast

parallel MD simulations23 enables it to overcome the three chal-
lenges of parallel GBIS simulations. NAMD divides GBIS calcula-
tions into many small work units using a three-tier decomposition
scheme, assigns a balanced load of work units to processors, and
schedules work units on each processor to maximize efficiency.
NAMD’s three-tier work decomposition scheme40 directly

addresses challenge 1 of parallel GBIS calculations. NAMD first
employs domain decomposition to initially divide the system
into a three-dimensional grid of spatial domains. Second, NAMD
assigns a force work unit to calculate pairwise forces within each
domain and between each pair of adjacent domains. Third, each
force work unit is further partitioned into up to 10 separate work
units, where each partition calculates only one-tenth of the atom
pairs associated with the force work unit. Dividing force work
units into partitions based on computational expense avoids the
unnecessary communication overhead arising from further par-
titioning already inexpensive force work units belonging to
underpopulated domains. Adaptively partitioning the force work
units based on computational expense improves NAMD’s par-
allel performance even for non-implicit solvent simulations.
NAMD’s decomposition scheme is able to finely divide simula-
tions into many (∼40 000 for SEp22 dodecamer) small work
units and, thereby, utilize thousands of processors.
NAMD’s load balancer, a tool employed to ensure each

processor carries an equivalent workload, initially distributes
work units evenly across processors, thus partially overcoming
challenge 2 of parallel GBIS calculations. However, as atoms
move during a simulation, the number of atoms in each domain
fluctuates (more so than for the explicit solvent case), which
causes the computational workload on each processor to change.
NAMD employs a measurement-based load balancer to maintain
a uniformworkload across processors during a simulation; period-
ically, NAMD measures the computational cost associated with
each work unit and redistributes work units to new processors as
required to maintain a balanced workload among processors. By
continually balancing the workload, NAMD is capable of highly
efficient simulations despite spatially heterogeneous atom distri-
butions common to implicit solvent descriptions.
Though the three iterations over atom pairs hurt parallel effi-

ciency by requiring additional (compared to the explicit solvent
case) communication and synchronization during each timestep,
NAMD’s unique communication scheme is able to maintain
parallel efficiency. Unlike most MD programs, NAMD is capable
of scheduling work units on each processor in an order which
overlaps communication and computation, thus maximizing effi-
ciency. NAMD’s overall parallel strategy of work decomposition,
workload balancing, and work unit scheduling permits fast and
efficient parallel GBIS simulations of even very large systems.

Performance Benchmark. To demonstrate the success of
NAMD’s parallel GBIS strategy, protein systems of varying sizes
and configurations were simulated on 2�2048 processor cores
usingNAMDversion 2.8.We also compare against an implemen-
tation of domain decomposition taken from Amber’s PMEMD
version 9,22 which also contains the original implementation of
the GBOBC implicit solvent model.38 The benchmark consists of
six systems, listed in Table 2 and displayed in Figure 2, chosen
to represent small (2000 atoms), medium (30 000 atoms), and
large (150 000 atoms) systems.
The following simulation parameters were employed for the

benchmark simulations. A value of 16 Å was used for both non-
bonded interaction cutoff and the Born radius calculation cutoff.
An implicit ion concentration of 0.3 M was assumed. A timestep
of 1 fs was employed with all forces being evaluated every step.
System coordinates were not written to a trajectory file. For the
explicit solvent simulation (Table 2: 3AK8-E), nonbonded inter-
actions were cut off and smoothed between 10 and 12 Å, with
PME41 electrostatics, which require periodic boundary condi-
tions, being evaluated every four steps.
Simulations were run on 2.3 GHz processors with 1 GB/s

network interconnect for 600 steps. NAMD’s speed is reported
during simulation and was averaged over the last 100 steps (the
first 500 steps are dedicated to initial load balancing). The
speed of the domain decomposition implementation, in units
seconds per timestep, was calculated as (“Master NonSetup
CPU time”)/(total steps); simulating up to 10 000 steps did
not return noticeably faster speeds. Table 2 reports the
simulation speeds in seconds/step for each benchmark simula-
tion; Figure 3 presents simulation speeds scaled by system size

Figure 3. Parallel performance of NAMD and domain decomposition
implicit solvent. Computational speed (pairwise interactions per second)
for six biomolecular systems (see Figure 2): 1IR2 (black circle), 2W49
(red square), 3AK8 (green diamond), 3EZQ (blue up triangle), 2W5U
(maroon left triangle), and 2KKW (magenta down triangle). NAMD’s
parallel implicit solvent implementation (solid shapes) performs extreme-
ly well in parallel, as seen by the performance increasing linearly (blue
highlight) with the number of processors, and is independent of system
size. Performance of domain decomposition implicit solvent, however,
suffers in parallel (empty shapes). Not only does there appear to be a
maximum speed of 108 pairs/s (red highlight) regardless of processor
count but the large systems (1IR2, 2W49) also perform at significantly
lower efficiency than the small systems (2E5U, 2KKW). Diagonal dotted
lines represent perfect speedup. See also Table 2.
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in terms of the number of pairwise interactions per second
(pips) calculated.
Implementation Validation. The correctness of our GBIS

implementation was validated by comparison to the method’s38

original implementation in Amber.22 Comparing the total elec-
trostatic energy (see eq 1) of the six test systems as calculated by
NAMD and Amber demonstrates their close agreement. Indeed,
Table 1 shows that the relative error, defined through

error ¼ jðEElecT ðNAMDÞ � EElecT ðAmberÞÞ=EElecT ðAmberÞj
ð13Þ

is less than 4 � 10�5 for all structures in Figure 2.
Molecular Dynamics Flexible Fitting of Ribosome. To

illustrate the utility of NAMD’s parallel GBIS implementation,
we simulate the Escherichia coli ribosome. The ribosome is the
cellular machine that translates genetic information on mRNA
into protein chains.
During translation, tRNAs, with their anticodon loops to be

matched to the genetic code on mRNA, carry amino acids to the
ribosome. The synthesized protein chain is elongated by one
amino acid each time a cognate tRNA (with its anticodon loop
complementary to the next mRNA codon) brings an amino acid
to the ribosome; a peptide bond is formed between the new
amino acid and the existing protein chain. During protein syn-
thesis, the ribosome complex fluctuates between two conforma-
tional states, namely, the so-called classical and ratcheted state.42

During transition from the classical to ratcheted state, the
ribosome undergoes multiple, large conformational changes,
including an intersubunit rotation between its 50S and 30S
subunits42 and the closing of its L1 stalk in the 50S subunit43

(see Figure 4). The large conformational changes during the
transition from the classical to ratcheted state are essential for
translation,44 as suggested by previous cryo-EM data.45 To
demonstrate the benefits of NAMD GBIS, we simulate the large
conformational changes during ratcheting of the∼250 000-atom
ribosome using molecular dynamics flexible fitting.
Themolecular dynamics flexible fitting (MDFF)method3,46,47

is a MD simulation method that matches crystallographic struc-
tures to an electron microscopy (EM) map. Crystallographic
structures often correspond to nonphysiological states of bio-
polymers, while EM maps correspond often to functional inter-
mediates of biopolymers. MDFF-derived models of the classical
and ratcheted state ribosome provide atomic-level details crucial
to understanding protein elongation in the ribosome. The MDFF
method adds to a conventional MD simulation an EM map-
derived potential, thereby driving a crystallographic structure

toward the conformational state represented by an EM map.
MDFF was previously applied to successfully match crystallo-
graphic structures of the ribosome to ribosome functional states
as seen in EM.48�52 Shortcomings of MDFF are largely due to
the use of in vacuo simulations; such use was necessary hitherto
as simulations in explicit solvent proved too cumbersome. Impli-
cit solventMDFF simulations promise a significant improvement
of the MDFF method. We applied MDFF here, therefore, to fit
an atomic model of a classical state ribosome into an EMmap of a
ratcheted state ribosome.45

The classical state in our simulations is an all-atom ribosome
structure53 with 50S and 30S subunits taken from PDB IDs 2I2V
and 2I2U, respectively,54 and the complex was fitted to an 8.9 Å
resolution classical state EMmap.45 In the multistep protocol for
fitting this classical state ribosome to a ratcheted state map,46

the actual ribosome is fitted first, followed by fitting the tRNAs.

Table 1. Total Electrostatic Energy of Benchmark Systemsa

NAMD Amber error

2KKW �5271.42 �5271.23 3.6 � 10�5

2W5U �6246.10 �6245.88 3.5 � 10�5

3EZQ �94 291.43 �94 288.17 3.4 � 10�5

3AK8 �89 322.23 �89 319.13 3.4 � 10�5

2W49 �396 955.31 �396 941.54 3.4 � 10�5

1IR2 �426 270.23 �426 255.45 3.4 � 10�5

aTo validate NAMD’s implicit solvent implementation, the total
electrostatic energy (in units kcal/mol) of the six benchmark systems
was calculated by NAMD and Amber implementations of the GBOBC

implicit solvent;38 error is calculated through eq 13.

Figure 4. Molecular dynamics flexible fitting (MDFF) of the ribosome
withNAMD’s GBISmethod.Whilematching the 250 000-atom classical
ribosome structure into the EM map of a ratcheted ribosome, the 30S
subunit (green) rotates relative to the 50S subunit (blue) and the L1
stalk moves 30 Å from its classical (tan) to its ratcheted (magenta)
position. Highlighted (red) are regions where the implicit solvent
structure agrees with the explicit solvent structure much more closely
than does the in vacuo structure. The root-mean-squared deviation
(RMSDsol,exp(t)) of the ribosome, defined in eq 14, with the final fitted
explicit solvent structure as a reference, is plotted over time for explicit
solvent (RMSDexp,exp(t) in black), implicit solvent (RMSDimp,exp(t) in
purple), and in vacuo (RMSDvac,exp(t) in red) MDFF. While the explicit
solvent MDFF calculation requires ∼1.5�2 ns to converge to its final
structure, both implicit solvent and vacuum MDFF calculation require
only 0.5 ns to converge. As seen by the lower RMSD values for t > 0.5 ns,
the structure derived from the implicit solvent fitting agrees more closely
with the final explicit solvent structure than does the in vacuo structure.
While this plot illustrates only the overall improvement of the implicit
solvent structure over the in vacuo structure, the text discusses key
examples of ribosomal proteins (L27, S13, and L12) whose structural
quality is significantly improved by the use of implicit solvent.
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Since the fitting of the ribosome itself exhibits the largest
conformational changes (intersubunit rotation and L1-stalk
closing), we limit our MDFF calculation here to the ribosome
and do not include tRNAs.
Three MDFF simulations were performed using NAMD23

and analyzed using VMD.55 The MDFF simulations are carried
out in explicit TIP3P7 solvent, in implicit solvent, and in vacuo.
All simulations were performed in the NVT ensemble with the
AMBER99 force field,56 employing the SB57 and BSC058 correc-
tions and accounting for modified ribonucleosides.59 The grid
scaling parameter,3 which controls the balance between the MD
force field and the EM-map derived force field, was set to 0.3.
Simulations were performed using a 1 fs timestep with non-
bonded forces being evaluated every two steps. Born radii were
calculated using a cutoff of 14 Å, while the nonbonded forces
were smoothed and cut off between 15 and 16 Å. An implicit ion
concentration of 0.1 M was assumed with protein and solvent
dielectric set to 1 and 80, respectively. A Langevin thermostat
with a damping coefficient of 5 ps�1 was employed to hold the
temperature to 300 K. In the explicit solvent simulation, the
ribosome was simulated in a periodic box of TIP3P water7

including an explicit ion concentration of 0.1M, with nonbonded
forces cut off at 10 Å and long-range electrostatics calculated
by PME every four steps. The in vacuo simulation utilized the
same parameters as explicit solvent, but without the inclusion of
solvent or bulk ions, and neither PME nor periodicity were
employed.
Each system was minimized for 5000 steps before performing

MDFF for 3 ns. For the explicit solvent simulation, an additional
0.5 ns equilibration of water and ions was performed, with
protein and nucleic acids restrained, before applying MDFF.
To compare the behavior of solvent models during the ribo-

some simulations, we calculate the root-mean-square deviation
between models as

RMSDsol, ref ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i
½ rBi, solðtÞ � rBi, ref �2=N

s
ð14Þ

where rBi,sol(t) denotes the atomic coordinates at time t of the
simulation corresponding to one of the three solvent models
(exp, imp, or vac) and rBi,ref denotes the atomic coordinates for
the last timestep (tf = 3 ns) of the simulation using the reference
solvent model (exp, imp, or vac) as specified below. Unless
otherwise specified, the summation is over theN = 146 000 heavy
atoms excluding the mRNA, L10, and L12 protein segments,
which are too flexible to be resolved with the cryo-EM method.

’RESULTS

Performance Benchmarks. The results of the GBIS bench-
mark simulations are listed in Table 2. Figure 3 illustrates the
simulation speeds, scaled by system size, as the number of pair-
wise interactions per second (pips) calculated. For a perfectly
efficient algorithm, pips would be independent of system size or
configuration and would increase proportionally with processor
count. NAMD’s excellent parallel GBIS performance is demon-
strated, as pips is nearly the same for all six systems and increases
almost linearly with processor count, as highlighted (in blue) in
Figure 3.
The domain decomposition algorithm22 performs equally

well for small systems, but its performance suffers significantly
when system size and processor count are increased. The domain

decomposition implementation also appears to be limited to a
pips maximum of 108 pairs/s across all system sizes, no matter
howmany processors are used, as highlighted (in red) in Figure 3.
NAMD runs efficiently on twice the number of processors com-
pared to domain decomposition and greatly outperforms it for
the large systems tested. The SEp22 dodecamer timings for both
implicit (3AK8) and explicit (3AK8-E) solvent reported in
Table 2 demonstrate that NAMD’s parallel GBIS implemen-
tation is as efficient as its parallel explicit solvent capability. We
note that the simulation speed for GBIS can be further increased,
without a significant loss of accuracy, by shortening either the
interaction or Born radius calculation cutoff distance.
RibosomeSimulation.Todemonstrate the benefit ofNAMD’s

GBIS capability for simulating large structures, a high-resolution
classical state ribosome structure was fitted into a low-resolution

Table 2. NAMD and Domain Decomposition Benchmark
Dataa

PDB ID

2KKW 2W5U 3EZQ 3AK8 3AK8-E 2W49 1IR2

atoms 2016 2412 27 600 29 479 191 686 138 136 149 860

pairs 0.25 M 1 M 13.2 M 15.7 M 63.8 M 65.5 M 99.5 M

# procs NAMD s/step

2 0.0440 0.167 2.01 2.87 2.25 10.4 16.3

4 0.0225 0.0853 1.00 1.44 1.12 5.47 8.70

8 0.0122 0.0456 0.505 0.726 0.568 2.61 4.09

16 0.00664 0.0228 0.260 0.371 0.286 1.31 2.05

32 0.00412* 0.0126 0.136 0.191 0.146 0.661 1.03

64 0.00736* 0.0700 0.105 0.0868 0.333 0.520

128 0.0447 0.0575 0.0523 0.169 0.267

256 0.0321 0.0340 0.0288* 0.0935 0.148

512 0.0224* 0.0171* 0.0618 0.0806

1024 0.0461* 0.0563*

2048 0.0326 0.0486

# procs domain decomposition s/step

2 0.0613 0.208 5.57 7.15 306 373

4 0.0312 0.104 2.83 3.67 169 203

8 0.0163 0.0535 1.43 1.84 92.5 111

16 0.0090* 0.0277 0.727 0.934 51.6 62.0

32 0.0070 0.0162* 0.391 0.506 25.9 31.3

64 0.013 0.254* 0.307* 13.1 15.7

128 0.191 0.220 6.74 8.08

256 3.63 4.28

512 2.16* 2.66*

1024 1.95 2.07
a Speed, in units seconds/step, for both NAMD and the domain
decomposition algorithm for the six test systems (see Figure 2) on
2-2048 processors (procs). Also listed are the number of atoms and pairs
of atoms (in millions, M) within the cutoff (16 Å for implicit solvent and
12 Å for explicit solvent) in the initial structure. Data are not presented
for higher processor counts with slower simulation speeds. An asterisk
marks the highest processor count for which doubling the number of
processors increased simulation speed by at least 50%. 3AK8-E uses
explicit solvent. Each simulated system demonstrates that NAMD can
efficiently utilize at least twice the number of processors as domain
decomposition and, thereby, achieves simulation speeds much faster
than for domain decomposition.
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ratcheted state EMmap in an in vacuo MDFF simulation as well as
MDFF simulations employing explicit and implicit solvent. During
the MDFF simulation, the ribosome undergoes two major con-
formational changes: closing of the L1 stalk and rotation of the 30S
subunit relative to the 50S subunit (see Figure 4).
To compare the rate of convergence and relative accuracy

of solvent models, the RMSD values characterizing the three
MDFF simulations were calculated using eq 14. Figure 4 plots
RMSDexp,exp(t), RMSDimp,exp(t), and RMSDvac,exp(t), which com-
pare each MDFF simulation against the final structure reached in
the explicit solvent case. We note that using the initial rather than
final structure as the reference could yield a slightly different
characterization of convergence,60 e.g., a slightly different
convergence time. As manifested by RMSDimp,exp(t) and
RMSDvac,exp(t), the implicit solvent and vacuum MDFF calcula-
tions converge to their respective final structures in 0.5 ns
compared to ∼1.5�2 ns for the explicit solvent case, i.e., for
RMSDexp,exp(t).
The final structures obtained from the MDFF simulations are

compared in Table 3 through the RMSDsol,ref(t) values for t = 3
ns. The ribosome structure fromGBISMDFF closely agrees with
the one from explicit solvent MDFF, as indicated by the value
RMSDimp,exp(3 ns) = 1.5 Å; the in vacuo MDFF ribosome
structure, however, compares less favorably with the explicit
solvent MDFF structure, as suggested by the larger value
RMSDvac,exp(3 ns) = 1.9 Å. While the 0.4 Å improvement in
RMSD of the GBIS MDFF, over in vacuo MDFF, structure im-
plies an overall enhanced quality, certain regions of the ribosome
are particularly improved.
The regions with the highest structural improvement

(highlighted red in Figure 4) belong to segments at the exterior
of the ribosome and to segments not resolved by and, therefore,
not coupled to the EM map, i.e., not being directly shaped by
MDFF. For proteins at the exterior of the ribosome, GBISMDFF
produces higher quality structures than in vacuo MDFF, because
these proteins are highly exposed to the solvent and, therefore,
require a solvent description. The structural improvement for
several exterior solvated proteins, calculated by RMSDvac,exp-
(3 ns)� RMSDimp,exp(3 ns), is 3.5, 2.4, and 1.6 Å for ribosomal
proteins S6, L27, and S13 (highlighted red in Figure 4), respec-
tively. Accurate modeling of these proteins is critical for studying
the translation process of the ribosome. The L27 protein, for
example, not only facilitates the assembly of the 50S subunit but
it also ensures proper positioning of the new amino acid for pep-
tide bond formation.61 The S13 protein, located at the interface
between subunits, is critical to the control of mRNA and tRNA
translocation within the ribosome.62

The use of GBIS for MDFF also increases structural quality in
regions where the EM map does not resolve the ribosome’s
structure, and therefore, MDFF does not directly influence
conformation. Though it is most important that MDFF correctly
models structural regions defined in the EM map, it is also
desirable that it correctly describes regions of crystal structures
not resolved by the EM map. The structural improvement, over
in vacuo MDFF, of the unresolved segments is 8.3 Å for mRNA
and 4.9 Å for L12 (highlighted red in Figure 4). The L12 segment
is a highly mobile ribosomal protein in the 50S subunit that pro-
motes binding of factors which stabilize the ratcheted conforma-
tion; L12 also promotes GTP hydrolysis, which leads to mRNA
translocation.63 As clearly demonstrated, the use of GBISMDFF,
instead of in vacuo MDFF, improves the MDFF method’s accu-
racy for matching crystallographic structures to EM maps, parti-
cularly for highly solvated or unresolved proteins.
To compare the computational performance of the solvent

models for MDFF, each ribosome simulation was benchmarked
on 1020 processor cores (3.5 GHz processors with 5 GB/s
network interconnect). The simulation speed for explicit solvent
MDFF is 3.6 ns/day. For implicit solvent MDFF, it is 5.2 ns/day,
and for vacuum MDFF, it is 37 ns/day. GBIS MDFF performs
50% faster than explicit solvent MDFF but 7 times slower than in
vacuo MDFF. NAMD’s GBIS implementation is clearly able to
achieve a more accurate MDFF match of the ribosome structure
(see Table 3) than does an in vacuo MDFF calculation and does
so at a lower computational cost than explicit solvent MDFF.

’CONCLUSIONS

The generalized Born implicit solvent (GBIS) model has long
been employed for molecular dynamics simulations of relatively
small biomolecules. NAMD’s unique GBIS implementation can
also simulate very large systems, such as the entire ribosome, and
does so efficiently on large parallel computers. The new GBIS
capability of NAMD will be beneficial to accelerating in simula-
tions the slow motions common to large systems by eliminating
viscous drag from water.
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ABSTRACT: To circumvent the cubic scaling and convergence difficulties encountered in the standard top-down localization of
the global canonical molecular orbitals (CMOs), a bottom-up localization scheme is proposed based on the idea of “from fragments
to molecule”. That is, the global localized MOs (LMOs), both occupied and unoccupied, are to be synthesized from the primitive
fragment LMOs (pFLMOs) obtained from subsystem calculations. They are orthonormal but are still well localized on the parent
fragments of the pFLMOs and can hence be termed as “fragment LMOs” (FLMOs). This has been achieved by making use of two
important factors. Physically, it is the transferability of the locality of the fragments that serves as the basis. Mathematically, it is the
special block-diagonalization of the Kohn�Sham matrix that allows retention of the locality: The occupied�occupied and
virtual�virtual diagonal blocks are only minimally modified when the occupied�virtual off-diagonal blocks are annihilated. Such a
bottom-up localization scheme is applicable to systems composed of all kinds of chemical bonds. It is then shown that, by a simple
prescreening of the particle-hole pairs, the FLMO-based time-dependent density functional theory (TDDFT) can achieve linear
scaling with respect to the system size, with a very small prefactor. As a proof of principle, representative model systems are taken as
examples to demonstrate the accuracy and efficiency of the algorithms. As both the orbital picture and integral number of electrons
are retained, the FLMO-TDDFT offers a clear characterization of the nature of the excited states in line with chemical/physical
intuition.

1. INTRODUCTION

Time-dependent density functional theory (TDDFT)1,2 has
in the past two decades evolved into a powerful tool for
investigating electronic excitations of small- to medium-sized
systems. Yet, the formal cubic scaling precludes its applicability to
large systems such as luminescent materials and biological
molecules. For such real-life systems, some linear scaling
TDDFT ought to be developed. The first attempt in this
direction was made by Chen and co-workers.3,4 They worked
with the linearized time-dependent Kohn�Sham (KS) equation
or equivalently the equation of motion for the one-electron
reduced density matrix and made full use of the locality of the
density matrix in an orthogonal atomic orbital (OAO) repre-
sentation. The formalism was recently extended by Yang et al.5 to
nonorthogonal localized molecular orbitals, in terms of which
both the metric and the molecular orbital coefficients become
very sparse. Such time-domain approaches have the ability to
capture all of the bright states in one run. However, this should be
viewed as a disadvantage rather than an advantage, simply
because the high-lying excited states are not really meaningful
due to the approximate nature of the exchange-correlation
potential and the incompleteness in the basis set. Therefore,
the inclusion of such states merely increases the computational
expenses. Moreover, time-domain simulations usually have to
adopt very small time steps to ensure the accuracy and long
simulation times to resolve energetically adjacent states. These
would result in a large prefactor and hence a late crossover point,
after which the linear scaling calculation becomes more efficient
than the conventional one. As such, time-domain TDDFT often

has to be combined with approximate Hamiltonians for the time
evolution of large systems.

Apart from the above linear scaling TDDFT in the time
domain, efficient implementations of TDDFT in the frequency
domain have also been available in the literature. As a straight-
forward generalization of the ground state fragment molecular
orbital (FMO) method, the FMO-TDDFT due to Chiba and
co-workers6 decomposes the excitation energy into a sum of
monomer excitation energy and many-body increments. Despite
its high efficiency, the FMO-TDDFT has a severe limitation in
that it relies on the local nature of the excitations. That is, the
principle monomer should be large enough so as to fully
accommodate the target excitations. Otherwise, the truncation
of the many-body expansion at low order would not work.7 The
“density-fragment interaction” (DFI)-based TDDFT proposed
by Fujimoto and Yang8 employs instead the orbitals from a self-
consistent treatment of the electron density interactions between
fragments of fixed numbers of electrons. The main drawback of
the DFI-TDDFT lies in the DFI treatment of the ground state,
where interfragment exchange-correlation (XC) interactions and
charge-transfer effects cannot be accounted for. As a result, the
DFI-TDDFT energies are rather sensitive to the size of frag-
ments. The AO-TDDFT by van Gisbergen et al.9 and Coriani
et al.10 works directly with atomic orbitals (AO) and can achieve
linear scaling by means of prescreening techniques and sparse-
matrix algebra. At variance with both the FMO- and DFI-TDDFT,
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the AO-TDDFT amounts to a uniform treatment of all kinds of
excitations. However, it will become inefficient when the basis set
consisting of a number of diffuse functions for the cutoff of the
AO pairs is then ineffective.

The crucial issue is then whether it is possible to design a linear
scaling TDDFT that is well balanced between accuracy and
efficiency for all types of excitations of large systems composed of
any kind of chemical bonds and meanwhile allows for easy
interpretations of the excitations. To address this issue, we realize
that there exist two types of localities, in energy and in space. In
the CMO representation of TDDFT, the KS orbital energy
difference is the leading term of the excitation energy and is
usually dominant over the coupling term. As such, a low-lying
TDDFT excited state often involves only a few particle�hole
(p�h) pairs. This feature stems directly from the intrinsic nature
of the KS orbitals. That is, both the occupied and virtual KS
orbitals stem from the same local potential of N � 1 electrons
such that the latter are closely related to the excited states of anN-
electron system. For comparison, one may recall that the
Hartree�Fock (HF) virtual orbitals arise from the nonlocal
potential of N electrons and are hence more related to the
electron attachments of an (N + 1)-electron system rather than
the excited states of an N-electron system. As a result, low-lying
TDHF excited states are typically heavy mixtures of many p�h
pairs. However, this particular feature of TDDFT cannot be
employed a priori because the coupling term is a dense matrix:
The CMOs are usually delocalized throughout the whole space
such that neither the Coulomb nor the XC integrals in the coupling
term can be truncated. TheKSCMOcan hence be characterized as
“local in energy but delocalized in space”. On the contrary, the
AOs are local in space but “delocalized in energy”, manifested by
strong couplings among themselves. What are in between are the
localized molecular orbitals (LMOs), which may have good
localities both in energy and in space. Moreover, it is the p�h
pairs that serve as the basis in TDDFT. Therefore, one should try
to explore as much as possible the locality of the p�h pairs.
Conceptually, the LMO-based TDDFT can be viewed as an
intermediate between the CMO- and AO-based TDDFT.

An immediate question is then how to generate the desired
LMO. As is well-known, the traditional top-down schemes11�13

for generating the LMO from unitary transformations of the
global CMO scale at least cubically with respect to the size of
systems. Even worse is that the localization, especially that of the
virtual CMO, may fail miserably for large systems. To avoid this
problem, we propose here the idea of “from fragments to molecule”,
i.e., a bottom-up approach for constructing the LMO. More specifi-
cally, the primitive fragment LMOs (pFLMOs) are first obtained
from subsystem calculations via the standard schemes.11�13

They are then taken as the basis for the global self-consistent
field (SCF) calculations. Tomaintain the locality of theMO, only
the off-diagonal blocks of the KS matrix between the occupied
and virtual MOs are to be annihilated, whereas the diagonal
blocks are to be modified as little as possible. It will be shown
that the so-obtained MOs are only minor modifications of
the pFLMOs. That is, they are still well localized on their
parent fragments and can hence be termed as “fragment LMOs”
(FLMOs). It is then shown that, by a simple prescreening of the
FLMO p�h pairs, the FLMO-based TDDFT can achieve linear
scaling with respect to the system size, with a very small prefactor
(and hence no crossover point). As both the orbital picture
and integral number of electrons are retained, the nature of
the excitations, whether local, delocalized, or charge transfer,

can readily be deduced from analysis of the excited state eigen-
vectors in terms of transitions between fragments.

The remainder of the paper is organized as follows. Section 2.1
is devoted to the algorithm for the linear scaling LMO-TDDFT,
which is followed by the construction of the FLMO in section
2.2. The validity and efficiency of the FLMO-based TDDFT are
examined in detail in section 3. The account ends with conclu-
sions and perspectives in section 4.

2. THEORY

2.1. LMO-Based Linear Scaling TDDFT. For the time being,
we only consider closed-shell systems and further neglect
spin�orbit couplings. The frequency-domain TDDFT then
amounts to solving the following generalized eigenvalue
equation:2

A B
B A

" #
X
Y

" #
¼ ω

I 0
0 �I

" #
X
Y

" #
ð1Þ

where the matrix elements of A and B are defined as

Aai, bj ¼ Δai, bj þ Kai, bj ð2Þ

Bai, bj ¼ Kai, jb ð3Þ

Δai, bj ¼ δijfab � δabfji ð4Þ

Kpq, rs ¼ ðpqjsrÞ þ ðpqjfxcjsrÞ ð5Þ
Here and henceforth, the indices {i,j,k,l,...}, {a,b,c,d,...}, and

{p,q,r,s,...} designate occupied, virtual, and unspecified (real-valued)
orbitals, respectively. The Mulliken notation has been adopted for
the two-electron integrals. Under the adiabatic approximation
(ALDA), the exchange-correlation (XC) kernel fxc reads

f σσ
0

xc ðr, r0Þ ¼ δ2Exc
δFσðrÞ δFσ0 ðr0Þ δðr� r0Þ ð6Þ

which implies that the left-hand side of eq 1 is frequency indepen-
dent. Therefore, eq 1 can in principle be solved by a single
diagonalization. The cost would be of O(Nph

3 ), with Nph being the
product of the numbers of the occupied (No) and virtual (Nv)
orbitals. In other words, such a one-step diagonalization would scale
roughly as O(N6), with N characterizing the size of the system. In
practice, only a few low-lying excited states are of interest, which can
be obtained more efficiently by solving eq 1 in an iterative manner.
Here, we adopt the modified Davidson iterative scheme14 by
rewriting eq 1 as

ðA � BÞðA þ BÞZ ¼ ω2Z ð7Þ
with

Z ¼ X þ Y ð8Þ
Specifically, for a given trial vector b, the matrix-vector products
(A + B)b and (A � B)b need to be formed. While the computa-
tional cost for the productΔb is negligible, the contraction between
the coupling matrixK and the trial vector b is very expensive. In the
BDF package,15�18 the contraction Kb involves three steps in each
iteration. The induced density Find(r)

FindðrÞ ¼ ∑
ai
ΩaiðrÞ bai, ΩaiðrÞ ¼ ϕaðrÞ ϕiðrÞ ð9Þ



3645 dx.doi.org/10.1021/ct200225v |J. Chem. Theory Comput. 2011, 7, 3643–3660

Journal of Chemical Theory and Computation ARTICLE

is first evaluated and tabulated on the grids. The induced Coulomb
potential Vind(r)

VindðrÞ ¼
Z

Findðr0Þ
jr� r0j dr

0 ð10Þ

is then evaluated by using the multipolar expansion technique.15

The contraction Kb is finally formed as

½Kb�ai ¼
Z

ΩaiðrÞ½VindðrÞ þ f ALDAxc ðrÞ FindðrÞ� dr ð11Þ

The computational costs of Find(r) and Kb both scale formally as
O(NphNg), with Ng being the number of grid points. As Ng is
proportional to the system size, both steps are O(N3). The cost for
constructing the Coulomb potential Vind(r) is O(N

2) with a small
prefactor. In sum, without any truncation of the p�h space and the
grid points, the scaling for thematrix-vector productKb isO(N3) for
each trial vector. The scaling can only be reduced if the locality of the
p�h pairs is fully taken into account.
It is clear that it is the orbital overlap that dictates the

significance of a p�h pair. A natural measure of the spatial
overlap between a given occupied orbital ϕi and a virtual orbital
ϕa is the inner product Oai of their moduli:

Oai ¼
Z

jΩaiðrÞjdr e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

jϕaj2dr
Z

jϕij2dr
s

¼ 1 ð12Þ

When the orbitals are orthonormalized, the quantity Oai lies in
the interval [0,1] due to the Schwarz inequality, as shown above.
The products OaiObj are closely correlated with the magnitudes
of the Coulomb and XC integrals in the coupling matrix K. To
see this, the Oai values for the p�h pairs in the CMO and LMO
representations are compared for trans-1,3-butadiene (C4H6) in
Figure 1, alongside the absolute values of the diagonal Coulomb
and XC integrals. A Slater-type double-ζ polarized basis set
(DZP) was used for each atom, and the LMOs were obtained via
the Boys localization11 of the CMOcalculated with the LDA. The
p�h pairs are sorted in descendent order of Oai. It is clearly seen
that all of the quantities are significantly smaller in the LMO
representation than in the CMO representation. In particular,
both the Coulomb and XC integrals over the LMO decay quickly
as Oai decreases. As expected, they are roughly proportional to
the square of Oai. Taking a threshold of 10

�4, about one-third of
the diagonal Coulomb and XC integrals can be screened out in
the LMO representation even for this small system, whereas
almost all of the integrals are above this threshold in the CMO
representation.
To facilitate the prescreening, the grid points are classified into

several batches, each of which consists of a fixed number (e.g.,
128) of grid points. The parameter ηai

B

ηBai ¼ � log OB
ai, ηBai ∈ ½0, þ ∞Þ ð13Þ

OB
ai ¼ ∑

p ∈ B
wðrpÞjΩaiðrpÞj, OB

ai ∈ ½0, 1� ð14Þ

is then calculated for every p�h pair. Here, w(rp) are the weights
of the grid points. The larger the distance between the p�h pair
ai and the grid batch B or the distance between the orbitals ϕa
and ϕi, the smaller the Oai

B and, hence, the larger the ηai
B .

Therefore, ηai
B is an effective measure of the significance of the

pair ai on batch B. An appropriate threshold η can be introduced
to screen out all of the pairs with ηai

B > η. The larger the threshold

η is, the more p�h pairs are retained. In the extreme case of
η = +∞, all of the p�h pairs are retained, implying no truncation
to the coupling matrix K. On the other hand, all of the p�h pairs
are to be discarded with η = 0, leading to zero K, i.e., the
independent particle approximation (IPA) of TDDFT. There-
fore, the balance between accuracy and efficiency can be
monitored by the single threshold η. As the system size increases,
the number of significant p�h pairs with ηai

B < η will become
constant for a given batch of grid points in the LMO representa-
tion. This is the key for achieving linear scaling in forming the
contraction Kb.

Figure 1. Comparison between the p�h pairs in the CMO and LMO
representations for C4H6 calculated with DZP basis set and LDA. (a)
Orbital overlap Oai. (b) Diagonal elements of the Coulomb kernel. (c)
Diagonal elements of the ALDA kernel.
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However, there is a price to pay for the LMO representation in
solving eq 7 with the Davidson iterative diagonaliztion. Unlike
the CMO representation, where the leading term ΔCMO (cf.
eq 4) of A is diagonal such that the preconditioner (ΔCMO �
ω0I)

�1 for updating the trial vectors can trivially be evaluated, the
ΔLMO matrix in the LMO representation is not diagonal, and the
evaluation of (ΔLMO � ω0I)

�1 is a heavy task (for detailed
discussions, see ref 10). As we have tested, taking only the
diagonal elements of ΔLMO in the preconditioning may fac-
tually decelerate the convergence, particularly whenΔLMO is not
diagonally dominant. To accelerate the convergence, Miura and
Aoki19 proposed in their LMO-based TDHF to use the “localized
CMO” obtained by canonically orthogonalizing the LMO in each
preset region. The transformed LMO matrix is then block (regional)-
diagonal. Further combined with a projector guess, the convergence
is significantly improved compared with the original ΔLMO.
However, it is still not as good as that in the CMO representation.
As a matter of fact, one can combine the good of the CMO

(diagonal ΔCMO) and the LMO (sparse KLMO) representations
by introducing a unitary transformation UVO between the CMO
and LMO p�h bases:

UVO ¼ Uvv X Uoo,

FLMO
oo Uoo ¼ UooF

CMO
oo ,

FLMO
vv Uvv ¼ UvvF

CMO
vv ð15Þ

where Uoo (Uvv) is the unitary transformation between the
occupied (virtual) CMO and LMO (see Appendix ). More
specifically, the matrix-vector product is to be carried out as

KCMObCMO ¼ U†
VOK

LMObLMO ð16Þ
with the trial vector bLMO transformed as

bLMO
ai ¼ ½UVOb

CMO�ai ¼ ∑
bj
½UVO�ai, bjbCMO

bj

¼ ∑
bj
½Uvv�ab½Uoo�ijbCMO

bj ¼ ½Uvvb
CMO
vo U†

oo�ai ð17Þ

Note that in the above last equality the vector bCMO in the p�h
space has been recast into an Nv� No matrix in the orbital basis.
The same procedure can also be applied to the right-hand side of
eq 16. Both transformations scale computationally as O(N3) but
with a very small prefactor. For comparison, the AO-TDDFT9

can be implemented in the same way, just with the following
CMO to AO transformation:

bAOμν ¼ ½Cvb
CMO
vo C†

o�μν ð18Þ
where Co (Cv) is the coefficient matrix of the occupied (virtual)
CMO. Yet, there exists a significant difference between the AO-
TDDFT and LMO-TDDFT: The full dimension of [KAObAO] in
the AO-TDDFT is M2, with M being the number of basis
functions. This is to be compared with the dimension, Nph, of
[KLMObLMO] in the LMO-TDDFT. The ratio Nph/M

2 is less
than No/M and becomes smaller for a larger basis. In particular,
when diffuse functions are employed, the cutoff of the AO pairs
becomes ineffective whereas the LMO p�h pairs can still be
significantly cut off because the locality of the occupied MO is
not much affected by diffuse functions.
In sum, linear scaling TDDFT calculations can be achieved by

utilizing the locality of the p�h basis. The salient feature of the
above algorithm is evaluating all of the quantities in the LMO

representation but solving eq 7 in the CMO representation such
that both the diagonality of ΔCMO and the sparsity of KLMO can
be employed. As an additional benefit, full molecular symmetry
of arbitrary order20 can be incorporated by symmetrizing the
CMO, which is necessary for the proper assignment of the
calculated excited states.
2.2. Efficient Construction of LMO. The above algorithm for

TDDFT can be combined with any kind of LMO as long as they
can be generated efficiently. To circumvent the difficulties
encountered in the top-down localization of the global CMO,
we propose here a bottom-up localization scheme based on the
idea “from fragments to molecule”. That is, the global orthonor-
mal LMOs are to be synthesized from the pFLMOs obtained
from subsystem calculations.
Like most fragment-based approaches (for a recent review, see

ref 21), the whole molecule is first divided into several fragments
(denoted as I, J,K, etc.) based on chemical intuition. Each fragment
is then capped to form a subsystem (denoted as I, J, K, etc.). To
closely mimic the local chemical environment, the caps are just
parts of the whole system directly bonded to the fragment, which
are further saturated by link atoms. Taking polyacetyleneC20H22 as
an illustration (Figure 2), the whole molecule is divided into 10
fragments, each of which is composed of two doubly bonded
carbon atoms. Two carbon atoms on each side of every fragment
are taken as the buffer. Every subsystem is finally formed by
saturating the dangling bonds with hydrogen atoms.
With this fragmentation, the basis functions Vsubsystem

I for a
subsystem I contain three parts, viz.,

V ̅I
subsystem ¼ VI

fragment x VI
cap

¼ VI
fragment x VI

buffer x VI
link-atoms ð19Þ

where Vfragment
I , Vbuffer

I , and Vlink-atoms
I denote the respective basis

functions for the fragment I, buffer, and link atoms. Conventional
KS calculations are carried out for each subsystem in parallel

F̅IC̅I ¼ S̅IC̅IE̅I ð20Þ
where FI, CI, and SI are the KS, CMO coefficient, and over-
lap matrices of subsystem I. The standard localization
procedures11�13 can be employed to localize the occupied and
virtual CMO separately. As the size of the subsystems is very
small, the computation cost of the SCF and localization steps is
negligible. The so-obtained LMO coefficient matrix for sub-
system I is to be denoted as LI. To identify the location of the
LMO, a L€owdin population analysis is carried out for each LMO:

nIp ¼ ∑
μ ∈ I

ðL̅I†p S1=2ÞμðS1=2L̅IpÞμ ð21Þ

Figure 2. Fragmentation of C20H22 (C2h).
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where the summation is confined to the AO of fragment I. The
LMOs with np

I g θI are assigned to fragment I, while the
remainder are to be discarded. For a fragment J directly con-
nected with I, the selection threshold will be np

J g θJ = 1� θI. In
practice, a value of 0.6 can be chosen for θI. In this way, the
assignment of the same LMO, especially the one of np

I = np
J = 0.5,

to two fragments can be avoided. Since the link atoms do not
belong to the system, their basis functions Vlink-atoms

I have to be
projected out from the fragment-centered LMO. Note in passing
that this projection does not affect discernibly the norms of the
LMO. The basis functions Vbuffer

I of the buffer are instead
retained, as they are necessary for describing the tails of the
fragment LMO penetrating the system. To facilitate subsequent
SCF calculations, the resultant LMOs are symmetrically ortho-
normalized to form the pFMLO. The coefficient matrix of the
whole set of pFLMOs is in the AO representation of the
following structure:

LpFLMO ¼ LI x LJ x ::: x LK ð22Þ
which is further depicted in Figure 3. Here, LI collects the
coefficients of the pFLMO of fragment I. The occupied and
virtual parts of LpFLMO can be identified according to the
occupations in the subsystem calculations.
If the caps are sufficiently large, further global SCF calculations

may not be necessary. However, here, we decide to use the
smallest caps possible. Therefore, the above pFLMO will be
taken as the basis and the superposition of the fragment densities
as the initial guess for further SCF calculations of the whole
system. The KS matrix takes the following block structure:

FpFLMO ¼

FII FIJ 3 3 3 FIK

FJI FJJ 3 3 3 FJK

l l 3 3 3
l

FKI FKJ 3 3 3 FKK

2
666664

3
777775

ð23Þ

which is sparse since the elements Fpq
pFLMO are vanishingly small if

the pFLMOs p and q are located on two distant fragments. As the
pFLMOs represent well the chemical bondings of the whole
molecule, only a few (macro) SCF iterations are needed to
reach convergence. Because of this conquering, the dividing
(fragmentation) is actually not very crucial, at variance with
other schemes reported in the literature. The price to pay here is
the cubic scaling in the diagonalization of the sparse KS matrix.
However, it has a very small prefactor. Moreover, the energetic
locality of the pFLMO can be employed to freeze the core-like
ones and cut off the high-lying ones, both of which have nothing

to do with interfragment interactions. This can be facilitated by
constructing fragment-centered CMOs. As the primary interest
here is the efficiency of TDDFT rather than the SCF itself, such
pruning of the pFLMO is not to be considered.
What is more crucial here is how to retain the locality of the

MO during the SCF iterations or resume the locality in the very
end of the conventional SCF calculation. In the former case, only
the off-diagonal blocks of the KS matrix between the occupied
and virtual MOs are to be annihilated in each SCF cycle. In
principle, the Jacobi sweep of iterations can be applied here.
However, the convergence is very slow (typically hundreds of
iterations). To solve this issue, we propose a novel block-
diagonalization approach in Appendix , where the decoupling
condition can be solved either iteratively or noniteratively. For all
of the cases encountered here, the convergence of the iterative
block-diagonalization can be reached within just two to three
(micro) cycles. In the latter case, the standard SCF procedure is
invoked (i.e., a full-diagonalization of the KS matrix is carried out
in each SCF iteration), and the block-diagonalization is done
only when the convergence has been reached. At first glance, this
is nothing but a top-down localization of the global CMO.
However, this is possible only in the pFLMO basis. Therefore,
such a one-step scheme is still within the spirit of “from fragments
to molecule”. TheMOs by the two types of calculations, i.e., one-
step and multiple-step block-diagonalizations, are related by a
unitary transformation and have been verified to have very much
the same locality. Therefore, it is the latter one-step, noniterative
block-diagonalization that is to be used here. It will be shown
later on that the resultantMOs of the whole system are very close
to the initial pFLMOs and can hence be dubbed as FLMOs. This
feature stems from both the good transferability of the pFLMO
and the particular block-diagonalization algorithm that leads by
construction tominimal modifications of the diagonal blocks, the
key for retaining the locality of both the occupied and virtual
MOs. As such, the present approach provides a bottom-up
construction of LMO, manifesting the idea of “from fragments
to molecule”. It is an effective means for resolving the computa-
tional bottlenecks in both the SCF and localization procedures.
Apart from the computational savings in the TDDFT calcula-

tions, the nature of the excited states can readily be revealed by
using the fact that every FLMO belongs to a specific parent
fragment. That is, for a given excited state, the contribution of
transitions from fragment I to J can be measured by the weight
WIJ defined as

WIJ ¼ ∑
i ∈ I, a ∈ J

Z2
ai ð24Þ

withZ being the normalized eigenvector of eq 7. The distribution
of WIJ versus the fragment indices or simply the distance RIJ
between the fragments can then clearly distinguish local, delo-
calized, and charge-transfer excitations.

3. RESULTS AND DISCUSSION

The above algorithms for the FLMO-based DFT and TDDFT
have been implemented into the BDF package.15�18 As a proof of
concept, only the VWN5 form22 of LDA is used for both the
ground and excited state calculations. As far as computational
efficiency is concerned, the use of other types of functionals
merely changes the prefactor but not the scaling. A Slater-type
DZP basis set and 75 � 302 grid points are used for each atom.
More specifically, each hydrogen atom has five functions (2s1p)

Figure 3. Schematic illustration of LpFLMO in the AO basis.
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while each non-hydrogen atom has 15 functions (4s2p1d).
An ADZP basis set, obtained by augmenting the DZP set with
1s1p1d diffuse functions for carbon and 1s1p diffuse functions for
hydrogen,will also be used for testing the basis set effects. In order to
make a fair comparison between the LMO- and CMO-based
TDDFT, no symmetry is employed.All of the calculations are carried
out on an AMD Opteron Quad-core 8374 HE 2.2 GHz processor.
3.1. Construction of FLMO. The first point to be checked is

the dependence of the pFLMO on the cap size. Taking linear
polyacetylene C20H22 as an example (cf. Figure 2), the cap on
each side of a double-bond fragment may be composed of one,
two, or tree double bonds. The results are to be denoted as Cap-n
(n = 1, 2, 3). After separate calculations of the subsystems, the
Boys scheme is adopted to localize the CMO, which amounts to
minimizing the orbital self-extension (OSE):

I ¼ ∑
p
O½ϕp�,

O½ϕp� ¼
Z

ϕpðrÞ ϕpðr0Þ r212ϕpðrÞ ϕpðr0Þ dr dr0

¼ 2 ∑
i¼ 1, 2, 3

ðÆϕpjx2i jϕpæ� Æϕpjxijϕpæ2Þ ð25Þ

After projecting out the basis functions of the link hydrogen
atoms, the pFLMOs are set up via the L€owdin symmetric

orthogonalization. They are then taken as the basis and the
superposition of the fragment densities, ∑IFI(r), as the initial
guess for further SCF calculations of the whole system. As for the
AO-based SCF calculation, the superposition of the atomic
densities is taken as the initial guess. The results are documented
in Table 1. As expected, the pFLMOs provide a much better
initial guess such that the number of SCF iterations is much
reduced. It is noticeable that the error ΔE0 in the energy of the
zeroth iteration decreases as the cap size increases, indicating that
the superimposed density ∑IFI(r) becomes increasingly close to
the converged molecular density. It is also found that the error
ΔE0 remains a constant in the vicinity of the equilibrium,
meaning that the energy estimated from ∑IFI(r) is accurate
enough for geometry optimizations. The converged results with
different caps agree with each other since the energetic locality of
the pFLMOhas not yet been employed for truncations. A second
point to be checked here is the dependence of the pFLMOon the
fragment size (denoted as as Frag-n, n = 1, 5). The results
documented in Table 1 show that, for the same cap size, larger
fragments also tend to decrease both the error of ΔE0 and the
number of iterations. All of these findings apply also to linear
polyacetylene C60H62.
What is more interesting here is whether the global SCF

calculation would spoil the locality of the pFLMO. To check this,
the OSEs defined in eq 25 are compared in Figure 4 for each
CMO, pFLMO, and FLMO of C20H22. The orbitals are sorted in
descending order of the OSE. It is seen that most of the CMOs

Table 1. Convergence of the AO- and FLMO-based KS-LDA/DZP SCF Calculations of C20H22 and C60H62
a

FLMO

iteration AO ΔE (1,1) ΔE (1,2) ΔE (1,3) ΔE (5,1) ΔE (5,2)

C20H22 0 �3.061596 0.242335 0.019939 0.004306 0.032149 0.002878

1 0.937293 0.001311 0.000393 0.000091 0.000411 0.000122

2 1.603761 0.001329 0.000089 0.000040 0.001890 0.000174

3 0.006505 0.000502 0.000023 �0.000002 0.000049 0.000003

4 0.009614 0.000028 0.000005 0.000000 �0.000007 0.000000

5 0.000725 0.000008 0.000000 0.000004

6 0.000074 0.000000 0.000000

7 �0.000005

8 �0.000026

9 0.000003

10 �0.000001

11 0.000000

C60H62 0 �9.684877 0.858260 0.078572 0.019252 0.129093 0.011839

1 2.625106 0.005090 0.001368 0.000521 0.001657 0.000674

2 4.361038 0.000484 �0.000757 �0.000410 0.005922 �0.000090

3 0.009323 0.001170 0.000174 �0.000006 �0.000086 �0.000013

4 0.020549 0.000051 0.000028 0.000000 �0.000043 �0.000001

5 0.000933 0.000003 �0.000008 0.000009 0.000000

6 �0.000063 0.000000 0.000000 0.000000

7 �0.000038

8 �0.000033

9 �0.000001

10 �0.000001

11 0.000000
a Iteration 0 corresponds to the superposition of the fragment densities. ΔE denotes the difference between the iterative and converged energies. The
numbers in parentheses indicate the numbers of double bonds in each (fragment, cap).
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Figure 4. Comparison of the orbital self-extensions for different types of orbitals of C20H22 at the LDA/DZP level. Each cap has one double bond. (a)
CMO, pFLMO, and FLMO. (b) FLMO, OAO, and Boys-LMO. The pFLMO/FLMO and FLMO/Boys LMO curves overlap each other in a and b,
respectively.

Table 2. Wall Times (in seconds) of the AO- and FLMO-based SCF Calculationsa

FLMO-SCF

molecule step AO-SCF (1,1) (1,2) (1,3) (5,1) (5,2)

C20H22 subsystem 530[53] 1350[135] 2610[261] 620[310] 806[403]

subsystemb 73 202 403 310 403

SCF 565 415 381 347 415 347

localization 0.1 0.1 0.1 0.1 0.1

total 565 945 1731 2957 1035 1153

totalb 488 583 750 725 750

C60H62 subsystem 1590[53] 4050[135] 7830[261] 2142[357] 3360[560]

subsystemb 73 202 403 403 716

SCF 2784 2209 2209 1947 2209 2078

localization 2 2 2 2 2

total 2784 3799 6259 9777 4351 5438

totalb 2284 2413 2352 2614 2796
aAveraged wall times per subsystem are in brackets. The numbers of double bonds in each (fragment, cap) are in parentheses. The one-step, non-
iterative block-diagonalization is adopted to construct the FLMO. For comparison, the wall times for the Boys localization scheme are 455 s for C20H22

and 16 920 s for C60H62.
bOnly the time for the largest subsystem is counted, as the subsystems are calculated on parallel nodes.

Figure 5. Dependence of the number of p�h pairs of CnHn+2 on the threshold η. (a) Number of p�h pairs on the first batch of grid points. (b) Number
of p�h pairs on all of the batches.
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are delocalized with large OSEs, whereas the locality of the
pFLMOs and FLMOs is virtually identical. This reveals that the
pFLMOs constructed from subsystem calculations describe the
chemical bondings very well, such that only their tails are subject
to minor changes when brought together to form the whole
molecule. At this point, it is instructive to compare the present
FLMO with the LMO from the Boys localization of the global
CMO as well as the OAO. As judged from the OSE in Figure 4b,
the locality of the FLMO and Boys LMO is practically the same,
whereas the OAOs are marginally more local. A similar situation
is found also in calculations with larger basis sets such as ADZP
and TZ2P. As the LDA potential falls off too quickly, the

corresponding virtual MOs are artificially too diffuse. Therefore,
the present findings can safely be extended to other functionals of
correct long-range behavior that tend to yield more compact
MOs. The close proximity between the FLMOs, Boys LMOs,
and OAOs indicates that they perform equally well in any linear
scaling calculations. Yet, the FLMOs are clearly advantageous
over the Boys LMOs in the construction and advantageous over
the OAOs in the physical interpretation of the results.
To compare the relative efficiency of the FLMO- and AO-

based SCF calculations, the wall times for the key steps are
collected in Table 2. Noticeably, the subsystem calculations do
cause a significant overhead (roughly a factor of 2) compared
with the AO-SCF. However, this is only true if the subsystems,
including the identical ones, are all calculated one after another
on a single node. As a matter of fact, only the time for the largest
subsystem is relevant here, since the subsystems have actually
been calculated on parallel nodes. The overhead is then well
compensated by the reduced number of SCF iterations. More
importantly, compared with the very expensive Boys localiza-
tion of the global CMO in the AO basis, the present one-step,
noniterative block-diagonalization of the KS matrix in the
pFLMO basis costs essentially nothing. Note in particular that
the Boys localization fails even for C20H22 when the ADZP
basis set is used. Therefore, even in the sequential treatment of
the subsystems, the overhead is not really an issue, as it will be
overcompensated by the subsequent benefit from the LMO.

Table 3. Polynomial Fittings of the Nph�NC Curves in
Figure 5b and the T�NC Curves (in seconds) in Figure 6a a

Nph T

scheme expression R2 expression R2

LMO(∞) 2.9 � 104NC
2.9 0.9999 3.6NC

2.5 0.9955

LMO(7) 3.0 � 106NC � 2.0 � 107 0.9969 82.8NC � 415.2 0.9929

LMO(6) 1.0 � 106NC � 7.0 � 107 0.9993 51.6NC � 134.5 0.9942

LMO(5) 3.6 � 105NC � 1.0 � 106 0.9999 30.9NC � 45.1 0.9877

LMO-CMO(5) 6.4 � 104NC
1.9 0.9995 15.2NC

1.5 0.9954

CMO(5) 1.7 � 103NC
2.7 1.0000 4.3NC

2.1 0.9903
a R2: Correlation coefficient.

Figure 6. (a) Total wall times of different calculations of the five lowest excited states of CnHn+2. (b) Wall times of the key steps in calculations of
C60H62. (c) Wall times of the key steps in scheme LMO(6). Empty squares indicate the number of iterations on the right vertical axis.
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For massive calculations of real-life systems, the coefficients of
the pFLMO can be preconstructed and stored such that they
can directly be used as building blocks. Making full use of the
molecular symmetry can also reduce the costs of the subsys-
tems as they usually have higher symmetry than the whole
system. Overall, the FLMO-SCF provides an effective means
for handling large and complex systems in the spirit of “from
fragments to molecule”. On one hand, it can avoid the
convergence difficulties encountered in the conventional SCF
calculations. On the other hand, it can produce the desired
LMO so as to accelerate subsequent post-SCF calculations such
as TDDFT (vide post) and wave-function-based local correla-
tion methods.
3.2. FLMO-Based TDDFT. 3.2.1. Efficiency and Accuracy.

Having discussed the efficient construction of the FLMO, we
now come to the main point of the present work, i.e., linear scaling
TDDFT. Linear polyacetylenes (CnHn+2) of different chain
lengths are first chosen to examine the efficiency and accuracy of
the FLMO-TDDFT,which can bemonitored by a single threshold
η (cf. eq 13). Four values of η (∞, 7, 6, 5) are considered for
cutting off the FLMO pairs. For comparison, η = 5 is also used for
the CMO pairs as well as the occupied LMO�virtual CMO pairs.
The so-defined schemes are to be denoted as LMO(η), LMO-
CMO(η), or CMO(η). Note that both LMO(∞) and LMO-
CMO(∞) are equivalent to CMO(∞).

As the computational costs of the two expensive steps (??) in
formingKb are proportional to the numberNph of p�h pairs, we
first examine how the threshold η is correlated with the Nph on
the batches of grid points. In Figure 5, theNph withηai

B eη on the
fist batch (centered on the leftmost carbon atom) and that on all
of the batches are depicted for different values of η. Note that, for
brevity, the number NC of carbon atoms has been taken to
characterize the system size. Since no pairs are cut off in scheme
LMO(∞), theNph on the first batch scales asO(NC

2 ) and that on
all of the batches scales as O(NC

3 ). It is noticeable that, even with
η = 5, theNph in the CMO representation cannot significantly be
reduced. The scaling of CMO(5) is almost the same as LMO-
(∞), just with a smaller prefactor. By contrast, in the LMO
representation with η = 7, 6, and 5, theNph’s on the first batch all
approach constants, and the Nph’s on all of the batches exhibit a
perfect linear scaling with the system size; see the linearly fitted
functions in Table 3. For C60H62, only 3%, 1%, and 0.4% of the
total Nph in LMO(∞) are kept in LMO(7), LMO(6), and
LMO(5), respectively. Therefore, a significant reduction of the
computational costs can be achieved in forming Kb by prescre-
ening the p�h pairs in the LMO presentation. As for the
LMO�CMO(5) case, the Nph scales roughly as O(NC

2 ) due to
the strong locality of the occupied LMO. TheNph�NC curves lie
between the LMO(7) and LMO(6) ones for NC’s smaller than
60 and then exceed the LMO(7) ones for larger NC’s.

Figure 7. Comparison of different calculations of the five lowest excited states of CnHn+2. (a) Final dimension Nb of the iterative subspace in the
Davidson diagonalization. (b) Averaged wall time per trial vector for Find. (c) Averaged wall time per trial vector for Vind. (d) Averaged wall time per trial
vector for [Kb].
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The overall computational costs of different schemes are
compared in Figure 6a for linear polyacetylenes CnHn+2.
The five lowest excited states are calculated for each molecule.
It is seen from Table 3 that both LMO(∞) (equivalent to CMO-
(∞) and LMO�CMO(∞)) and CMO(5) scale sharper than

quadratic, whereas LMO(5) to LMO(7) exhibit linear scaling
and are all cheaper than CMO(5), even for molecules as small as
C8H10. Although it is not strictly comparable, it deserves to be
mentioned that the LMO(6) (LMO(5)) calculations of the five
states of CnHn+2 are only marginally more expensive (cheaper)

Figure 8. (a) Mean absolute deviations (MAD) and (b) maximum absolute deviations (MAX) of LMO(η) from LMO(∞) in the energies of the five
lowest excited states of CnHn+2.

Figure 9. Calculations of the five lowest excited states of CnHn+2 at the ALDA/ADZP level. (a) Averaged total wall times per trial vector for Find, Vind,
and [Kb]. (b) Comparison between the averaged total wall times per trial vector with the ADZP and DZP basis sets. (c) Mean absolute deviations
(MAD) and (d) maximum absolute deviations (MAX) of LMO(η) from LMO(∞) in the excitation energies.
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than the corresponding SCF calculations. Different portions of
the wall time in the calculations of C60H62 are further displayed in
Figure 6b. It is clear that the evaluations of Kb and Find are
significantly more expensive than that of Vind in the CMO
representation but become even cheaper in the LMO represen-
tation. It is also noticeable from Figure 6a and Table 3 that the
time-size (T�NC) curves in the LMO representation are not
really straight lines. Such deviations from perfect linearity arise
from the fact that the number of iterations in the Davidson
diagonalization varies with the system size. As the cost of the
Davidson diagonalization is proportional to the final dimension
Nb of the iterative subspace, i.e., the total number ofKb products
to reach convergence, it is more appropriate to take Nb to
characterize the scaling. As shown in Figure 7a, the Nb with
different thresholds η are roughly the same for a given system and
decrease as the system gets larger. When averaged over Nb, the

T�NC curves for Find and Kb become perfectly linear for all of
the LMO schemes, as shown in Figure 7b and d. They are well
correlated with the corresponding curves for the number of
effective p�h pairs shown in Figure 5b. One particular remark
should be made on the Vind curves in Figure 7c, where all of the
curves coincide and scale linearly. This is because the same
treatment ofVind has beenmade in all of the schemes. That is, the
monopole approximation for Vind is invoked for grid points
outside a radius of 20 au from the position of a given atom.
Without the monopole approximation, the evaluation of Vind
would scale quadratically, albeit with a small prefactor.
To demonstrate the accuracy of the LMO(η) schemes, the

mean absolute deviations (MAD) and maximum absolute
deviations (MAX) from LMO(∞) are displayed in Figure 8
for the five lowest excited states of CnHn+2. It is seen that the
MAD of LMO(η) is roughly 10�η+3 eV. That is, the accuracy

Table 4. LDA/DZP-TDDFT Calculations of Selected Moleculesa

molecule scheme Nph Nit Nb T1 T2 T3 Ttot

C20H22 LMO(∞) 1.8� 108(100%) 7 43 1720 449 2510 4700

LMO(7) 3.0� 107 (17%) 7 43 329 449 459 1244

LMO(6) 1.5� 107 (8%) 7 43 198 449 261 915

LMO(5) 5.8� 106 (3%) 7 42 100 439 120 664

LMO-CMO(5) 1.9� 107 (11%) 7 47 259 491 343 1100

CMO(5) 5.3� 107 (29%) 7 43 490 449 740 1690

C20H22 LMO(∞) 3.2� 108 (100%) 8 52 2964 546 4680 8195

(ADZP) LMO(7) 7.6� 107 (24%) 8 51 887 536 1264 2697

LMO(6) 3.6� 107 (11%) 8 51 479 536 653 1678

LMO(5) 1.3� 107 (4%) 8 48 198 504 241 948

LMO-CMO(5) 3.4� 107 (11%) 8 52 494 546 666 1711

CMO(5) 9.5� 107 (30%) 8 57 1191 599 1739 3533

C20H42 LMO(∞) 3.8� 108 (100%) 4 30 1980 690 3240 5912

LMO(7) 4.1� 107 (11%) 4 30 339 690 456 1487

LMO(6) 1.9� 107 (5%) 4 30 189 690 240 1121

LMO(5) 6.6� 106 (2%) 4 30 99 690 117 908

LMO-CMO(5) 2.8� 107 (7%) 4 30 270 690 348 1310

CMO(5) 1.1� 108 (28%) 4 30 684 690 1029 2405

C25H44 LMO(∞) 5.9� 108 (100%) 6 50 5400 1315 8100 14820

LMO(7) 5.1� 107 (9%) 6 50 670 1315 925 2915

LMO(6) 2.3� 107 (4%) 6 50 385 1315 495 2200

LMO(5) 8.2� 106 (1%) 6 50 190 1315 225 1735

LMO-CMO(5) 3.6� 107 (6%) 6 50 565 1315 735 2620

CMO(5) 1.4� 108 (23%) 6 50 1495 1315 2165 4980

C21H34N10O10 LMO(∞) 1.3� 109 (100%) 1 5 900 105 1740 2747

LMO(7) 6.6� 107 (5%) 1 5 76 105 120 303

LMO(6) 3.1� 107 (2%) 1 5 45 105 65 216

LMO(5) 1.1� 107 (1%) 1 5 23 105 28 158

LMO-CMO(5) 5.6� 107 (4%) 1 5 72 105 110 289

CMO(5) 2.3� 108 (18%) 1 5 175 105 305 587

C38H58N19O19 LMO(∞) 7.9� 109 (100%) 1 5 7150 437 11300 18900

(α-helix) LMO(7) 2.9� 108 (4%) 1 5 329 437 467 1243

LMO(6) 1.1� 108 (1%) 1 5 150 437 200 797

LMO(5) 3.1� 107 (0.4%) 1 5 59 437 70 576

LMO-CMO(5) 1.9� 108 (2%) 1 5 215 437 293 957

CMO(5) 9.5� 108 (12%) 1 5 1100 437 1515 3067
a Nph: Number of effective p�h pairs;Nit: Number of iterations of the Davidson diagonalization;Nb: Final dimension of theDavidson iterative subspace;
T1: Wall time (in second) for Find; T2: Wall time for Vind; T3: Wall time for Kb; Ttot: Total wall time.
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of LMO(η) increases monotonically as the threshold η
increases to include more p�h pairs. In view of this relation,
it is at first glance surprising that the accuracy of CMO(5) is lower
than LMO(7) ,although significantly more p�h pairs are included
in the former (cf. Figure 5). However, this can be understood by

realizing that the spatial distributions of the p�h pairs are
dramatically different in the CMO and LMO representations.
Most of the CMO p�h pairs are delocalized with small ηai

B values.
That is, essentially every CMO p�h pair makes a small contribu-
tion, the truncation of which is only possible by using a small

Figure 10. Fragmentation of model linear systems. (a) Polyethylene C20H42, (b) n-nonadecyl benzene C25H44, and (c) polypeptide C21H34N10O10.

Figure 11. The distributions WIJ of the excited states. (a) C20H22, (b) C20H40, (c) C25H44, (d) C21H34N10O10.
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threshold η at the expense of introducing sizable errors. By
contrast, the LMO p�h pairs are mostly local with ηai

B spanning
a very large range (cf. Figure 1a). That is, only a small number of
LMO p�h pairs make significant contributions.
At this stage, onemay wonder what happens if the chosen basis

set consists also of diffuse functions. To address this, we consider
the aforementioned ADZP basis set. It is seen from Figure 9a that
the FLMO-TDDFT still scales linearly with respect to the system
size. The computational costs by the ADZP and DZP basis sets
are further compared in Figure 9b for CnHn+2 with n = 20, 40, and
60. When going from DZP to ADZP, the costs increase by 65%
for both LMO(7) and LMO(6) and by 30% for LMO(5), in line
with the increase of 65% in the number of basis functions. Mode
detailed comparisons between the ADZP and DZP basis sets can
be found from Table 4 in the case of C20H22. Note that the use of
diffuse functions has a much smaller effect on the FLMO pairs

than on the AO pairs. Again take C20H22 as an example. To
achieve the desired accuracy (i.e., 0.01 eV in excitation energy
and 0.05 a.u. in oscillator strength), η = 5 is already sufficient for
the DZP-AO-TDDFT but which is only marginally cheaper (by
7%) than the DZP-FLMO-TDDFT with η = 6. However, the
threshold has to be increased to 7 for the ADZP-AO-TDDFT to
avoid numerical instabilities (imaginary energies), which is then
more expensive than the ADZP-FLMO-TDDFT by a factor of
2.2 for η = 6 and a factor of 1.5 for η = 7. Similar findings are
also observed for larger molecules like C40H42. Therefore, the
FLMO-TDDFT is clearly more efficient than the AO-TDDFT in
the presence of diffuse functions. It is also seen from eqs 10 and 9
that the LMO(η) results of the two basis sets have very much the
same accuracy.
3.2.2. Application to Different Types of Systems. Having exam-

ined the efficiency and accuracy, we now apply the FLMO-TDDFT

Table 5. LDA/DZP-TDDFT Excitation Energies (eV) and Oscillator Strengths (au, in parentheses) for the Five Lowest Excited
States of Selected Moleculesa

molecule state IPA LMO(∞) LMO(7) LMO(6) LMO(5) LMO-CMO(5) CMO(5)

C20H22 11Bu 1.9640 2.4841 (2.2709) 2.4833 (2.2647) 2.4754 (2.2113) 2.4302 (1.9288) 2.4623 (2.0958) 2.4839 (2.2625)

21Ag 2.5270 2.5619 (0.0000) 2.5619 (0.0000) 2.5618 (0.0000) 2.5612 (0.0000) 2.5630 (0.0000) 2.5619 (0.0000)

21Bu 2.5758 3.2419 (0.0832) 3.2418 (0.0833) 3.2416 (0.0849) 3.2402 (0.0956) 3.2402 (0.0637) 3.2417 (0.0832)

31Bu 3.1388 3.3752 (1.0148) 3.3750 (1.0126) 3.3733 (0.9995) 3.3637 (0.9256) 3.3798 (1.0670) 3.3742 (0.9969)

31Ag 3.1775 3.4765 (0.0000) 3.4767 (0.0000) 3.4749 (0.0000) 3.4439 (0.0000) 3.4586 (0.0000) 3.4721 (0.0000)

MAD 0.0003 (0.0017) 0.0025 (0.0153) 0.0201 (0.0888) 0.0094 (0.0494) 0.0011 (0.0053)

C20H22 11Bu 1.9468 2.4570 (2.3056) 2.4563 (2.3004) 2.4489(2.2510) 2.4045 (1.9725) 2.4351 (2.1204) 2.4573 (2.2987)

(ADZP) 21Ag 2.5164 2.5425 (0.0000) 2.5425 (0.0000) 2.5425(0.0000) 2.5419 (0.0000) 2.5437 (0.0000) 2.5425 (0.0000)

21Bu 2.5469 3.2214 (0.0639) 3.2214 (0.0641) 3.2212(0.0654) 3.2200 (0.0766) 3.2201 (0.0477) 3.2213 (0.0635)

31Bu 3.1165 3.3418 (1.0197) 3.3416 (1.0174) 3.3401(1.0038) 3.3301 (0.9279) 3.3467 (1.0788) 3.3412 (1.0079)

31Ag 3.1714 3.4365 (0.0000) 3.4368 (0.0000) 3.4363(0.0000) 3.4052 (0.0000) 3.4208 (0.0000) 3.4359 (0.0000)

MAD 0.0002 (0.0015) 0.0020(0.0144) 0.0195 (0.0875) 0.0090 (0.0521) 0.0003 (0.0038)

C20H42 21Ag 6.5067 6.5190 (0.0000) 6.5190 (0.0000) 6.5190(0.0000) 6.5188 (0.0000) 6.5187 (0.0000) 6.5190 (0.0000)

11Bu 6.6067 6.6159 (0.0005) 6.6159 (0.0005) 6.6159(0.0004) 6.6158 (0.0004) 6.6157 (0.0002) 6.6159 (0.0003)

31Ag 6.7576 6.7691 (0.0000) 6.7691 (0.0000) 6.7691(0.0000) 6.7689 (0.0000) 6.7688 (0.0000) 6.7690 (0.0000)

21Bu 6.9483 6.9623 (0.0021) 6.9623 (0.0020) 6.9623(0.0020) 6.9621 (0.0017) 6.9619 (0.0011) 6.9622 (0.0018)

31Bu 6.9752 6.9845 (0.0002) 6.9845 (0.0002) 6.9845(0.0002) 6.9844 (0.0002) 6.9844 (0.0002) 6.9845 (0.0001)

MAD 0.0000 (0.0000) 0.0000(0.0000) 0.0001 (0.0001) 0.0002 (0.0002) 0.0000 (0.0001)

C25H44 S1 4.7960 5.0138 (0.0019) 5.0138 (0.0019) 5.0137 (0.0019) 5.0132 (0.0019) 5.0135 (0.0019) 5.0139 (0.0019)

S2 4.8845 5.1524 (0.0296) 5.1523 (0.0293) 5.1520 (0.0275) 5.1505 (0.0204) 5.1516 (0.0196) 5.1523 (0.0283)

S3 5.1037 5.1760 (0.0012) 5.1760 (0.0012) 5.1760 (0.0012) 5.1760 (0.0014) 5.1760 (0.0015) 5.1759 (0.0011)

S4 5.1382 5.6355 (0.0980) 5.6355 (0.0982) 5.6350 (0.0978) 5.6299 (0.0876) 5.6338 (0.0883) 5.6354 (0.1012)

S5 5.1923 5.6464 (0.0073) 5.6464 (0.0073) 5.6463 (0.0070) 5.6460 (0.0055) 5.6462 (0.0061) 5.6464 (0.0074)

MAD 0.0000 (0.0001) 0.0002 (0.0005) 0.0017 (0.0043) 0.0006 (0.0042) 0.0001 (0.0009)

C21H34N10O10 S1 4.0930 4.0930 (0.0000) 4.0930 (0.0000) 4.0930 (0.0000) 4.0930 (0.0000) 4.0930 (0.0000) 4.0930 (0.0000)

S2 4.1973 4.1973 (0.0000) 4.1973 (0.0000) 4.1973 (0.0000) 4.1973 (0.0000) 4.1973 (0.0000) 4.1973 (0.0000)

S3 4.2651 4.2651 (0.0000) 4.2651 (0.0000) 4.2651 (0.0000) 4.2651 (0.0000) 4.2651 (0.0000) 4.2651 (0.0000)

S4 4.3283 4.3283 (0.0000) 4.3283 (0.0000) 4.3283 (0.0000) 4.3283 (0.0000) 4.3283 (0.0000) 4.3283 (0.0000)

S5 4.3933 4.3933 (0.0000) 4.3933 (0.0000) 4.3933 (0.0000) 4.3933 (0.0000) 4.3933 (0.0000) 4.3933 (0.0000)

MAD 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

C38H58N19O19 S1 0.7467 0.7467 (0.0000) 0.7467 (0.0000) 0.7467 (0.0000) 0.7467 (0.0000) 0.7467 (0.0000) 0.7467 (0.0000)

(α-helix) S2 0.9320 0.9320 (0.0000) 0.9320 (0.0000) 0.9320 (0.0000) 0.9320 (0.0000) 0.9320 (0.0000) 0.9320 (0.0000)

S3 0.9929 0.9929 (0.0000) 0.9929 (0.0000) 0.9929 (0.0000) 0.9929 (0.0000) 0.9929 (0.0000) 0.9929 (0.0000)

S4 1.1782 1.1782 (0.0000) 1.1782 (0.0000) 1.1782 (0.0000) 1.1782 (0.0000) 1.1782 (0.0000) 1.1782 (0.0000)

S5 1.2153 1.2153 (0.0000) 1.2153 (0.0000) 1.2153 (0.0000) 1.2153 (0.0000) 1.2153 (0.0000) 1.2153 (0.0000)

MAD 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
a IPA: Independent particle approximation. MAD: Mean absolute deviations from LMO(∞).
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to different kinds ofmodel systems. First, consider linear systems. In
addition to the linear polyacetylene C20H22 (C2h, cf. Figure 2), the
linear polyethylene C20H42 (C2h), n-nonadecyl benzene C25H44

(C1), and linear polypeptide with 10 residues C21H34N10O10 (C1)
are also included. The structures are depicted in Figure 10, all of
which are divided into 10 minimal fragments.
The number Nph of effective p�h pairs, the number Nit of

iterations of the Davidson diagonalization, the final dimension
Nb of the Davidson iterative subspace, the wall time for the key
steps in constructing the contraction Kb, and the total wall time
are listed in Table 4. It is seen that, compared with the CMO
representation, significant reductions of the LMO pairs are
possible for all of the systems. As a result, the respective speedups
of LMO(7), LMO(6), and LMO(5) amount to 4, 5, and 7 times

for the first three linear systems and are enhanced to 9, 13, and 17
times for the linear polypeptide. The latter is due to stronger
locality in the virtual FLMO on one hand and a reduced number
Nb of constructing Vind on the other.
The excitation energies and oscillator strengths for the five

lowest excited states of the four molecules are documented in
Table 5. It deserves to be mentioned that the DZP excitation
energies for C20H22 differ from the corresponding TZ2P and
ADZP values by only 0.03 eV or less, confirming the quality of
the calculations. For the other three linear molecules, the
truncated LMO schemes essentially reproduce the LMO(∞)
results. This is a direct consequence of the very small couplings,
as can be verified from the proximity between the IPA and
TDDFT energies. In particular, identical results have been

Figure 12. Fragmentation of α-helix polypeptides. (a) 3D geometry. (b) Fragmentation.

Figure 13. Calculations of the five lowest excited states of α-helix polypeptides with 4, 8, 11, and 19 residues. (a) Number of p�h pairs. (b) Averaged
total wall time per trial vector for Find, Vind, and [Kb].
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obtained by all of the schemes for the linear polypeptide
C21H34N10O10 where the lowest excited states are dominated
by long-range charge-transfers23 for which the ALDA couplings
vanish.
As stated before, the LMO representation offers also a clear

interpretation of the excited states in line with chemical/physical
intuition. To see this, the distributionsWIJ (cf. 24) of the excite state
eigenvectors are depicted in Figure 11 as function of the distances
RIJ between the centers of mass of the fragments. The WIJ’s
corresponding to the same RIJ’s are summed together. It is clearly
seen that the low-lying excited states of C20H22 and C20H42 are
combinations of interfragment transitions and are hence completely
delocalized. By contrast, the first and third excited states of C25H44

are dominated by local excitations within one fragment (RIJ = 0).
The excited states of the linear polypeptide C21H34N10O10 are
instead dominated by charge-transfer transitions between well
separated fragments. In particular, the first excited state passes
through a distance as large as 25 Å. Of course, this might not be
very realistic due to inherent problems of the ALDA kernel.
To further reveal the performance of the FLMO-TDDFT for

3D systems, we now consider α-helix polypeptides, the largest of
which consists of 19 residues (C38H58N19O19). Its fragmentation
is shown in Figure 12. Each fragment is composed of four
residues (one α-helix turn) and is capped with two residues on
each side. Note that different fragmentations affect merely the
number of SCF iterations but not the FLMO-TDDFT calculations.
The wall times and the excitation energies of C38H58N19O19 are
documented in Tables 4 and 5, respectively. It is clearly seen from
Figure 13 that the FLMO-TDDFT scales still linearly with
respect to the system size characterized by the number of
residues.

3.3. Possible Approximations. Since it is the orbital overlaps
rather than the whole orbitals themselves that determine the con-
tributions of the p�h pairs to the excitations, it should be possible to
use approximate instead of fully converged orbitals in the TDDFT
calculations. To confirm this viewpoint, we just take the FLMO from
the block-diagonalization of theKSmatrix due to the superposition of
the fragment densities (iteration 0 in Table 1). The so-calculated
excitation energies and oscillator strengths are given in Table 6 for
three linear polyacetylenes, i.e.,C20H22,C40H42, andC60H62. It is seen
that the results are very good, with the mean absolute errors in the
energies only of a fewhundredths of an electronvolt. This again results
from the high transferability of the pFLMO.
At variance with the FMO-TDDFT,6,7 where the same many-

body expansion is applied to both the ground and excited state
energies, the ground and excited state calculations can in the
present case be approximated separately with well controlled
accuracy. For instance, caps varying in size can be chosen for
different fragments in the subsystem calculations, and different
thresholds can be applied to prescreen the interfragment matrix
elements in the global SCF calculation. Likewise, in the FLMO-
TDDFT calculation, different thresholds η can be applied to p�h
pairs from different fragments. Such hierachical approximations
allow one to treat different portions of the whole system with
different accuracies and even with different Hamiltonians.24�28

Moreover, like the KS matrix (see 23), the A and Bmatrices in
eq 7 can be partitioned into fragment contributions, viz.:

M ¼ ∑
I
MII, II þ ∑

I 6¼J

MII, JJ þ ∑
I
∑
K 6¼L

ðMII,KL þ MKL, IIÞ

þ ∑
I 6¼J
∑
K 6¼L

MIJ,KL, ðM ¼ A,BÞ ð26Þ

Table 6. Excitation Energies (in eV) and Oscillator Strengths (au, in parentheses) of the Five Lowest Excited States of Linear
Polyacetylenesa

molecule state LMO(∞) (1,1) (1,2) (1,3) (5,1) (5,2)

C20H22 11Bu 2.4841 (2.2709) 2.4634 (2.2422) 2.4715 (2.2241) 2.4744 (2.2164) 2.4719 (2.2216) 2.4743 (2.2157)

21Ag 2.5619 (0.0000) 2.5489 (0.0004) 2.5578 (0.0000) 2.5608 (0.0001) 2.5596 (0.0000) 2.5609 (0.0002)

21Bu 3.2419 (0.0832) 3.2322 (0.0657) 3.2384 (0.0741) 3.2402 (0.0799) 3.2362 (0.0764) 3.2397 (0.0821)

31Bu 3.3752 (1.0148) 3.3628 (1.0082) 3.3702 (1.0058) 3.3730 (1.0032) 3.3745 (1.0000) 3.3735 (1.0011)

31Ag 3.4765 (0.0000) 3.4692 (0.0000) 3.4731 (0.0000) 3.4742 (0.0000) 3.4717 (0.0000) 3.4760 (0.0000)

MAD 0.0126 (0.0106) 0.0057 (0.0130) 0.0034 (0.0139) 0.0051 (0.0142) 0.0030 (0.0140)

MAX 0.0207 (0.0288) 0.0126 (0.0469) 0.0097 (0.0545) 0.0122 (0.0493) 0.0098 (0.0552)

C40H42 11Bu 1.8407 (2.6041) 1.8153 (2.4929) 1.8266 (2.4637) 1.8311 (2.4528) 1.8269 (2.4620) 1.8309 (2.4512)

21Ag 1.8916 (0.0000) 1.8730 (0.0001) 1.8846 (0.0000) 1.8893 (0.0000) 1.8852 (0.0000) 1.8891 (0.0000)

21Bu 2.2114 (0.1252) 2.1957 (0.0965) 2.2057 (0.1113) 2.2095 (0.1137) 2.2067 (0.0898) 2.2094 (0.1158)

31Bu 2.2672 (2.5045) 2.2484 (2.4612) 2.2585 (2.4331) 2.2625 (2.4268) 2.2587 (2.4513) 2.2624 (2.4246)

31Ag 2.2860 (0.0000) 2.2640 (0.0000) 2.2744 (0.0000) 2.2782 (0.0001) 2.2761 (0.0001) 2.2764 (0.0002)

MAD 0.0201 (0.0367) 0.0094 (0.0451) 0.0053 (0.0481) 0.0087 (0.0462) 0.0058 (0.0485)

MAX 0.0254 (0.1112) 0.0141 (0.1404) 0.0096 (0.1513) 0.0138 (0.1421) 0.0099 (0.1529)

C60H62 11Bu 1.6572 (2.5425) 1.6323 (2.3884) 1.6451 (2.3543) 1.6503 (2.3456) 1.6488 (2.3490) 1.6505 (2.3398)

21Ag 1.6940 (0.0000) 1.6732 (0.0002) 1.6860 (0.0000) 1.6911 (0.0000) 1.6898 (0.0000) 1.6914 (0.0000)

21Bu 1.8795 (0.1260) 1.8609 (0.1055) 1.8723 (0.1231) 1.8771 (0.1223) 1.8762 (0.0979) 1.8775 (0.1074)

31Ag 1.8979 (0.0000) 1.8794 (0.0162) 1.8847 (0.0000) 1.8915 (0.0000) 1.8900 (0.0000) 1.8896 (0.0000)

31Bu 1.9094 (3.1896) 1.8889 (3.0736) 1.9001 (3.0376) 1.9047 (3.0293) 1.9034 (3.0589) 1.9048 (3.0393)

MAD 0.0207 (0.0614) 0.0099 (0.0686) 0.0047 (0.0722) 0.0060 (0.0705) 0.0048 (0.0743)

MAX 0.0249 (0.1540) 0.0121 (0.1882) 0.0070 (0.1969) 0.0084 (0.1935) 0.0067 (0.2027)
aColumn LMO(∞) employs the fully converged FLMO, while the remaining columns refer to LMO(6) employing the FLMO from the block-
diagonalization of the KS matrix due to the superposition of the fragment densities (cf. Table 1). The numbers in parentheses indicate the numbers of
double bonds in each (fragment, cap). MAD/MAX: Mean/maximum absolute deviations from LMO(∞).
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where the first term on the right-hand side represents pure local
excitations, the second term the couplings between local excita-
tions, the third term the couplings between local and change-
transfer excitations, and the last term pure change-transfer
excitations. A many-body expansion is also possible, in the spirit
of the FMO-TDDFT.6,7 However, there are at most four-body
terms here, whereas up to Nm-body terms are required in the
FMO-TDDFT, withNm being the total number of monomers. In
this way, for a given system, some central blocks can be selected
on the basis of chemical intuition, and the accuracy can be
systematically improved by adding more blocks.

4. CONCLUSIONS AND OUTLOOK

A very efficient linear-scaling TDDFT has been developed
for uniform treatments of all kinds of excitations of large
systems composed of arbitrary chemical bonds. This has been
achieved bymaking full use of the locality of the p�h basis in the
LMO representation. The required FLMO can readily be
generated by synthesizing the pFLMO obtained from subsys-
tem calculations, in the spirit of “from fragments to molecule”.
The novel block-diagonalization scheme presented here plays
an essential role in retaining/resuming the locality both of the
occupied and virtual MO. Very interestingly, this particular
construction of the FLMO has much in common with the
formulation of exact two-component relativistic theories (see
Appendix A). Another salient feature of the FLMO-TDDFT is
to combine the good of the LMO and CMO representations.
That is, all matrix elements are evaluated in the LMO representa-
tion, but the eigenvalue problem is solved in the CMO repre-
sentation via efficient unitary transformations. In this way, not
only the convergence of the iterative diagonalization can rapidly
be achieved but also the molecular symmetry of arbitrary order
can fully be employed. Moreover, the orbital picture and number
of electrons are retained so as to allow a clear interpretation of the
nature of the excited states, whether local, delocalized, or charge
transfer. Also because of this, the algorithm is fully compatible
with the spin-adapted TDDFT for open-shell systems29,30 as well
as the relativistic counterpart of TDDFT.31�36

Further enhancement of the efficiency of the algorithm is still
possible. Apart from those schemes already outlined in section
3.3, the “energetic locality” of both the LMO and CMO can
further be explored. The “primitive fragment CMO” from
canonical orthogonalization of the pFLMO can be classified
into inner core, outer core, valence, and high-lying ones, based
on which valence type of pFLMO can be identified. Only this
subset rather than the whole set of the pFLMO needs to be
employed for accounting for the interfragment interactions. The
SCF calculation of the whole system can then be greatly
simplified. Likewise, the concept of active space can be intro-
duced in the TDDFT calculation as is done in the CMO
representation. The algorithms apply to all kinds of XC func-
tionals/kernels. That is, the use of more refined functionals such
as hybrids with some portion of the HF exchange affects only the
prefactor but not the scaling. Last but not least, the present
FLMO can also be employed in wave-function-based local
correlation methods. Progress along these directions is being
made in our laboratory.

APPENDIX A. MATRIX BLOCK-DIAGONALIZATION

The purpose here is to find a unitary transformation matrix
U that can block-diagonalize a given Hermitian matrix F

partitioned as

F ¼ F11 F12
F21 F22

 !
, F11 ¼ F†11, F21¼ F†12, F22¼ F†22 ð27Þ

Noticeably, there are infinitely many such unitary transforma-
tions. However, it is the one leading to least modifications of the
diagonal blocks of F that is to be sought. Without a loss of
generality, we can write the U matrix as

U ¼ DPQ ð28Þ

D ¼ I �X†

X I

 !
ð29Þ

P ¼ Pþ 0
0 P�

 !
,Pþ¼ ðI þ X†XÞ�1=2,P�¼ ðI þ XX†Þ�1=2

ð30Þ

Q ¼ Q þ 0
0 Q �

 !
¼ Q † ð31Þ

It is readily shown that, under the condition

~F21 ¼ F21 � XF11 þ F22X � XF12X ¼ 0 ð32Þ
the F matrix will be block-diagonalized as

~F ¼ U†FU ¼
~F11 0
0 ~F22

 !
ð33Þ

where

~F11 ¼ Q †
þP

†
þðF11 þ X†F21 þ F12X

þ X†F22XÞPþQ þ ð34Þ

~F22 ¼ Q †
�P

†
�ðF22 � XF12 � F21X

†

þ XF11X
†ÞP�Q � ð35Þ

It is hence clear that D does the decoupling through condition
32. P does the renormalization, while Q cannot be uniquely
determined. However, according to Lemma 2 in ref 37, for a
given X and hence positive-definite DP, the minimization
problem

min
��I�DPQ

��
F
,Q †Q ¼ I ð36Þ

has the unique solution Q = I. That is, if Q = I in eq 28, the
resultant U matrix will lead to least modifications of the
diagonal blocks of F in the sense of a Frobenius norm || 3 ||F.
This is precisely the result we want.

Instead of solving the nonlinear algebraic Riccatti eq 32, we
propose to solve the simpler linear Sylvester equation:

FðiÞ21 � XðiÞFðiÞ11 þ FðiÞ22X
ðiÞ ¼ 0 ð37Þ

iteratively by diagonalizing both F11
(i) and F22

(i). The starting point
is F(0) = F. In terms of the so-obtained X(i), U(i) = D(i)P(i), and
hence F(i+1) = U(i)†F(i)U(i) can be constructed. The iterations
continue until the off-diagonal blocks of F(i+1) vanish. Typically,
only 2�3 cycles are needed to achieve convergence. Actually,
it can rigorously be proven that the convergence is globally
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monotonic and locally cubic as long as there exists a gap between
the largest eigenvalue of F11 and the smallest eigenvalue of F22.
The mathematical aspects of the scheme will be presented
elsewhere.

Alternatively, the X matrix can be constructed noniteratively
by first solving the standard eigenvalue problem

FC ¼ CE ð38Þ
which can be rewritten in block form

F11 F12
F21 F22

 !
C11 C12

C21 C22

 !
¼ C11 C12

C21 C22

 !
E1 0
0 E2

 !

ð39Þ
It can readily be shown that

X ¼ C21C
�1
11 , � X† ¼ C12C

�1
22 ð40Þ

both satisfy condition 32 by inserting C21 = XC11 or C12 =
�X†C22 into eq 39.

In view of eqs 33, 39, and 40, we have

~F~C ¼ ~CE ð41Þ
where

~C ¼ U†C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X†X

p
C11 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ XX†

p
C22

 !

¼
~C11 0
0 ~C22

 !
ð42Þ

After the full diagonalization of F, the constructions of X by the
first equality of eq 40, as well as the remaining matrices, including
~F11, ~F22, ~C11, and ~C22, etc., are very cheap. Therefore, this
noniterative block-diagonalization is much favored over the
above iterative scheme, which is more expensive than the full
diagonalization by a factor roughly equal to the number of
iterations.

If the input F is the KS matrix in the orthonormal pFLMO
basis and partitioned according to the occupation of the CMO,
~F11 in eq 34 and ~F22 in 35 would be the Foo

LMO and Fvv
LMO,

respectively. Likewise, the ~C11 and ~C22 blocks of eq 42 would be
the respective Uoo and Uvv matrices required in eq 15 as E =
FCMO. The relationship between the FLMOs, CMOs, pFLMOs,
and AOs reads

ϕLMO ¼ ϕCMO~C†¼ ϕpFLMOC~C†¼ ϕpFLMOU¼ ϕAOLpFLMOU

ð43Þ
Finally, it deserves to be mentioned that the above iterative and
noniterative matrix block-diagonalization schemes have actually
been employed to reduce the four-component matrix Dirac
equation down to the exact two-component ones.24�28 How-
ever, they are used here for a completely different purpose, viz.,
localization of the CMO represented in the pFLMO basis. The
present iterative scheme is more robust than the previous
ones,24,25 where it is the Riccatti eq 32 rather than the Sylvester
eq 37 that has been solved, with the elements of F fixed
throughout the iterations rather than updated as done here.
Moreover, the present idea of “from fragments to molecule” for
synthesizing the molecular wave function can also be regarded as
an extension of the previous idea of “from atoms/fragments to

molecule” for synthesizing the relativistic molecular Hami-
ltonian.26,27 As such, the two very different fields, linear-scaling
TDDFT and exact two-component relativistic theories, share the
same mathematics and just differ in making use of different
aspects of physical locality.
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ABSTRACT:Within the past two years, three sets of independent authors (Mandado, Ciesielski et al., and Randi�c) have proposed
methods in which π-electron currents in conjugated systems are estimated by invoking the concept of circuits of conjugation. These
methods are here compared with ostensibly similar approaches published more than 30 years ago by two of the present authors
(Gomes and Mallion) and (likewise independently) by Gayoso. Patterns of bond currents and ring currents computed by these
methods for the nonalternant isomer of coronene that was studied by Randi�c are also systematically compared with those calculated
by the H€uckel�London�Pople�McWeeny (HLPM) “topological” approach and with the ab initio, “ipso-centric” current-density
maps of Balaban et al. These all agree that a substantial diamagnetic π-electron current flows around the periphery of the selected
structure (which could be thought of as a “perturbed” [18]-annulene), and consideration is given to the differing trends predicted by
these several methods for the π-electron currents around its central six-membered ring and in its internal bonds. It is observed that,
for any method in which calculated π-electron currents respect Kirchhoff’s Laws of current conservation at a junction, consideration
of bond currents—as an alternative to the more-traditional ring currents—can give a different insight into the magnetic properties of
conjugated systems. However, provided that charge/current conservation is guaranteed—or Kirchhoff’s First Law holds for bond
currents instead of the more-general current-densities—then ring currents represent a more efficient way of describing the
molecular reaction to the external magnetic field: ring currents are independent quantities, while bond currents are not.

1. INTRODUCTION

Thirty-five years ago, Randi�c proposed1 the approach for calcu-
lating resonance energies of conjugated systems that has become
known as the method of conjugated circuits. Very recently, the
same author2 and—independently and almost simultaneously—
Mandado3 and Ciesielski et al.4 have adapted this formalism in
order to estimate the relative intensities of the π-electron currents
that (classically) are considered to flow along the individual bonds
of such conjugated systems when excited to do so by the presence
of an external magnetic field; this magnetic field may be assumed,
without a loss of generality, to be oriented in a direction at right
angles to themolecular plane of the conjugated system in question
(taken to be geometrically planar). This phenomenon is generally
known as the “ring-current effect” (see refs 5�7 for reviews)—but
Randi�c specifically, in his recent note,2 has been especially careful
not to invoke any explicit assumptions about “rings” per se.

Randi�c’s work,2 which follows from his earlier, preliminary
thoughts on thematter,8 has developed fromBalaban et al.’s recently
published9 maps pictorially indicating the patterns of π-electron
current densities in 18 isomers that include, and are all related to,
coronene. Ciesielski et al.4 have also compared predictions (on the
carcinogen 3,4-benzopyrene) arising from their ownmethod4with a
current-density map provided by Fowler.10 The computations that
give rise to Fowler’s maps9,10—like the calculations of Randi�c2—
also make no presuppositions about the existence of rings. The
so-called “ipso-centric” method that the Fowler school routinely
adopts9,10 invokes ab initio Gaussian computations in order to
produce what Randi�c2 describes as “well converged current maps

with rathermodest basis-sets.”The origin of the contributions to the
overall π-electron current density is also closely tracked and traced
by this approach:9 diamagnetic contributions come from [4n + 2]
cycles and paramagnetic ones from [4n] cycles. For the purpose of
comparing the predictions of Balaban et al.9 with the results of his
own calculations based on the method described in ref 2, Randi�c2

singled out a particular one of the 18 isomers studied by Balaban
et al.9 (though he has since extended his investigation to include all
of them11); this was the conjugated system that Balaban et al. labeled9

“13” and called—on a systematic notation that they introduced
and defined9—”[567567]”. It has 180� rotational symmetry about a
perpendicular axis through the center of the middle six-membered
ring; if the structure is planar, its symmetry is C2h. The carbon-atom
skeleton of this system is shown in Figure 1. Randi�c2 obtained
encouraging agreement between his results and the pictorial, quali-
tative current-density map of Balaban et al.9 and thereby drew some
conclusions of a philosophical nature about the virtues of quantum
mechanical vs graph-theoretical approaches to conjugated systems of
this type—conclusions that were somewhat akin to those that had
been expressed by Gayoso, in a similar context, in the 1979 Comptes
Rendus.12,13

As is to be expected of a theory that is concerned with the
microscopic equivalent of classical electrical networks,6 many
previous treatments14 of the “ring-current” effect—for example,
those due to London, Coulson, Pople, McWeeny (as generalized
by Veillard and by Gayoso and Boucekkine), Aihara, and
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Mizoguchi14—have naturally invoked the concept of circuits,14

per se, but these have not, in general, been circuits, specifically, of
conjugation. The sudden and (to us) unexpected recent resur-
gence of interest2�4,8 in approaches to magnetic properties that
involve, specifically, circuits of conjugation—a topic that was
originally studied independently some 30 years ago by two of
us (Gomes and Mallion)15�19 and by Gayoso12—has therefore
motivated us to draw attention to three areas, developed in this
paper:
(a) Previous Similar Work. We point out that, in the latter part

of the 1970s, Gomes andMallion,15�19 and (independently)
Gayoso,12 applied what the former authors called “con-
jugation circuits”20 when calculating the magnetic proper-
ties of conjugated systems. We point out that the
approaches of Gomes and Mallion,15�19 and that of
Gayoso,12 have many similarities to those recently pro-
posed by Randi�c,2,8,11,21 by Mandado,3 and by Ciesielski
et al.,4 and we apply these (and other) methods to the
particular conjugated system [567567] (Figure 1) that
was selected for study by Randi�c in ref 2.

(b) Bond Currents. We draw attention to the fact that when
what have been called “topological ring currents”22�25—
computed for [567567] (Figure 1) by the recently
defined H€uckel�London�Pople�McWeeny (hereafter
HLPM) approach23,24—are expressed (entirely equiv-
alently) as bond currents, qualitative and even semiquan-
titative agreement is frequently seen between these
“topological” bond currents, Randi�c’s bond currents,2

the bond currents calculated by the methods of
Mandado3 and of Ciesielski et al.,4 and the qualitative
π-electron current-density maps of Balaban et al.9

(c) Kirchhoff’s Law of Current Conservation. We observe
that, in the context of any method in which calculated
currents strictly obey Kirchhoff’s Law on conservation
of current at a junction,26�29 consideration of bond
currents—as distinct from (entirely equivalent, but
more traditional) ring currents—can give a different
conceptual insight into the reaction of the molecule to
the external magnetic field in the case of conjugated
systems like [567567] (Figure 1).

2. THE “CONJUGATION CIRCUITS” METHOD OF
GOMES AND MALLION15,16 (1976 AND 1979)

Details of theMethod. In order clearly to recount themethod
that two of us (Gomes and Mallion) proposed in the second half
of the 1970s,15,16 we here quote verbatim what we at the time
described as our “prescription”—directly and in extenso—from
the 1979 Revista Portuguesa de Química.16 This paper was itself a
distillation of the method first proposed by one of us (Gomes) in
a thesis,15 written three years earlier; some theoretical justifica-
tion for the “prescription” in terms of valence-bond theory was
attempted in the early 1980s.17�19 We adopt this procedure
because, although the details of the method were openly published
more than 30 years ago,16 the Gomes�Mallion formalism is
evidently not well-known—two of the sets of very recent authors,2,4

for example, were, it seems, not aware of it, and the third3 cited it
only in passing, as being a general reference relating merely to the
concept of conjugation circuits and not, specifically, to the calcula-
tion ofmagnetic properties per se.30We therefore quote from ref 16,
as follows:31

It is assumed in this prescription that the effect of the
magnetic field on a molecule is felt independently by every
one of the various “conjugation circuits” which are extant in
each Kekul�e-structure; as far as magnetic properties are
concerned, an individual Kekul�e-structure may be regarded
as a superposition of its constituent “conjugation circuits”,
the effects of which are simply additive. The system of “ring
currents” in the actual molecule is then obtained by finally
averaging the contributions from individual Kekul�e-struc-
tures over all possible Kekul�e-structures which can be
devised for the molecule as a whole. Accordingly, the
method proposed here for estimating the relative “ring-
current” intensities in a given molecule is based on the
following postulates:
(i) The method of Baer et al.32 gives reliable estimates of the

relative “ring-current” intensities in regular annulenes,
when an amplitude of 3.60 eV (ca. 348 kJ mol�1) is
taken33 for the harmonic potential that occurs in their
calculations.15�19,34

(ii) A “conjugation circuit” within a given Kekul�e-structure of
an arbitrary, planar, polycyclic, conjugated hydrocarbon is
a circuit that consists entirely of alternating single- and
double bonds.1,15,16,35

(iii) If a particular ring lies entirely within a given “conjugation
circuit” � even if no bond of that ring actually lies on the
“conjugation circuit” itself � this ring shall be said to “parti-
cipate” in that “conjugation circuit”.36

(iv) The “ring-current” intensity in any particular ring of such
a polycyclic hydrocarbon receives a nonzero contribu-
tion from each “conjugation circuit” that occurs in all the
various Kekul�e-structures that can be devised for the
molecule as a whole, provided that the ring in question
participates in that “conjugation circuit”. These contribu-
tions are strictly additive. If the ring in question does not
participate in a specific “conjugation circuit”, that particular
“conjugation circuit” makes no contribution to the “ring-
current” intensity in the ring under discussion.

(v) The nonzero contribution to the “ring-current” intensity
in a given ring from an individual “conjugation circuit”
comprising N bonds is equal to the “ring-current” in-
tensity calculated (via (i), above) to be associated with a

Figure 1. The carbon-atom skeleton of the conjugated system named
“[567567]” by Balaban et al.9 It is an isomer of coronene and, on the
assumption that it is planar, it is of symmetry C2h, having 2-fold
rotational symmetry about an axis through the center of the middle
six-membered ring, at right angles to the plane of the paper.
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model [N]-annulene, except for a correction which takes
into account the difference between the area of the model
[N]-annulene and the actual area of the “conjugation
circuit” in question; in applying this correction it is
assumed that the “ring currents” are proportional to the
ring areas. Any one, specified, “conjugation circuit” con-
tributes equally in this manner to the intensities of the “ring
currents” in all the rings that participate in it.

(vi) The relative “ring-current” intensity in a given ringmayfinally
be obtained by averaging all such contributions (including
the zero ones) over the total number of Kekul�e-structures
possessed by the complete molecule.

Consistent with the rule (v), the “ring-current” contribution
due to the nth conjugated circuit, ofN sides and area A(n), is taken

to be proportional to the quantity J(n), where

JðnÞ ¼ JN
AðnÞ

AN

 !
ð1Þ

in which JN and AN are, respectively, the “ring-current” intensity
and the ring area associated with an idealized, regular, planar [N]-
annulene [given in a table, reproduced, and slightly modified, in
Table 1]. By rules (iv) and (vi), the relative “ring-current”
intensity, Jr, in a given ring, r, is then

Jr ¼ 1
K ∑

All}conjugation circuits}
in which ring participates

JðnÞ ð2Þ

where K is the total number of Kekul�e structures that may be
devised for the molecule as a whole; the summation runs over all
“conjugation circuits”, n, in which the ring r participates and all
Kekul�e structures are to be considered, one at a time.

Discussion of the Gomes�Mallion Formalism and the
More Recent Approaches. Gomes and Mallion16 concluded
by giving a worked example of their “prescription” (to calculate
the ring currents in naphthalene), and they then proceeded to
apply it to a total of 15 structures and to compare the ring
currents so calculated with those evaluated by what we nowadays
refer to as the HLPM23,24 “topological” approach—with, overall,
encouraging results.15,16 If the above, 30-year-old description16 is
compared with the formulations recently presented by Randi�c,2

by Mandado,3 and by Ciesielski et al.,4 it will be seen that the
older theory ostensibly has the following features:
(a) The method presented in ref 16 does make some attempt

to take into account (by its rule (v) and its eq 1, above) the
effect of differing ring areas—as, also, do the methods of
Mandado3 and Ciesielski et al.,4 but the formalism of ref 2
does not. In the Mandado method,3 the proper depen-
dence of the current (as well as that of the resonance
energy) on the size of the circuit is obtained by numerical
fitting (to arrive at the parameter b = 2), while Gomes and
Mallion15,16 separately use the circuit area (as it defines
the magnetic flux) and the number of alternating single
and double bonds (as this defines the quantum mechan-
ical response of the electronic system).

(b) As Gomes and Mallion stated:16 “...the magnetic effect is
taken to be proportional to the true area of the circuit � as
indeed it is, both classically and in simple quantum-mechan-
ical calculations.”5�7,14,22�25 Since the external magnetic-
field manifests itself in this phenomenon by means of
magnetic fluxes through rings,5�7,14,22�25,29 it is clear that
any satisfactory account of it must recognize the influence
of the areas of the different rings. For example, in structure
13 of ref 9 ([567567], shown in our Figure 1), five-
membered, six-membered, and seven-membered rings lie
side-by-side in the same molecule, and if they were
isolated regular polygons of the same side length, their
areas would vary24 between about 66% (in the case of the
five-membered rings) and about 140% (for the seven-
membered rings) of the area of a standard benzene
hexagon (see footnote a of Table 1). It should, however,
be emphasized that, especially for the larger conjugation
circuits, the actual areas are always smaller than the areas of
the idealized, regular annulenes of the same perimeter.16

Table 1. DataNeeded for a Series of Idealized Annulenes (With
Ring Sizes from [4] up to [22]) When Applying the Method
Described in Refs 15 and 16 (Adapted with permission from
ref 16. Copyright 1979 by The Portuguese Chemical Society.)

number of bonds (N) ring areaa (AN) ring-current intensityb,c (JN)

4 0.385 �2.19

5 0.662

6 1 1

7 1.399d

8 1.858 �1.27

10 2.962 +0.72

12 4.309 �0.69

14 5.902 +0.38

16 7.740 �0.38

18 9.823 +0.17

20 12.151 �0.2e,f

22 14.724 +0.0e,g

a Expressed (to three decimal places) as a ratio to the area of a standard
benzene hexagon. For idealized regular [N]-gons, all of uniform side
length, it can be shown by elementary trigonometry that:

area of regular ½N�-gon
area of regular hexagon

 !
¼ N cotðπ=NÞ

6 cotðπ=6Þ
� �

This formula is the source of the figures listed in the middle column, above.
bExpressed (to two decimal places) as a ratio to the benzene ring-current
intensity calculated, by the samemethod,32 for benzene. Extrapolated values
(see footnotes e, f, and g to this table) are given to fewer decimal places.
cCalculated by the free-electron, one-dimensional model of Baer et al.32,34

with a periodic potential as described in rule (i) of themethodofGomes and
Mallion,15,16 presented in the text. dThe value of 1.339 given in ref 16 is a
misprint. e (Extrapolated) Baer et al.32 did not report ring currents for [20]-
and [22]-annulenes; because the present calculations require ring-current
data for the [22]-annulene, the (virtually zero) value for it was estimated15,16

by extrapolation. f In ref 16, this extrapolation was estimated to be �0.1,
rather than the �0.2 estimated here. Such small differences are insignif-
icant34 as far as the ring-current estimates reported here are concerned
because of the rare occurrence—indeed, nonoccurrence, in the present case—
of circuits of size 20, and the relatively large number of Kekul�e structures
(9) and sets of conjugation circuits (9(9� 1) = 72) that are extant in the
conjugated system under study ([567567]—see Figure 1). gThis
estimated, extrapolated ring-current contribution is virtually zero.34

Again, our final results will not be sensitive to any errors that there might
be in this extrapolation because only four of the 72 conjugation circuits that
arise among the relatively large number (9) of Kekul�e structures involved in
the present calculation involve annulenic circuits of length [22].
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(c) The method proposed in refs 15 and 16 attempts to
differentiate contributions not just from [4n] and [4n + 2]
circuits per se, but also for [4n] circuits with different
values of n and for [4n + 2] circuits with different values of
n. It does this partly by acknowledging the effect of
differing ring areas and partly by incorporating into its
founding tenants—by means of rule (i) of ref 16—the
numerical values of annulenic ring-current intensities re-
ported by Baer et al.32 The methods described in refs 3
and 4 take the size of the conjugation circuit into
account by recognizing the effect of the different areas
of the several conjugation circuits, but the method of ref
2 does not.

(d) By virtue of its rule (vi) and its eq 2, above, the method of
Gomes and Mallion16 effectively “normalizes” the final
ring-current intensity by a division, at the very end of the
arithmetical process of calculation, by the total number of
Kekul�e structures—as was also done by Gayoso12 who,
like Gomes and Mallion,16 published independently on
this subject in 1979; consequently, the resulting ring
currents can easily be compared between one molecule
and another—as, indeed, was done in refs 16�19, over a
wide range of different conjugated systems. Furthermore
—as is conventional and usually convenient, and also as in
ref 16—ring currents so-calculated can easily be pre-
sented as dimensionless quantities (and hence as pure
numbers) by the simple device of expressing them as a
ratio to the ring-current intensity calculated, by the same
method, for benzene (the ring-current intensity in which
is, therefore, by definition, precisely 1). This conventional
procedure5�7 of expressing quantities as a ratio to ben-
zene is also adopted by Gayoso12 and by Mandado3 but
not by Randi�c in ref 2 nor—at least in the case of the bond
currents—by Ciesielski et al.4 (even though certain
“local” and “global” quantities immediately calculated
by Ciesielski et al.,4 once they have obtained the com-
puted bond currents, are themselves “normalized” by an
appropriate division (in this case, (1/2)K(K � 1), the
number37 of sets of distinct conjugation circuits38). In the
approach of ref 2, however—and in the case of the bond
currents calculated by the algorithm presented in ref 4—
there appears to be no such averaging over all Kekul�e
structures or sets of conjugation circuits, and so not only
are the units of measurement of the calculated π-electron
currents not obvious but comparisons from one molecule
to another would appear to be difficult.39 We believe that
this “averaging factor” is very important because of the
physics that it conveys. In the old work of Gomes,17,19 and
in the recent work of Mandado,3 it is not an averaging but
a quantum-mechanical normalization factor; in our origi-
nal work in ref 16, it was essentially an averaging factor.
Accordingly, although it would be possible to compare a
series of similar molecules without such “averaging” or
“normalization”—for example,11 the family of coronene
and its 17 isomers that were studied by Balaban et al.9—it
is not clear how a comparison would bemade between the
π-electron currents outside such a closely related series
without doing so. As an illustration of this claim, we note
that the method described in ref 2 would appear to give
a π-electron current of size 2 for benzene, whereas, in
ref 2, π-electron currents as high as 36, in these units, are
reported for structure [567567] (Figure 1). Likewise, if

no “normalization” is done on the bond currents, the
numbers presented by Ciesielski et al. in Figure 6 of
ref 4 would seem to imply that a bond current more
than 20 times the benzene ring current is extant in 3,4-
benzopyrene.4 It is appropriate at this stage to note that
both Gomes and Mallion16 (1979) and Gayoso12 (also
1979) independently chose to divide, at the end of the
calculation, by the number (K) of Kekul�e structures—this
procedure later being justified by an application of
valence-bond theory.17�19 An essentially similar proce-
dure was invoked by Mandado,3 while Ciesielski et al.,4 in
their approach, have (as stated) opted (like Randi�c2) not
to normalize their bond currents at all—though, as
mentioned, they do immediately divide some “local”
and “global” quantities calculated from the bond currents
by the number37 ((1/2)K(K � 1)) of sets of distinct
conjugation circuits.38 Finally, it should be noted that, in
subsequent versions11,21 of his basic method,2 Randi�c and
his collaborators have invoked “normalizations”—by di-
viding by K (for example, in ref 21), as did Gomes and
Mallion, Gayoso,11 and Mandado,3 or by dividing by
K(K� 1) (as, for example, in ref 11). Formore, very recent,
discussions on normalizing bond currents in molecules of
different sizes, see refs 11, 21, and 40.

The recent methods of Randi�c2 and of Ciesielski et al.4 do have
the aesthetic virtue of being entirely graph-theoretical in
nature,41 while the Mandado approach,3 relying, as it does, on
some parametrization, may be considered to be not purely graph-
theoretical. By virtue of its rule (i), above, the approach of Gomes
and Mallion16 is likewise not purely graph-theoretical, either, for
it borrows from quantum mechanics,32 and, because of its rule (v)
and its eq 1, above, it invokes what, on the face of it, is a non-
graph-theoretical procedure29 in an attempt to take ring areas41

into account (but see ref 24 for an argument that ring areas
should be treated as “topological”). This is why, at the time, the
method presented in ref 16 was described as a “quasi-topological”
one. Randi�c’s method2 and that of Ciesielski et al.4 do, though,
stop at the graph-theoretical analysis; Gomes and Mallion16 go
further:
(i) to use estimates of the conjugation increment that depend

on its area—as also do the recent approaches ofMandado3

and Ciesielski et al.4—as well as on a simple quantum-
mechanical model calculation for the ring current in an
annulene of appropriate size32 (a feature that is not
explicitly adopted by any of the modern authors2�4 but
the parametrization applied by Mandado3 effectively
serves the same purpose42) and

(ii) to average over all Kekul�e structures
The prescription described in refs 15 and 16 was later given a

theoretical foundation by one of us (Gomes);17�19 this was
based on a simple valence-bond formalism with a nonempirical
parametrization that was valid for resonance energies and
magnetic ring currents. The same author has suggested43 that
this approach may be generalized in order to provide a more
realistic description of currents outside the conventional
“bond lines”. Mandado’s approach3 is based on first-order
response theory and, at the level of the formalism, is essentially
equivalent to that of Gomes.19 To ensure that the method was
theoretically well grounded, Gomes19 avoided parametriza-
tions by fitting and using a simple quatum-mechanical model
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calculation of the energies and magnetically induced currents
of the annulenes.
Application of the Gomes�MallionMethod16 to [567567].

Ring currents calculated for the structure [567567] (Figure 1) by
an application of the method of Gomes and Mallion16 (in
conjunction with the data given in Table 1, which is modified
from refs 15 and 16) are presented in Figure 2. These diamag-
netic currents are, by convention, considered to circulate in an
anticlockwise sense around their respective rings (as indicated by
the arrows in Figure 2). Because the annulene ring-current
intensities of Baer et al.32 are available to only two decimal places
(Figure 1, right-hand column), ring-current (and, later, bond-
current) intensities calculated using the Gomes�Mallion
method16 are quoted only to that accuracy, whereas such
currents predicted by all the other methods dealt with in this
study are quoted to three or more places of decimals. (Reporting
data to apparently higher accuracy is in any case perhaps not
entirely justified as we are here dealing with rather crude
approaches to experimental observables.)

3. RING CURRENTS AND BOND CURRENTS

General Considerations. Randi�c’s recent calculation2 has
presented π-electron currents not as ring currents but as bond
currents. Likewise, the method of Ciesielski et al.,4 for example, is
also initially aimed at calculating bond currents (from which
other quantities—both “local” and “global”—are subsequently
computed). Therefore, in order conveniently to compare the π-
electron currents calculated by these methods with the predic-
tions of other approaches, we shall deal here with bond currents,
as well as ring currents. In the literature, over the course of many
years, consideration has been given overwhelmingly to ring
currents rather than bond currents.5�7,14,22�25 It does not,
however, seem to be widely emphasized that, for any method
of calculation that guarantees the applicability of Kirchhoff’s
Law26�29 for conservation of currents at a junction (in a classical,
macroscopic electrical network), the two representations are
entirely equivalent.6 By analogy with the theory of such macro-
scopic classical networks, the “ring current” in a conjugated
molecule is the microscopic analog of the “loop current” (e.g.,
refs 6, 27, and 28) in a macroscopic “Kirchhoff” network,26 while
the “bond current”, considered as a “line current”43 along the
bond, is the microscopic analog of the current in a wire that
constitutes a single branch of the (macroscopic) Kirchhoff
network26 in question.29 This idea has been evaluated by two
of us (Gomes andMallion) in a review.6 However, in a molecular
context, it was originally discussed—with bond currents being
regarded classically as “line currents”—by Longuet-Higgins and

Salem,44 some 50 years ago, and since then, it has been capitalized
upon from time to time by several authors (e.g., refs 45�47).
Adopting ring currents may be said to have the advantage of
allowing a description by means of a set of independent numbers
(or variables), while bond currents are related among themselves
by Kirchhoff’s Law.26�29 The sum of currents coming out of a
given junction is the (algebraical) sum of all those going into it;
one of the currents involved in that junction is, therefore, not
independent of the others. However, if—as here and in refs 2, 4,
and 9—there is interest in the currents flowing in a particular
bond, or around a certain region of the molecule, then bond
currents may be more informative; in order to obtain the bond
currents for shared bonds, ring currents in adjacent rings have
(algebraically) to be added.
By nomeans do all theories of the ring-current effect, however,

give rise to calculated bond currents that respect Kirchhoff’s Law
for conservation of currents at a junction; this law is violated, for
example, in some quantum-mechanical approaches such as the
“uncoupled Hartree�Fock” SCF one of Amos and Roberts48,49

where, unlike in, for example, the HLPM method23,24 (in which
“H€uckel”-type assumptions50 are made about neglect of non-
neighboring interactions in the Hamiltonian), matrix elements
between non-neighboring centers are, in general, nonzero.51

Bond Currents by the Method of Gomes and Mallion16 in
the Structure [567567] (Figure 1). Accordingly, as a result of
our discussion above, the ring-current data presented in Figure 2
are shown in Figure 3—entirely equivalently—as bond currents.
These will be discussed later (in section 4).
“Topological” Ring Currents and (Entirely Equivalent)

“Topological” Bond Currents in the Structure [567567]
(Figure 1). The idea of what one of us (Mallion23) has called
“topological” ring currents (originally discussed informally, 35
years ago22) was only recently well-defined, initially for benzenoid
hydrocarbons,23 and, later, its definition was formally extended24

to encompass conjugated systems containing rings of more than
one size. We believe that the HLPM method23,24 is self-evidently
themost appealing of the so-called “topological” approaches to the
calculation of π-electron currents in conjugated systems because
(a) it is based on the well-establishedH€uckel�London�Pople�

McWeeny formalism,14,23,24 and it is, thereby, legitimately
founded on sound physics and quantum mechanics, and yet

Figure 2. Ring currents in the conjugated system [567567], calculated
by the method of Gomes and Mallion.15,16

Figure 3. Bond currents in the conjugated system [567567], calculated
by the method of Gomes andMallion.15,16 These bond currents—which
are entirely consistent with the ring currents presented in Figure 2—obey
Kirchhoff’s Law26�29 of conservation of currents at a junction.
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(b) it has all the advantages of a graph-theoretical approach
because, once the carbon�carbon connectivity of the
conjugated system under study has been written down,
and values are agreed for its ring areas, then ring-current
and bond-current intensities calculated by the HLPM
method23,24 do not depend on any empirical (or, indeed, on
any other) parameters, provided (as their definition
requires23,24) that such ring- and bond-current intensities
are expressed as a ratio to the corresponding quantity,
calculated by the same method, for benzene.

The isomer of coronene that is under study, the structure
[567567] illustrated in Figure 1, is a system of the appropriate
type containing, as it does, five-, six-, and seven-membered
rings. In Figure 4, therefore, we present topological ring
currents (“loop currents”27,28 on the macroscopic classical-
network analogy described earlier) for [567567]. As is conven-
tional (and as was done in Figure 2), the (diamagnetic) ring
currents are presented as circulating anticlockwise around the
rings that are their respective domains. Their relative intensities
have been calculated by the HLPM method on the detailed
assumptions carefully specified in refs 23 and 24; the same
assumptions were also recently adopted for calculations on a
family of benzo-annelated perylenes.25 In accordance with the
required definition of what constitutes “topological” ring cur-
rents,23,24 ring areas were calculated according to the formula
given in footnote a of Table 1.

In Figure 5, we present these same “topological” ring-current
data but, this time, broken down into individual bond currents, as
previously described.
These “topological” bond currents will be discussed later (in

section 4).
Randi�c’s Bond Currents and Ring Currents in Structure

[567567] (Figure 1). In Figure 6, we display Randi�c’s bond
currents2 for later discussion and comparison with the bond
currents already encountered and with those calculated by the
methods of Mandado3 and of Ciesielski et al.,4 to be reported
later in the paper. In order to facilitate such comparisons, we have
taken the liberty of “normalizing” the “raw” (integral) bond
currents depicted by Randi�c in Figure 5 of ref 2 by dividing them
by K(K� 1) (= 72, in this case, as, here, K = 9)—as Randi�c and
co-workers11 themselves did in later work—and rounding the
results to four decimal places.
Figure 7 shows Randi�c’s data equivalently presented as ring

currents.
Bond Currents and Ring Currents in Structure [567567]

(Figure 1) by the Method of Mandado3. In the initially
submitted version of this paper, we did not report a calculation
using Mandado’s method3 and an anonymous reviewer very
kindly supplied us with one for the structure [567567]. In order
to have an independent check on the data that the reviewer had
provided, we asked Professor P. W. Fowler and his colleagues

Figure 4. “Topological” ring currents in the conjugated system
[567567], calculated by the HLPM method.23,24

Figure 5. “Topological” bond currents in the conjugated system
[567567], calculated by the HLPM method.23,24 These currents—which
are entirely consistent with the ring currents presented in Figure 4—obey
Kirchhoff’s Law26�29 of conservation of currents at a junction.

Figure 6. “Normalized” π-electron bond currents in the structure
[567567], calculated using the method of Randi�c.2 These currents obey
Kirchhoff’s Law26�29 of conservation of currents at a junction.

Figure 7. “Normalized” π-electron ring currents in the structure
[567567], deduced from the normalized bond currents shown in
Figure 6, calculated using the method of Randi�c.2 These currents, which
are conventionally defined in the anticlockwise direction around each
ring, obey Kirchhoff’s Law26�29 of conservation of currents at a junction.
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W. Myrvold, W. Bird, and S. Cotton at the Universities of Sheffield
(England) and Victoria (Alberta) to perform a calculation on
[567567] using the Mandado3 method. The results that they
obtained are somewhat different from the bond currents pro-
vided by the reviewer. What we present in Figure 8 are the results
of Professor Fowler et al. (used with his kind permission52)—
effected byMandado’smodel3 (withMandado’s parameter “a”= 1,
as is appropriate for this structure—see ref 3) rather than the
reviewer’s data. We adopt this policy because we are sure of the
provenance of Professor Fowler’s calculations (which, further-
more, we know have been effected automatically, by application
of a computer algorithm, rather than by hand). It should be
pointed out that Mandado’s parametrization, designed for ben-
zenoid structures,3 might not be entirely appropriate for struc-
tures (like [567567]—Figure 1) that contain rings of other sizes.
(We may observe in passing here that, although he does not
stress it in ref 3, we feel that one of the strengths of Mandado’s
approach3 is thatmagnetic susceptibilities and currents are produced
in parallel, without the need for independent parametrizations.)
The calculations presented in Figures 8 and 9 were effected
adopting ring areas calculated according to the formula quoted in
footnote a of Table 1. Bond currents (relative to benzene) are
presented in Figure 8, and the ring currents that have been

deduced from them are depicted in Figure 9. The numerical
values quoted in these Figures differ only slightly—and, for the
purposes of our discussion in this paper, not significantly—from
the computations offered by the anonymous reviewer. The data
in Figures 8 and 9 will be discussed later (in section 4).
Bond Currents and Ring Currents in Structure [567567]

(Figure 1) Using the Method of Ciesielski et al.4 We have also
applied the third of the recent methods, that of Ciesielski et al.,4

to the structure [567567]. Bond currents are presented in
Figure 10, and the ring currents that have been deduced from
them are depicted in Figure 11. It should be noted that these
bond currents have here been “normalized” by division byK(K� 1)
(= 72, in this case, as K = 9) and—as a reviewer has pointed out
—should not, therefore, strictly be called “Ciesielski et al.”
currents at all; however, we take this small liberty for reasons
of comparability between different molecules and different
methods of calculation, as explained elsewhere in this paper.
We emphasize that each bond current was separately and inde-
pendently calculated by application of the formalism of Ciesielski
et al.,4 thereby enabling many independent checks to be made on
the computations and verifying, in actual practice, that Kirchhoff’s

Figure 8. π-electron bond currents in the structure [567567], calculated
using the method of Mandado3 (reproduced here by the kind permission
of Professor P.W. Fowler52). These currents obeyKirchhoff’s Law26�29 of
conservation of currents at a junction.

Figure 9. π-electron ring currents in the structure [567567], deduced
from the bond currents shown in Figure 8, calculated using the method
of Mandado3 (reproduced here by the kind permission of Professor
P.W. Fowler52). These currents, which are conventionally defined in the
anticlockwise direction around each ring, obey Kirchhoff’s Law26�29 of
conservation of currents at a junction.

Figure 10. Bond currents (additionally—and against the prescription
proposed in ref 4—divided by K(K � 1)) in the conjugated system
[567567], computed from the “raw” (unnormalized) bond currents
calculated using the method of Ciesielski et al.4 These currents—which
are entirely consistent with the ring currents presented in Figure 11—
obey Kirchhoff’s Law26�29 of conservation of currents at a junction.

Figure 11. “Normalized” π-electron ring currents in [567567], using
the method of Ciesielski et al.4 These ring currents, which are con-
ventionally defined in the anticlockwise direction around each ring, have
been deduced from the calculated bond currents depicted in Figure 10;
they obey Kirchhoff’s Law26�29 of conservation of currents at a junction
(within the round-off error displayed).
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First Law26�29 does indeed hold within the context of Ciesielski
et al.’smethod.4,53 The required ring areas were again calculated by
means of the expression in footnote a of Table 1. The data in
Figures 10 and 11 will be discussed later (in section 4).

4. COMPARISON OF Π-ELECTRON CURRENTS FROM
THE FIVE METHODS STUDIED WITH THE CURRENT
DENSITY MAP OF BALABAN ET AL.9

Overall Approach. In this section, we compare the calculated
current densities in the ab initio (“ipso-centric”9) pictorial current-
density map for the structure [567567] (Figure 1), due to Balaban
et al.9 (Figure 12), with the following five sets of quantities
calculated for the same structure:
(a) Ring currents (Figure 2), and bond currents deduced

from them (Figure 3), computed using the 1976/1979
“quasi-topological” method of Gomes and Mallion,15,16

which invokes the concept of “conjugation circuits”1,15�19

(b) “Topological” ring currents (Figure 4) evaluated by the
HLPM approach23,24 and the bond currents that have
been deduced from them (Figure 5)

(c) Bond currents (Figure 6) and the ring currents (Figure 7)
that are consistent with them, calculated using Randi�c’s
recent, purely graph-theoretical, method2—which, like the
methods of Gomes and Mallion,16 Gayoso,12 Mandado,3

andCiesielski et al.,4 is also based on the idea of “conjugated
circuits”1,8,11,15�19,21

(d) Bond currents calculated (Figure 8) using the method of
Mandado3 and ring currents deduced from them (Figure 9),
on the assumption of Kirchhoff’s Laws of current conserva-
tion at a junction26�29

(e) Bond currents calculated (Figure 10) using the method of
Ciesielski et al.4 and ring currents deduced from them
(Figure 11), on the assumption of Kirchhoff’s Laws. The
method of Ciesielski et al.4 is also based on conjugation

circuits, and may likewise be considered to be graph-
theoretical even though (unlike in the method of Randi�c,2

but as in the HLPM “topological” approach and that of
Mandado3) it does take into account the effect of ring
areas.41,42

Qualitatively, the current-density map of Balaban et al.9

(Figure 12) indicates a strong diamagnetic current around the
periphery, with minimal activity, so far as currents are concerned,
in the region of the central six-membered ring, A (which is
completely surrounded by the six other rings—two five-mem-
bered (B and E), two six-membered (C and F), and two seven-
membered (D and G)—see Figure 13). Very weak currents are
also predicted in what Balaban et al.9 refer to as the “spokes”
bonds, connecting the central six-membered ring to the periph-
ery of the structure (these are the bonds labeled 7, 8, 9, 10, 11,
and 12 in Figure 13). It should be emphasized that the current-
density maps under discussion9 do not directly allow a quanti-
tative estimate of the relative size of the bond currents in the
molecule. In fact, Balaban et al. calculate9 a current-density field—
as described in the caption to Figure 12—and do not purport to
be evaluating a bond current. The latter could in principle be
effected by, for example, use of the integration technique of
Atkins and Gomes55—though, to do this, knowledge would be
needed of the current field (vector) over the surface that was used
for the integration.
The current-density pattern of Figure 12 is well reproduced by

the π-electron bond currents (Figure 6) that Randi�c2 has
calculated for this structure. It is also faithfully reflected in the
patterns of the HLPM “topological” bond currents displayed in
Figure 5. Comparison of Figures 5, 6, and 12 shows that all three
of these models predict that, within the central six-membered
ring (A) itself, although the overall circulation around this ring is
weak, a (relatively) stronger (diamagnetic) current is apparent in
the bonds to the “northwest” (bond 1 of Figure 13) and to the
“southeast” (bond 4 of Figure 13) in that ring (when the structure
is depicted in the orientation shown in Figures 1�13) than in the
other four bonds (2, 3, 5, and 6) in the central six-membered ring
(ring A of Figure 13). The methods of Ciesielski et al.4 (Figure 10)
and of Gomes and Mallion4 (Figure 3) likewise concur—though
much less markedly—about the “northwest” and “southeast”
bonds in the central ring, while, by contrast, the Mandado3

approach suggests that the “northeast” (bond 6 in Figure 13)
and the “southwest” bonds (bond 3) have the largest bond currents
in the central ring (A).
Overall, the Gomes�Mallion approach15,16 and that of

Mandado3—contradicting the other methods2,4,23,24—predict a
ring-current intensity in the central ring, A (Figure 13), that is
considerably stronger than that in the rings around the perimeter.

Figure 12. Pseudo-π current-density map for [567567], calculated by
use of the maximum-symmetry B3LYP/6-31G** geometry,9 reported in
ref 9 (and reproduced here by the kind permission of Professor P. W.
Fowler and the Slovenian Chemical Society). Maps of this kind show the
current densities 1a0 above the molecular plane after they have been
projected into the molecular plane; as such, the projected current
densities do not necessarily respect Kirchhoff’s Law26�29 of conserva-
tion of currents at a junction54 because they are just one component
of the real current. Therefore, although they are visually appealing,
these current-density maps are not directly comparable with the
“bond currents”—which are regarded strictly as classical “line-curren-
ts”26�29,44�47—that are being considered elsewhere in this paper.

Figure 13. Labeling of rings (A�G), labeling of bonds (1�30), and
(arbitrary) definition of bond directions (indicated by the direction of
the arrow on each bond) in the structure [567567].
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Because of this, only partial cancellation takes place in the bonds
that are shared by the central six-membered ring (A) and the
outer rings (B�G). As a result, reasonably substantial diamag-
netic π-electron currents are still predicted, by these methods, to
be extant in all of the bonds of that central six-membered ring
(Figures 3 and 8). In the case of the Gomes�Mallion method,15,16

this observation is undoubtedly explained almost entirely by the fact
that this latter method incorporates into its foundations the
quantum-mechanically calculated annulene ring currents of Baer
et al.32 Inevitably, therefore, this method, as it stands at themoment,
does intrinsically have built into it the phenomenon that contribu-
tions from both [4n] and [4n + 2] circuits decrease rapidly as n
becomes larger—to the extent that, by the time circuits of size [20]
and [22] are encountered, the ring-current contribution, according
to the calculations of Baer et al.,32 is virtually zero (see Table 1). The
ring areas, of course, become larger as the conjugation circuits
increase in length—it is the quantum-mechanically estimated ring
current in the [4n] or [4n + 2] conjugation circuit that, according to
Baer et al.,32 shrinks rapidly as n becomes larger (see Table 1, right-
hand column). Furthermore, the conjugation circuits with the
longer lengths (lengths of [16], [18], [20], and [22]) that arise
in the course of a calculation on [567567] invariably “contain” (that
is, enclose within them—in the sense of rule (iii) of the Gomes�
Mallion method described in section 2—and thus make contribu-
tions to the ring currents in) someor all of the peripheral rings (rings
B�G in Figure 13). Inevitably, therefore, those rings eventually
accumulate smaller calculated ring-current intensities than they
would if the larger circuits all contributed equally (as they do in
Randi�c’s method2) or if the contributions from conjugation circuits
increased solely in proportion to their area (as they do, for example,
in the method of Ciesielski et al.4). Although the central ring (A) is
also “contained within” (see rule (iii) of section 2) these larger
conjugation circuits—and thus, in the Gomes�Mallion approach,
this ring A likewise receives diminished contributions from these
larger circuits—actually carrying out such a calculation by hand
(as we have)56 shows that by far the greatest effect on the ring
current in the central ring, A, arises from many conjugation circuits
that include that ring as a circuit of length [6]. In fact, eight of the
72 sets of conjugation circuits (including the disjoint ones2,4) for
[567567] involve a contribution to that central ring from a
[6]-membered circuit; each of these (as can be seen from
Table 1) makes a relatively large contribution (of 1, in these units)
to the calculated ring current in ring A. Hence, this rapid diminution
of annulenic ring current for the conjugation circuits of larger size
would exaggerate the ring current associated with the central ring
(A) and underestimate the ring currents for the peripheral rings
(B�G). This would give rise to the prediction of a substantially
greater current circulation in the six bonds of ring A, as a result of
only partial cancellation of the (smaller) ring currents in adjacent
rings. This finding could thus possibly be merely an artifact of the
Gomes�Mallion method, as originally formulated.15,16 To investi-
gate this point, we have carried out some simple “topological”
calculations, using the HLPM method,23,24 on the ring currents in
the family of [4n+2]-annulenes and have found—to our surprise—
that, far from decreasing with annulene size, they actually increased
quite dramatically. This matter will be the subject of future study.
Meanwhile, it should be observed in passing that the Mandado
approach also predicts a relatively large ring-current intensity in the
central ring. We have not investigated why this should be so, but
we speculate that it might be connected (a) with the fact that the
Mandado method3 does not take into account contributions from
disjoint conjugation circuits and (b) by virtue of its initially assigning

a weighting to conjugation-circuit contributions that varies as
the reciprocal of the ring area (rather than being proportional
to conjugation-circuit ring areas, as in the formalisms of
Gomes and Mallion15,16 and of Ciesielski et al.4); the con-
sequence might be that the Mandado method3 likewise
contrives to minimize the importance of the contributions
from the larger conjugation circuits.42 Mandado3 takes HLL =
H0 /(afL)

b. For b = 2, the energy becomes independent of the
area (f), and the current becomes proportional to 1/f. In the
Gomes�Mallion method, the dependence is different, but the
current also decreases when the area increases.
Analysis of “Comparator” Diagrams for Ring Currents and

Bond Currents Calculated by the Five Methods Studied. In
this section, we use “comparator diagrams” in order visually to
compare trends in ring currents and in bond currents using the
five methods that we have studied. We first define (by means
of Figure 13) the ring labelings, the bond labelings, and the
bond directions adopted in the comparator diagrams themselves
(Figures 14 and 15). The seven rings of the structure [567567]
are labeled A�G, and the 30 bonds are labeled 1�30 (as in
Figure 13). Diamagnetic (that is, on our conventions, positive)
ring currents are defined as running anticlockwise around the
ring in question; bonds are defined in the directions of the arrows
depicted in Figure 13. These directions are arbitrary. If the net
current calculated for a given bond, by any of the five methods
applied, is in the direction of the arrow shown in Figure 13, it is
counted positive; if against the direction of the arrow, it is
negative. With these conventions, we present the comparator
diagrams for the ring currents (Figure 14) and the bond currents
(Figure 15) calculated for the structure [567567] using the five
methods2�4,16,23,24 that we have studied. The reader is directed
to the captions of Figures 14 and 15 for explanations about the
axes, scales, and units that feature in these comparator diagrams,
and for the key to the five methods of calculation that have been
considered.
The feature discussed in the last paragraph of the previous

subsection is immediately and strikingly illustrated by the green
curve in the ring-current comparator diagram (Figure 12), which

Figure 14. Comparator diagram for ring currents. Key to methods of
calculation: CKCDA = Ciesielski et al.4 (but “normalized”, contrary to
the prescription of Ciesielski et al.,4 by division by (1/2)(K(K � 1));
HLPM = H€uckel�London�Pople�McWeeny (“topological”);23,24

GM = Gomes�Mallion;16 M = Mandado;3 R = Randi�c2 (but “normal-
ized” by division55 by K(K� 1)). The horizontal axis refers to the seven
rings, A�G, labeled as in Figure 13. The vertical axis gives ring-current
intensities expressed, effectively, as a ratio to the benzene ring current,
calculated by the corresponding method; the ring currents may thus be
regarded as dimensionless quantities.
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concerns the Gomes�Mallion (GM) method, and by the purple
curve representing the Mandado3 (M) method. The central ring,
A, bears a ring-current intensity materially greater than those in
the peripheral rings, B�G, whose ring currents are themselves
noticeably smaller in size than the corresponding ones calculated
either by the HLPM “topological”method23,24 (the brown curve)
or by the method of Ciesielski et al.4 (CKCDA, the dark-blue
curve). The (light-blue) curve from the Randi�c2 method is more
attenuated and less variable, but it generally follows the pattern of
the HLPM and CKCDA curves. However, with the exception of
that central ring, A, the relative pattern of variation of (smaller)
ring currents in the peripheral rings (B�G) that is observed
along the green (GM) curve in Figure 14 does follow quite
closely those of at least three of the other methods studied
(HLPM, R, and CKCDA).
In turning to a consideration of the comparator diagram for

bond currents (Figure 15), we recall (Figure 13) that the bonds
labeled 1�6 are those comprising the central six-membered ring,
A; those labeled 7�12 are what Balaban et al.9 call the “spoke”
bonds, connecting the perimeter to the entirely internal, central
ring, A (Figure 13); and the bonds labeled 13�30 are those
that lie around the periphery of the structure [567567]. When
assessing the bond currents in the bonds (1�6) situated in the
central ring (A) and those in the so-called9 “spoke” bonds (7�12),
it should be borne in mind that these bond currents (a) are small
and (b) are the result of “cancellation” (by subtraction) of two
much larger, but approximately equal, quantities—the ring cur-
rents in the two adjacent rings that flank any of these bonds that are
labeled 1�12. Sometimes this process of cancellation results in a
small positive current in the (arbitrary) direction in which the
bond in question has been defined in Figure 13; sometimes it
results in a small negative one—and, furthermore, this is the
situation for each of these 12 bonds and for each of the five
methods (HLPM, GM, R, M, and CKDA) that we have applied.
Any correspondences among the five methods in these regions
(i.e., those involving bonds 1�12) of the bond-current comparator
diagram (Figure 15) are, therefore, difficult to discern visually—
though it can be seen that the correspondence in variation
between curve R (light blue) and curve CKCDA (dark blue)

is in fact close, even in this region. However, we arbitrarily chose
to define all of the (unshared) peripheral bonds, 13�30
(Figure 13), in the same direction as the diamagnetic (i. e.,
anticlockwise) ring currents in the rings of which these bonds
form a part. Examination of this area of the bond-currents
comparator diagram (Figure 15)—that for bonds 13�30—
reveals an entirely consistent pattern of trends among the five
methods. (Recall that, in comparator diagrams, the pattern of
variation is what counts.) Once again, for the reasons discussed in
the last paragraph of the previous subsection, the GM method
and method M (as well as method R) predict much lower bond-
current intensities in these peripheral rings than do the HLPM
and CKCDA approaches.

5. UNITS IN BOND-CURRENT AND RING-CURRENT
CALCULATIONS: “NORMALIZATION”

Before concluding, we draw attention to the units to be
adopted when various types of π-electron currents are presented.
The bond currents evident in Figures 3, 5, 6, 8, and 10 and the
ring currents depicted in Figures 2, 4, 7, 9, and 11 are, effectively,
all expressed as a ratio to the ring-current/bond-current intensity
calculated, by the corresponding method, for benzene; accord-
ingly, currents calculated in this way are, as already noted,
dimensionless quantities, with the benzene value being identically
1, by definition. This conventional approach was followed by
Gomes and Mallion,14 Gayoso,12 and Mandado3 and was fol-
lowed in the definition of “topological ring current” in the
context of the HLPM formalism.22�25 This, however, does not
appear to be the case with Randi�c’s π-electron bond currents
presented in Figure 5 of ref 2. These are not expressed as a ratio
to the corresponding value for benzene, and neither are they
(unlike in the Gomes�Mallion “conjugation-circuit” method16

and in that of Gayoso11) “normalized” by averaging the con-
tributions to each π-electron bond-current over all Kekul�e
structures (K) that can be devised for the conjugated system as
a whole. Because of this, it is not clear in what units such π-
electron bond currents are actually expressed. The same criticism
could strictly be leveled at the “raw” bond currents calculated by

Figure 15. Comparator diagram for bond currents. Key to methods of calculation: CKCDA = Ciesielski et al.4 (but “normalized”, contrary to the
prescription of Ciesielski et al.,4 by division by (1/2)(K(K � 1)); HLPM = H€uckel�London�Pople�McWeeny (“topological”);23,24 GM =
Gomes�Mallion;16M =Mandado;3 R = Randi�c2 (but “normalized” by division55 byK(K� 1)).The horizontal axis refers to the 30 bonds, labeled 1�30
as in Figure 13, with their directions defined as in that figure. The vertical axis gives bond-current intensities, as dimensionless quantities, effectively
expressed as a ratio to the bond-current intensity calculated, by the corresponding method, for benzene.
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the method of Ciesielski et al.4 and displayed, for example, in
Figure 6 of ref 4. In their calculation, although they do at a later
stage “normalize” by dividing by (1/2)(K(K � 1)), this (as a
reviewer pointed out to us) is not in fact done at the stage of the
calculation when the actual bond currents themselves are calcu-
lated. Consequently, if the method of Ciesielski et al. were taken
at its face value, as presented in ref 4., the initial, “raw” bond
currents (like those arising from Randi�c’s initial formulation2)
would likewise be difficult to interpret. Another consequence of
this lack of division by the number of Kekul�e structures (or, if
preferred, the number of sets of conjugation circuits) is that it
would appear, as a general rule, that the greater the number
of Kekul�e structures a system has, the larger its calculated
π-electron bond currents are likely to be—by a process of sheer
accumulation—when estimated by the methods described in refs
2 and 4. Because of this, it is not obvious how diverse types of
conjugated systems (such as, for example, the range of structures
treated in ref 16) can be compared, one with the other, on this
model. For example, in [567567], a π-electron bond current of
“36” is encountered (Figure 6). Now, as already noted, if the
approach of ref 2 were applied to benzene, the π-electron current
would be calculated to be “2”, on these units. It would clearly be
unreasonable to deduce from this—and, indeed, we emphasize
that Randi�c2 does not claim to do so—that there is, in some of
the peripheral bonds in [567567], a π-electron current that is
18 times the size of the π-electron current in benzene (which, of
the face of it, seems unlikely). An analogous comment could be
made about the “raw” bond currents in 3,4-benzopyrene re-
ported in Figure 6 of ref 4. Nevertheless, these examples do
illustrate the difficulties, in the context of the method described
in refs 2 and 4, that can arise when comparisons between different
types of conjugated structures are sought.

In any case, these problems may easily be averted, in the case
of the methods of refs 2 and 4, if bond currents are simply
“normalized”, by a suitable division. This is why we have taken
the liberty of normalizing our bond currents and ring currents
calculated by the methods of Randi�c2 (in Figures 6 and 7) and of
Ciesielski et al.4 (in Figures 10 and 11). In fairness, it ought to be
noted that, in subsequent versions of his method,11,21,40 Randi�c
(and his co-workers) have performed a “normalization” process,
either by dividing21 by the number (K) of Kekul�e structures (as
Gomes and Mallion,15,16 Gayoso,12 and Mandado3 do) or by
dividing,11 not byK, but byK(K�1), the total number37 of sets of
conjugation circuits—or, if preferred (1/2)(K(K � 1)), the
number of distinct sets of conjugation-circuits.40

6. CONCLUSIONS

(a) We have personally repeated (and successfully reproduced)
the calculations on [567567] presented by Randi�c2,58 and the
calculations on 3,4-benzopyrene reported by Ciesielski et al.4

and can thereby verify that these methods do have consider-
able elegance and aesthetic appeal. As Randi�c points out,2 and
as we have noted previously, his approach has the philoso-
phical virtue of being entirely graph-theoretical in nature.
Themethod ofCiesielski et al.4 is also purely graph-theoretical
—if it is accepted (as, indeed, we do propose24) that ring
areas can legitimately be considered as part of a graph-
theoretical “prescription”.22�24,41,42We suggest, however,
that, for maximum efficacy in practical applications, the
conjugated-circuit approach outlined in ref 2—and, to a
lesser extent, that presented in ref 4—would benefit from

(i) Averaging the final computed π-electron currents by
dividing at the end by the total number of Kekul�e
structures (as was done in refs 16, 12, and 21) or by the
number of conjugation circuits (as was done in ref 11).
This would aid comparability between diverse mole-
cules (such as, for example, [567567]—Figure 1—and
benzene), and it would go some way toward solving the
vexed problem of units, discussed earlier in the context of
Randi�c’smethod2 and that of Ciesielski et al.4 Randi�c has
dealt now with this point.11,21,40

(ii) Weighting the contributions of individual conjugation
circuits according to the actual (or, failing this, the
idealized22�25,41) areas of the rings that lie within them

(iii) Taking account of the fact that, quite apart from the
area factor,41,42 just referred to in (ii), above, not all
conjugated circuits should be considered to contri-
bute to bond currents to an equal extent. Randi�c’s
approach does allow distinction between the diamag-
netic contributions from [4n + 2] circuits and the
paramagnetic ones arising from [4n] circuits; however,
there would appear to be no provision in the method of
ref 2 for specifying that, for example, a [4n + 2] circuit
with, say, n = 3, should contribute differently from one
with, say, n = 4. Likewise, the (paramagnetic) contribu-
tion appropriate for a [4n] circuit with (say) n = 2 is
different from that properly due to a [4n] circuit with
(say) n = 4—but there is no mechanism for taking this
into account in the method described in ref 2. This
problem is partially considered in ref 4 by a considera-
tion of ring areas,41 but in the recent methods,2�4 no
further account is taken of the variation in annulenic
ring currents32 for annulenes of different sizes32—
though, in ref 3 this effect does seem successfully to
be mimicked by an appropriate parametrization.

(b) If the provisions suggested in (a), above, were to be
adjoined to the methods of Randi�c2 and of Ciesielski et al.,4

the end result would be something very similar to the old
prescription of Gomes and Mallion.13,14 Furthermore, the
method of ref 2 is equivalent to that proposed in ref 16 if we

(i) assume that the contributions from all conjugation
circuits are equal and

(ii) omit the last stage of averaging (or normalizing) over
all Kekul�e structures.

The elegance of purely topological methods2,4 and the
simplicity of their calculation should thus be evaluated
against the advantages of bringing in physical considera-
tions through

(i) the dependence of a magnetic effect on the circuit area
(ii) the dependence—much discussed in the classical

literature59—of the size (and not just the sign) of the
annulenic ring current on the number of carbon atoms
forming the ring.
Themethod of Ciesielski et al.4 does the former (i) but
not the latter (ii).

(c) Randi�c2 pointed out that hisπ-electron (bond) currents for
[567567] (Figure 1) compare favorably with the qualitative
current-densitymaps presented by Balaban et al.9 The same
can be said for the HLPM “topological” bond currents that
we have illustrated in Figure 5. The calculations (presented
in Figure 3) that were obtained via Gomes and Mallion’s
1979 method16 based on “conjugation circuits” do,
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however, only partially support this view, though they do
concur with the other approaches—HLPM bond
currents23,24 (Figure 5), Randi�c bond currents2 (Figure 6),
Mandado’s bond currents3 (Figure 8), Ciesielski et al.’s bond
currents4 (Figure 10) and the current-density map of
Balaban et al.9 (Figure 12)—that, in the case of the structure
[567567] (Figure 1)which could, perhaps, be thought of as a
“perturbed [18]-annulene”),60,22 the strongest current does
flow around its perimeter (see also Figure 15).

(d) Regarding the methods of Randi�c,2 Mandado,3 Ciesielski
et al.,4 and Gomes and Mallion,16 we note the following
similarities, differences, and comparisons:

(i) All four methods rely on knowledge of the conjugation
circuits1,12,15,16,20,35 in the structure under study.

(ii) The approaches of Gomes and Mallion,16 Randi�c,2

and Ciesielski et al.4 explicitly consider disjoint con-
jugation circuits (as illustrated, for example in Figure
2 of ref 2 and Figure 4 of ref 4), and the method of
Mandado3 excludes35 them (see, for example, ref 3
and the Supporting Information of that reference).

(iii) The methods of Mandado,3 Ciesielski et al.,4 and
Gomes andMallion16 rely on knowledge of the various
ring areas of the structure—but Randi�c’s method2 does
not. Refs 4 and 16 do, however, incorporate considera-
tion of the areas of conjugation circuits very differently
from ref 3—see, for example, ref 42.

(iv) The method of Gomes and Mallion16 requires “ex-
ternal” knowledge of the ring-current intensities in the
family of [N]-annulenes, calculated using a quantum-
mechanical method,32 based on a one-dimensional
cyclic model with a periodic potential, in order to
mimic the nuclear positions by the troughs of the
potential; Mandado’s approach3 requires a suitable
parametrization.42

(It should be noted the HLPM formalism23,24—the
approach that we favor as being the least subjective of
all of the methods considered here—requires for its
application knowledge only of the carbon�carbon
connectivity of the structure in question and the areas
of its constituent rings.)

(e) Finally, we remark that this study has demonstrated that
consideration of bond currents, as distinct from the more
traditional ring currents, can give an extra conceptual
insight into the magnetic properties of conjugated sys-
tems like [567567] (Figure 1). This is evident from the
detailed, semiquantitative deductions that we have been
able to make from these computations when the infor-
mation about the calculated π-electron currents is dis-
played in the form of individual bond currents, as it is in
Figures 3, 5, 6, 8, and 10, rather than as ring currents (as
in Figures 2, 4, 7, 9, and 11). As is self-evident—though
the point is not often emphasized—both are rigorously
equivalent representations in the case of any method that
respects Kirchhoff’s Law of current conservation at a
junction.26�29 Nevertheless, provided that charge/cur-
rent conservation is guaranteed—or Kirchhoff’s Law is
valid for bond currents instead of the more-general
current densities—ring currents do represent a more
efficient way of describing the molecular reaction to the
external magnetic field: ring currents are independent,
while bond currents are not.61
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according to certain well-defined rules24 (as specified in footnote a of
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fact, Mandado introduces a variable fL defined as the number of benzene
rings enclosed by the circuit, in order to represent the size of the circuit. In
themethod of Gomes andMallion,15�19 the size of the circuits is measured
in idealized molecular geometries with equal bond lengths; the energy and
the current associated with a annulene are assumed to depend on the
number of centers of that annulene. These energy terms depend mainly on
the number of alternating double and single bonds, which, in turn, depend
on the number of centers. Gomes and Mallion15,16 adopted the annulenic
ring currents of Baer et al.32 as an alternative to a possibly arbitrary param-
etrization. Mandado3 has instead opted for a parametrization. The
following is a summary42b of how all four “conjugation circuits”
approaches15,16,2�4 count the contributions of conjugation circuits as
they increase in size. In both the Gomes�Mallion15,16 and Mandado3

models, contributions taper off42b with ring size—they start off large for
small conjugation circuits, settle down, and then virtually disappear
altogether at [N] = 22. In the Randi�c2 model, all conjugation circuits, of
whatever size, give an equal contribution per occurrence. In the
approach of Ciesielski et al.,4 larger conjugation circuits contribute more
per occurrence, as they have larger area. InMandado’s model,3 the larger
conjugation circuits contribute less per occurrence, because, in this
formulation, the area is in the denominator. In the approach of Gomes
andMallion,15,16 although circuit area is in the numerator, contributions
from the larger conjugation circuits fall off rapidly with the size of the
conjugation circuit because of the fact that the Baer et al.32 “annulenic”
currents decrease virtually to zero at annulene size [22]). This phenom-
enon of the decrease in importance of the contributions from the larger
conjugation circuits is thus essentially the same in both the Mandado3

and Gomes�Mallion15,16 formalisms: (b) Fowler, P. W. Personal
communication, July 3, 2011.
(43) Gomes, J. A. N. F. THEOCHEM 1990, 210, 111–119.
(44) (a) Longuet-Higgins, H. C.; Salem, L. Proc. R. Soc. London, Ser.

A 1960, 257, 445–456. (b) Salem, L. The Molecular Orbital Theory of
Conjugated Systems; W. A. Benjamin: Reading, MA, 1966; Chapter 4.
(45) (a) Haddon, R. C. Tetrahedron 1972, 28, 3613–3633. (b) idem

ibid. 3635�3655.
(46) Mallion, R. B. Mol. Phys. 1973, 25, 1415–1432.
(47) (a) Mallion, R. B. Empirical Appraisal and Graph Theoretical

Aspects of Simple Theories of the “Ring-Current” Effect in Conjugated
Systems. D. Phil. Thesis: University of Oxford (Christ Church): England,
United Kingdom, 1979; pp 124�131. (b) Haigh, C. W.; Mallion, R. B.
Croat. Chim. Acta 1989, 62, 1–26.
(48) Amos, A. T.; Roberts, H. G. Ff.Mol. Phys. 1971, 20, 1073–1080.
(49) (a) Kirchhoff’s Law of current conservation26�29 is, by contrast,

not violated in, for example, the “coupled Hartree�Fock” procedure
described in: (b) Coulson, C. A.; Gomes, J. A. N. F.; Mallion, R. B.Mol.
Phys. 1975, 30, 713–732.
(50) (a) Coulson, C. A.; O’Leary, B.; Mallion, R. B.H€uckel Theory for

Organic Chemists; Academic Press: London, 1978. (b) Yates, K. H€uckel
Molecular Orbital Theory; Academic Press: New York, 1978.
(51) The reasons why such methods lose current conservation

at junctions are gone into in some detail by one of the present authors
(R.B.M.) in a long footnote on page 1420 of ref 46.
(52) Fowler, P. W. Personal communication to R. B. M., June 8,

2011.
(53) An anonymous reviewer has, very conscientiously, repeated our

calculations using themethod of Ciesielski et al.4 and claimed that some of
our bond currents reported in Figure 10 are incorrect. We therefore
invoked the help of Professor P.W. Fowler and his colleaguesW.Myrvold,
W. Bird, and S. Cotton at the Universities of Sheffield (England) and
Victoria (Alberta), in order to effect an independent check.51 When

“normalized” by division by the factor K(K � 1)—against, however, the
recommendations of Ciesielski et al.,4 at this stage of the calculation—the
bond currents in [567567] calculated by Fowler et al. using the method of
Ciesielski et al.4 agreed entirely with ours (displayed in Figure 10) to four
significant figures and disagreed with those that had been provided by the
reviewer. We therefore persist with our original data, confident that they
have been independently confirmed by Professor Fowler and his above-
named colleagues.

(54) Fowler, P. W.; Bean, D. E. Personal Communication to R. B. M.
at the Fifth Conference on Computers in Scientific Discovery, Sheffield,
England, United Kingdom, July 2010.

(55) Atkins, P.W.; Gomes, J. A. N. F.Mol. Phys. 1976, 32, 1063–1074.
(56) Although our calculations using the Gomes�Mallionmethod15,16

were effected by hand, they were independently checked by means a
computer algorithm written and run by Professor P. W. Fowler and his
colleagues W. Myrvold, W. Bird, and S. Cotton at the Universities of
Sheffield (England) and Victoria (Alberta). Complete agreement was
found (to the number of decimal places quoted in Figures 2 and 3).

(57) Ring currents by method R are determined by the count of
conjugation circuits contributing to them, arising from the K perfect
matchings/Kekul�e structures and, in Randi�c’s later work, are “normal-
ized” by dividing either11 (i) by the total number,37 K(K � 1), of
pairwize overlaps or21 (ii) merely by K itself. In more recent work, on
perylenes, even more delicate and elaborate “normalizations” have been
argued for.40

(58) It should be noted that, in Figure 1 of ref 2, the Kekul�e structure
labeled “E” is in fact—in error—merely a repetition of the one labeled
“B”. Kekul�e structure “E” should actually have been the one that is
displayed there but with the single/double bonds in the central ring
running in the alternative way (the patterns in the other six rings
remaining undisturbed). Professor Randi�c has evidently used the correct
Kekul�e structure “E” in his calculations, for, on repetition of them, we
independently agree with his final “bond currents”, displayed in Figure 5
of ref 2. (and—after “normalization”11 by division by 72—in our
Figure 6).

(59) (a) Pople, J. A.; Untch, K. G. J. Am. Chem. Soc. 1966, 88,
4811–4815. (b) Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top.
Curr. Chem. 1971, 16, 103–220. (c) Sondheimer, F. Acc. Chem. Res.
1972, 5, 81–91.

(60) Trost, B. M.; Bright, G. M.; Frihart, C.; Brittelli, D. J. Am. Chem.
Soc. 1971, 93, 737–745.

(61) (a) This observation is re-enforced by Figure 3 of ref 61b, in
which the bond currents in the 60 bonds of kekulene are expressed in
terms of just three independent parameters, A, B, and δ. These are not
actually the ring currents in the three symmetrically non-equivalent rings
of kekulene, but they are related to them in the following way: the ring
current in the six-membered ring that Steiner et al.61b label “I” is equal to
(A + δ); the ring current in ring II is (A� δ), and that in the internal, 18-
membered, ring III is (A� B). Once again, therefore, in this example, a
bond-current description is entirely equivalent to a ring-current one,
with as many independent variables being needed to specify the several
bond currents as there are symmetrically non-equivalent rings (and,
hence, distinct ring currents) in the structure under consideration:
(b) Steiner, E.; Fowler, P. W.; Jenneskens, L. W.; Acocella, A. Chem.
Commun. 2001, 659–660.
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ABSTRACT: Theoretical background, parametrization, and performance of the semiempirical configuration interaction singles
(CIS) method MSINDO-sCIS designed for the calculation of optical spectra of large organic molecules are presented. The CIS
Hamiltonian is modified by scaling of the Coulomb and exchange integrals and a semiempirical correction. For a recently proposed
benchmark set of 28 medium-sized organic molecules, vertical excitation energies for singlet and triplet states are calculated and
statistically evaluated. A full reparameterization of theMSINDOmethod for both ground and excited state properties was necessary.
The results of the reparameterized MSINDO-sCIS method are compared to the currently best semiempirical method for excited
states, OM3-CISDTQ, and to other standard methods, such as MNDO and INDO/S. The mean absolute deviation with respect to
the theoretical best estimates (TBEs) for MSINDO-sCIS is 0.44 eV, comparable to the OM3 method but significantly smaller than
for INDO/S. The computational effort is strongly reduced compared to OM3-CISDTQ and OM3-MRCISD, since only single
excitations are taken into account. Higher excitations are implicitly included by parametrization and an empirical correction term. By
application of the Davidson�Liu block diagonalization method, high computational efficiency is achieved. Furthermore, it is
demonstrated that the MSINDO-sCIS method correctly describes charge-transfer (CT) states that represent a problem for time-
dependent density functional theory (TD-DFT) methods.

1. INTRODUCTION

During recent decades, there has been substantial progress in
the experimental and theoretical characterization of electroni-
cally excited states. New experimental techniques provide better
insight into photophysical processes in molecules.2,3 On the
other hand, more and more efficient and accurate theoretical
methods for the description of excited states have been
developed.4,5 Multireference configuration interaction (MR-
CI),6 multistate complete active-space second order perturbation
theory (MS-CASPT2),7 and coupled cluster methods (CC2,8

CCSDT,9 CC310) are well-established and highly accurate but, at
the same time, extremely costly. Recently published benchmark
calculations demonstrate the advance of CCx11 methods. Even
with relatively small basis sets, they provide reasonable agree-
ment with more elaborate ab initio approaches. Since these
highly accurate methods are only applicable for small molecules,
time-dependent density functional theory (TD-DFT)12 has
become one of the most popular methods for spectra prediction
and the description of excited states due to its reliability at low
computational cost inmost cases. Yet the application of TD-DFT
is at present limited to systems with a few hundred atoms.
Although TD-DFT is an attractive choice for the description of
excited states, there are well-documented problems,13,14 in
particular for charge-transfer (CT) states. Even hybrid methods
and the perturbative corrected double-hybrid methods15 do not
give a quantitatively correct description. Moreover, the accuracy
of TD-DFT is limited in general. Recently, Thiel et al.16 have
shown that the vertical excitation energies obtained from TD-
DFT have mean absolute deviations of 0.3�0.5 eV from the
theoretical best estimates (TBEs). This raises the question of
how, e.g., novel organic solar cells, which normally consist of

large donor and acceptor species with many hundred atoms, can
be treated theoretically, when no applicable method exists. For
such problems, a reliable method which is also efficient is
desirable. In this context, semiempirical methods have come
back into focus for the description of excited states in larger
molecules.17 Due to the integral approximations made in all
semiempirical methods, the computational effort is decreased by
orders of magnitude18,19 compared to first-principles methods.
Therefore systems with up to thousands of atoms can be treated.
The error introduced by the vast integral approximations is
compensated by calibration of the method against experimental
reference data. Most semiempirical methods are parametrized to
reproduce ground-state properties, which does not guarantee
that the excited-state properties are also reliable. The INDO/S
(intermediate neglect of differential overlap for spectroscopy)
method is well-known to provide accurate results for vertical
excitation energies.20 Therefore, this method is still frequently
used for the calculation of optical absorption spectra for large
organic molecules and transition-metal compounds.21 Due to the
well-balanced parameters, as developed for the INDO/S and the
reparameterized INDO/S222 methods, the calculated excitation
energies are in good agreement with experimental results.
Although these methods seem to be superior over standard
quantum-chemical methods, they have certain limitations.
INDO/S makes use of the configuration interaction singles
(CIS) method23 for the treatment of excited states. The lack of
higher excitations restricts the INDO/S-CIS method to states
which are dominated by single excitations. This is problematic if a
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mixing of double excitations is dominating the electronic transi-
tion. Due to the use of a minimal basis set, Rydberg states cannot
be treated. The main reason why INDO/S is not used in
photochemistry, however, is the design of the method. INDO/S�
CI targets spectroscopy but is not parametrized for ground-state
properties, and potential energy surfaces (PES) may not be
reliable. Therefore, the application to the calculation of fluores-
cence spectra and photoreactions is limited. This has led to some
more elaborate concepts, where higher excitations are included.
It has been recently shown by Silva-Junior and Thiel that
semiempirical methods, especially the OMx24�26 CISDTQ and
MRCISD27 approaches, give promising results for the calculation
of excited states.17 Accurate results for the exploration of PES for
both ground and excited states have been reported. Therefore,
this is from our point of view the most reliable semiempirical
method for the calculation of excited states at the moment.
However, due to the calculation of NDDO-type two-electron�
two-center integrals28,29 and the inclusion of double, triple, and
quadruple excitations, the computational effort is dramatically
increased with respect to INDO/S, even though the implemen-
tation of the GUGA leads to a speedup in the calculation of the
CI matrix elements.27

This leads to our starting point. In our present implementa-
tion, we do not go beyond the explicit calculation of singles
excitations. This gives a method similar to the INDO/S case, but
at the full CIS level, where all possible single excitations are taken
into account. In our implementation, we take advantage of the
orthogonalization correction in the MSINDO method,30 which
is similar to the OMx methods. In the parametrization, we
include both ground and excited states properties. In order to
account for cases where higher excitations play an important role,
we introduced a semiempirical correction term.

In this article, we present the basic equations of ourMSINDO-
sCIS method and then show the results of our method for the
benchmark set of Thiel. We will show that our method shows
similar accuracy compared to the OMx-CISDTQ methods for
most compounds.

2. METHOD

In this section, we describe the implementation of the CIS
equations into the MSINDO method. The first part reviews the
CIS theory and the implementation of our empirical correction.
In the second part, we discuss the implementation of the method
with an efficient matrix diagonalization, where all semiempirical
considerations are introduced. In the last subsections, we will
describe the basic ideas of our parametrization for ground and
excited states, including charge-transfer states.
2.1. Theory.Within the CIS approach, the excited-state wave

function is formed in terms of theHartree�Fock orbitals.WithN
occupied andM virtual orbitals,N�M determinants are created
by interchanging all pairs of occupied and virtual orbitals. Linear
combinations of these determinants form the CIS wave function
of the excited states. For closed-shell systems, the CIS wave
function can be formed in terms of a singlet or triplet configura-
tion state function (CSF):

j1;3ΨIæ ¼ ∑
occ

i
∑
vir

a
tai j1;3Φ i

aæ ð1Þ

The unique set of the expansion factors {ti
a}—the CIS

amplitudes—defines the wave function of the given excited state
I. Variational solution of the Schr€odinger equation with this wave

function leads to an eigenvalue problem, where the CIS matrixH
has to be diagonalized:

MHia, jb ¼ ÆMΦ i
ajĤjMΦj

bæ M ¼ 1, 3 ð2Þ
Since the original MSINDO parameters have been optimized

for the ground-state properties,30 we introduced two additional
parameters for an improved parametrization of the excited states.
These parameters are scaling factors for the two-electron inte-
grals in the CIS matrices (c1 and c2 for singlets, cT for triplets):

1Hia, jb ¼ δijδab½εa � εi � dcorria �

þ 2c1ðiajjbÞ � c2ðijjabÞ ð3Þ
Considering that higher excitations have a large influence on

certain totally symmetric excited states, we improved the CIS
energy using a semiempirical correction. The correction term
dia
corr (eq 4) is an empirical correction for totally symmetric single
excited states that may have a strong mixing with double
excitations ii f aa from the ground state.

dcorria ¼ jðaajiaÞ þ ðiijiaÞj ð4Þ
It is well-known that perturbative doubles corrections to the

excited CIS states—the so-called CIS(D) method31,32—give a
significant improvement in the excitation energies. In principle,
the ground state and all excited states should be corrected by
electron correlation due to mixing with higher excitations. In
CIS(D), this is approximated by second-order perturbation
theory that takes into account double excitations with regard
to ground and excited state determinants. The full implementa-
tion of doubles correction is an O(N5) process, which would
counteract the philosophy of semiempirical methods. While the
ground state is implicitly correlated in semiempirical methods, it
is not clear how much this is the case for excited states.33 Only in
totally symmetric excited states can double excitations of the type
iif aa and also higher excitations based hereupon mix with the
singly excited determinants, which leads to a lowering of the
corresponding excitation energy. Since the corresponding cou-
pling integrals are in general larger in absolute value than those of
other excitations ijf aa, iif ab, and ijf ab, which may belong
to a different irreducible representation, a correction is more
important for totally symmetric excited states. This is in line with
the deviations of calculated excitation energies at the ab initio
CIS(D) level compared to CC2, CCSRD, and CC3. For this
purpose, we performed ab initio CIS(D) calculations for E-
butadiene as a test molecule with the optimized MSINDO
structures and aug-cc-TZVP basis sets and compared them to
previous results obtained at CCn level with the same basis set.34

The largest deviation (0.9 eV for CIS(D)) was observed for the
singlet Ag state, whereas singlet Bu and triplet Ag and Bu states
coincide within 0.2�0.3 eV. In preliminary test calculations, it
was found that this approach led to the best overall agreement
with the TBEs. Therefore, we decided to empirically correct only
these kinds of excited states. Without the correction term (eq 4)
we observed in some cases, that also the ordering of the excited
states was incorrect. dia

corr is exactly zero if orbitals i and a do not
belong to the same irreducible representation. It is not necessary
to make a similar correction for triplet states due to spin selection
rules.

3Hia, jb ¼ δijδab½εa � εi� � cTðijjabÞ ð5Þ
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Solving eq 2 gives then the excitation energy of a given state
(eqs 6 and 7):

1ECIS � ERHF ¼ ∑
occ

i
∑
vir

a
tai

�
tai ðεa � εi � dcorria Þ

þ ∑
occ

j
∑
vir

b
tbj ½2c1ðiajjbÞ � c2ðijjabÞ�

�
ð6Þ

3ECIS � ERHF ¼ ∑
occ

i
∑
vir

a
tai

�
tai ðεa � εiÞ � ∑

occ

j
∑
vir

b
tbj cTðijjabÞ

�

ð7Þ
This approach follows the original ideas of Grimme35 in his

DFT/SCI method, where a scaling of the integrals gave a
significant improvement of the vertical excitation energies.
Different from the expressions in ref 35 where only a single scale
factor c= c2 = cT is applied and c1 = 1 is used as a constant, we treat
all parameters c1, c2, and cT as adjustable parameters in order to
improve the calculated excitation energies.
The empirical shift introduced for Rydberg states and core

excited states35 is not applied in our implementation, since our
semiempirical method is not intended to be applied to these
kinds of problems. The scaling in eqs 3 and 5 does not affect the
Fock matrix, and therefore these parameters are decoupled from
the ground state.
2.2. Matrix Diagonalization. For the matrix diagonalization

necessary to solve the CIS equations, we use the Davidson�Liu
block diagonalization method,36 which has been shown to be
very efficient, especially for large sparse matrices.37 This iterative
procedure starts with the guess vectors |biæ, which are expanded
to form the best approximation of the CIS wave function. All
eigenvectors of the CIS matrix are expanded in an L-dimensional
orthonormal subspace of the eigenvectors:

jxkæ ¼ ∑
L

i
αk
i jbiæ ð8Þ

where |xkæ is the exact eigenvector and αi
k represents the

expansion coefficients. With these new basis vectors, a projected
CIS matrix is formed:

Æbijσjæ ¼ ÆbijĤjbjæ 1 e i, j e L ð9Þ
The expansion coefficients αk are given by the eigenvectors of

this matrix with the eigenvalues Fk and the eigenvectors |ckæ. The
approximated eigenvectors |ckæ are corrected by |δkæ:

jckæ� jδkæ ¼ jxkæ ð10Þ
The set of |δkæ is directly related to the residual vectors |rkæ:

ðH� λkÞjδkæ ¼ � ðH� λkÞjxkæ ¼ � jrkæ ð11Þ
The residuals are calculated by connecting eqs 8 and 11. Using

the definition of the σ (eq 9 ) vectors, one obtains

jrkæ ¼ ∑
L

i
αk
i ðjσiæ� FkjbiæÞ ð12Þ

Since the CIS matrix is sparse and dominated by the diagonal
elements, the correction vector is approximated by

jδkæ≈� ðD� FkEÞ�1jrkæ ð13Þ

whereD is an arbitrary diagonal matrix, which is connected toH. In
our implementation, we donot use the diagonal elements ofH. Since
these are dominated by the orbital energy differences, we simply set

Dia, ia ¼ εa � εi ð14Þ
This leads to a significantly faster calculation of the diagonalmatrix

D, which improves the overall performance of the Davidson algo-
rithm despite an increase in the number of iterations. The obtained
correction vectors |δkæ are then normalized with respect to the
existing set of expansion vectors |biæ by a modified Gram�Schmidt
orthogonalization.38 This leads to an increased size of the expansion
space in every step of the algorithm up to a preselected threshold.
As a standard criterion for convergence, we have chosen 10�8 au
for the eigenvalues and 10�6 au for the norm of the residuals. In
each step, the σ vectors are calculated according to eq 9 . With a
restricted Hartree�Fock reference, the CSFs are used, and two
independent sets of σ vectors are defined:

1σ i
a ¼ ðERHF � εi þ εa � dcorria Þtai

þ ∑
occ

j
∑
vir

b
tbj ½2c1ðiajjbÞ � c2ðijjabÞ� ð15Þ

3σ i
a ¼ ðERHF � εi þ εaÞtai � ∑

occ

j
∑
vir

b
tbj cTðijjabÞ ð16Þ

By defining pseudo-Fock matrices of the form

1~Fia ¼ ∑
occ

j
∑
vir

b
tbj ½2c1ðiajjbÞ � c2ðijjabÞ� ð17Þ

3~Fia ¼ �∑
occ

j
∑
vir

b
tbj cTðijjabÞ ð18Þ

the σ vectors are much more efficiently calculated in the atomic
orbital (AO) basis. This leads to the AO transformed pseudo-
Fock matrix, which is given in the general case as

1~Fμν ¼ ∑
λσ

Tλσ½2c1ðμνjλσÞ � c2ðμλjνσÞ� ð19Þ

3~Fμν ¼ ∑
λσ

TλσcTðμλjνσÞ ð20Þ

where Tλσ are AO-transformed CIS amplitudes. Within the
INDO approximation,39 three kinds of elements of the pseudo-
Fock matrix have to be distinguished, the diagonal elements, the
intra-atomic off-diagonal blocks, and the two-center terms:

1Fμν ¼
∑

λσ∈A
Tλσ½2c1ðμμjλσÞ � c2ðμλjμσÞ� for μ ¼ ν ∈ A

þ ∑
λ∈B 6¼A

Tλλc1ðμμjλλÞ

∑
λσ∈A

Tλσ½2c1ðμνjλσÞ � c2ðμλjνσÞ� for μ, ν ∈ A

�Tμνc2ðμμjννÞ for μ∈ A, ν ∈ B

0
BBBBBBBBBB@

ð21Þ
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3Fμν ¼

� ∑
λσ∈A

TλσcTðμλjμσÞ for μ ¼ ν

� ∑
λσ∈A

TλσcTðμλjνσÞ for μ, ν ∈ A

�TμνcTðμμjννÞ for μ ∈ A, ν ∈ B

0
BBBBB@ ð22Þ

Necessary matrix operations of the Davidson�Liu approach are
efficiently performed by BLAS40,41 routines in our implementation.
2.3. Parameterization. In order to obtain accurate values for

the excitation energies, the whole MSINDO parameter set, which
has repeatedly demonstrated its reliability,42�45 has been reopti-
mized. This affects not only the excited states but also the ground-
state properties. After augmenting the original MSINDO reference
set,46 the ground-state properties and some additional vertical
excitation energies were optimized with respect to accurate refer-
ence data by varying the parameters in a nonlinear minimization
algorithm, where the sums of least-squares errors are minimized.47

The one-center two-electron integrals are evaluated in terms of the
Slater�Condon parameters Fn and Gn (n = 0�3). Following the
ideas of Zerner and Ridley,20 these are treated as adjustable
parameters in the present MSINDO-sCIS implementation at
variance with the agreed MSINDO method46 (see Table 6,
Supporting Information). Thiswas necessary, since Slater�Condon
factors play an important role in spectroscopy.48 In the original
MSINDO version,46 the Slater�Condon factors were calculated
analytically with a special set of orbital exponents (for a better
comparison, their values are given in Table 6 in the Supporting
Information). In the present approach, it was necessary to treat the
Fn and Gn as independent empirical parameters in order to obtain
reasonable agreementwith experimental results for both ground and
excited state properties. We had, to some extent, to give up the
concept of a physical interpretation of the F and G factors. The Fss

0

values are expected to increase within the second row, but the
optimized value for C is larger than that for N, O, and F. The
obtained values of the Slater�Condon factors Fss

0 , Fsp
0 , Fpp

0 ,
Fpp2, and Gsp

1 for the second-row elements and additionally
Fsd
0 , Fpd

0 , Gpd
1 , Gsd

2 , and Gpd
3 for the third-row element sulfur are

presented in Table 6 in the Supporting Information. Furthermore,
we allowed the correction factors for the orthogonalization f B,orth

(see ref 46) to change. In the original version, these were formally
preparameterized and then treated as constants, depending on the
angular momentum of the orbital (1, 0.75, and 0.5). Additionally, the
ionization potentials I and the shielding parameters, which are
introduced by a distance-dependent exponential function with the
exponent kEP, were also included in the parametrization. The last
parameters, which were reoptimized, are the resonance integral
parameters Ki, which depend on the local symmetry (sσ, pσ, pπ,
dσ, dπ, or dδ) in a diatomic coordinate system.The complete new set
of these parameters compared to the old parameters for common
elements in organic molecules can be found in Table 7 in the
Supporting Information. The excited-state parameters, which are
introduced in the calculation of the excited states (eqs 3 and 5), have
the following values:

ci ¼
0:9225 for i ¼ 1
0:9993 for i ¼ 2
0:8944 for i ¼ T

8>><
>>: ð23Þ

In the original reference,35 the parameters c1, c2, and cT had the
values 1.0, 0.317, and 0.317. However, these parameters have
been obtained for density functional theory, which is completely

different from our present approach. Since both c1 and c2 are
close to 1, the artificial problem of self-interaction (incomplete
cancellation of Coulomb and exchange integrals) is nearly
avoided for singlet states. These excited state parameters are in
the spirit of DFT, where only a few global parameters are used to
obtain accurate results, rather than in the spirit of semiempirical
methods. But our statistical evaluation shows (see section 5.2)
that it is not necessary to introduce bond-specific parameters for
excited states. In summary, we have taken four steps in our
parametrization. The first one is the inclusion of Slater�Condon
factors in the parametrization. The second is the introduction of
three global parameters for the excited states, which scale the
Coulomb and exchange integrals. Third, an element-specific
scaling of the orthogonalization correction is introduced. And
the last step is the empirical correction dcorr (eq 4 ), which
improves the excitation energies of totally symmetric excitations.
Those ideas eventually define a newmethod, which is intended to
be efficient and accurate. In a first step, only selected elements of
the first two periods H, C, N, O, F, and, additionally, S have been
reparameterized. Further work, the reparameterization of the
remaining second and third row elements including the third-
row transition metals, is in progress.

3. GENERAL CONSIDERATIONS

Ground-state geometry optimizations and vertical excitation
energy calculations are carried out with the new version MSIN-
DO-sCIS. Different from Thiel’s statistical evaluation,17 we did
not take the geometries fromMP2/6-31G* calculations, because
we want to demonstrate that the MSINDO-sCIS method is
capable of providing reliable results for both kinds of properties.
In preliminary tests, vertical excitation energies with MP2
geometries were calculated for selected molecules of the test
set. The small change in the geometries did not affect the vertical
excitation energies for both singlet and triplet states significantly
(changes were below 0.1 eV). Since semiempirical methods
employ a minimal valence basis set, Rydberg states or states with
a valence-Rydberg mixing cannot be described properly; accord-
ingly, Thiel’s benchmark set1 contains only valence excited states.
Within the MSINDO-sCIS approach, all possible single excita-
tions of the valence orbitals are taken into account in the active
space. For the excited-state assignment, the electronically excited
states are first classified according to their point group symmetry.
Afterward, the most significant orbitals of the excitation are used
for a further inspection of the kind of transition. With this
information, it is possible to assign the states and distinguish
between π�π*, n�π*, and σ�π* transitions.

4. COMPUTATIONAL PERFORMANCE

As a benchmark for the computational performance of our
approach, we have calculated the first eight excited states of
selected molecules of the class of bis(phenyl-benzotriazole)
dithiophenes (see Figure 1) and compared the MSINDO-sCIS
CPU timings to TD-DFT calculations (see Table 1). These
molecules are expected to have charge-transfer states in the range
of visible light, so that they should work in a solar cell device.49

The TD-DFT calculations (B3LYP/TZV(P)) were carried out
using the ORCA 2.7.0 program package.50 The computational
performance for both methods strongly depends on the number
of Davidson cycles. Comparing the timings of MSINDO-sCIS
and TD-B3LYP (shown in Table 1) gives a ratio of up to 1:7500
on a single Quad-Core AMD 2378 Opteron 2.4 GHz processor.
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This superior speed of MSINDO-sCIS allows applications of the
excited-state description of really large molecules containing
more than 1000 atoms, which are not feasible with TD-DFT
or even more accurate methods.

5. RESULTS

In this section, we will compare ground- and excited-state
properties calculated with the new method MSINDO-sCIS with
experimental and other theoretical approaches. We will start with
the ground state properties, where we will show that the new
parameter set is as reliable as the original set developed by
Ahlswede and Jug.46 This is followed by a detailed description of
the vertical excitation energies, where all excitations from the
benchmark set of Silva-Junior et al.1,11 were taken into account.
The MSINDO results are then compared to the theoretical best
estimates,1 TD-B3LYP,16 INDO and OMx results.17 It should be
mentioned that the comparison with the OM3-CISDTQ results

is just for benchmarking purposes, since the common used method
for excited states is OM2/MRCISD, which has the same accuracy.17

5.1. Ground State Properties. To avoid the well-known
problems of INDO/S for ground-state geometries, while being
parametrized for excited states, we included ground-state proper-
ties in our parametrization. A comparison of the results obtained
with new MSINDO-sCIS parameters with those of the previous
version is given in Table 2. Distances R and angles j are only
slightly less accurate than in the 1999 version of MSINDO.46,42

On the other hand, it can be seen fromTable 2 that the new set of
parameters even slightly improves the heats of formation, while
the ionization potentials are slightly less accurate than before. But
in the overall view of these results, it is obvious that we now have
reliable parameters for both ground and excited states.
5.2. Accuracy of Vertical Excitation Energies. 5.2.1. Vertical

Singlet Excitations. The benchmark of the calculated singlet
excitation energies with respect to the TBEs1 is presented in
Table 3. We will discuss the results of all groups of compounds in
the following paragraphs.
Unsaturated Aliphatic Hydrocarbons. Ethene. The energy

of the singlet π�π* state of ethene (TBE-2 is 7.80 eV) is
underestimated by 0.31 eV with MSINDO-sCIS. This error is
larger than that of the OMx-CISDTQ suite of methods
(0.02�0.05 eV) but much less compared to standard MNDO
methods, where the energy is underestimated by more than 1 eV,
and also compared to the INDO/Smethod, which overestimates
the energy by more than 0.5 eV.
E-Butadiene, E-Hexatriene, and E-Octatetraene. The most

interesting point in this series of C2nH2n+2 polyenes is the gap
between the bright 1Bu and the 2Ag state. In the benchmark set,
this gap is reduced with increasing n until the ordering is reversed.
Due to the large contributions from double excitations (33%)51

and higher excited configurations (20% within CISDTQ)17 for
the Ag state, this problem cannot be solved by parametrization.
The MSINDO-sCIS errors for the 2Ag states of E-butadiene, E-
hexatriene, and E-octatetraene are 0.29 eV, 1.42 eV, and 1.31 eV,
respectively. These relatively large errors indicate that our
approach—including the empirical correction term (eq 4 )—is
not accurate for excited states with significant double excitation
contributions. Even compared to the INDO/S method, where
the errors are 0.32 eV, 0.81 eV, and 0.76 eV for the 2Ag states,
MSINDO is even slightly inferior.
Cyclopropene. The excited states of strained ring systems

such as cyclopropene are problematic for standard semiempirical

Figure 1. Class of molecules used for performance test in comparison
with TDDFT (B3LYP/TZVP).

Table 1. MSINDO-sCIS and TD-DFT Calculation Timings
for the Different Types of Bis(phenyl-benzotriazole)
dithiophenes (see Figure 1)a

molecule MSINDO-sCIS B3LYP/TZVP

X0 = H, X = NO2,

R = OC(C2H5)C5H11

315s (N = 20) 11952s (N = 05)

X0 = H, X = NO2,

R = isoprop

195s (N = 20) 74986s (N = 05)

X0 = H, X = NO2,

R = CH3

150s (N = 19) 61303s (N = 06)

X0 = H, X = F,

R = OC(C2H5)C5H11

238s (N = 20) 259435s (N = 06)

X0 = F, X = H,

R = OC(C2H5)C5H11

190s (N = 20) 244928s (N = 12)

X0 = X = H, R = NO2 89s (N = 17) 665596s (N = 52)

X0 = X = H, R = phenyl 155s (N = 20) 230268s (N = 10)

X0 = X = H, R = COOH 104s (N = 19) 166497s (N = 14)
aThe values in parentheses are the number N of Davidson iterations.

Table 2. MSINDO Mean Absolute Errors for Ground- and
Excited-State Propertiesa

parameter set

property unit no. references oldb newc

ΔfH kcal/mol 89 5.25 4.97

R Å 210 0.013 0.016

j deg 94 1.69 1.76

IP eV 83 0.43 0.53

μ D 49 0.34 0.35

ΔE0�n eV 36 0.34
aHeats of formation ΔfH, bond lengths R, bond angles ϕ, ionization
potentials IP, dipole moments μ, and vertical excitation energiesΔE0�n.
In the old parameterization, no excited states were included. bReference
46 c Present work.
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methods. Here, MSINDO-sCIS provides the best results within
the considered semiempirical methods. While the OMxmethods

Table 3. Vertical Excitation Energies ΔE [eV] for Singlet
States: MSINDOResults Compared with the Theoretical Best
Estimates TBE-2 from Ref 1

molecule state type TBE-2 MSINDO

ethene 11B1u π�π* 7.80 7.49

E-butadiene 11Bu π�π* 6.18 6.09

21Ag π�π* 6.55 6.84

E-hexatriene 11Bu π�π* 5.10 5.33

21Ag π�π* 5.09 6.51

E-octatetraene 11Bu π�π* 4.66 4.88

21Ag π�π* 4.47 5.78

cyclopropene 11B1 π�π* 6.67 6.07

11B2 π�π* 6.68 5.97

cyclopentadiene 11B2 π�π* 5.55 5.33

21A1 π�π* 6.28 6.57

norbornadiene 11A2 π�π* 5.37 5.42

11B2 π�π* 6.21 5.69

benzene 11B2u π�π* 5.08 5.34

11B1u π�π* 6.54 5.93

11E1u π�π* 7.13 7.02

11E2g π�π* 8.15 8.11

naphthalene 11B3u π�π* 4.25 4.59

11B2u π�π* 4.82 5.40

21Ag π�π* 5.90 6.03

11B1g π�π* 5.75 6.26

21B3u π�π* 6.11 6.42

21B2u π�π* 6.36 6.26

21B1g π�π* 6.46 7.73

31Ag π�π* 6.49 6.77

furan 11B2 π�π* 6.32 5.59

21A1 π�π* 6.57 6.27

31A1 π�π* 8.13 6.63

pyrrole 21A1 π�π* 6.37 5.92

11B2 π�π* 6.57 5.69

31A1 π�π* 7.91 6.45

imidazole 21A0 π�π* 6.25 5.45

11A00 n�π* 6.65 6.29

31A0 π�π* 6.73 6.13

pyridine 11B2 π�π* 4.85 5.89

11B1 n�π* 4.59 4.66

11A2 n�π* 5.11 5.29

21A1 π�π* 6.26 5.54

21B2 π�π* 7.27 6.99

31A1 π�π* 7.18 7.10

pyrazine 11B3u n�π* 4.13 3.44

11Au n�π* 4.98 4.66

11B2u π�π* 4.97 5.45

11B2g n�π* 5.65 5.46

11B1g n�π* 6.69 7.05

11B1u π�π* 6.83 5.58

21B2u π�π* 7.81 8.39

21B1u π�π* 7.86 5.98

pyrimidine 11B1 n�π* 4.43 4.41

11A2 n�π* 4.85 4.74

11B2 π�π* 5.34 5.95

21A1 π�π* 6.82 6.03

Table 3. Continued
molecule state type TBE-2 MSINDO

pyridazine 11B1 n�π* 3.85 3.85

11A2 n�π* 4.44 4.38

21A1 π�π* 5.20 5.07

21A2 n�π* 5.66 5.11

s-triazine 11A100 n�π* 4.70 4.79

11A200 n�π* 4.71 5.56

11E00 n�π* 4.75 4.93

11A20 π�π* 5.71 7.07

s-tetrazine 11B3u n�π* 2.46 2.65

11Au n�π* 3.78 3.50

11B1g n�π* 4.87 5.40

11B2u π�π* 5.08 5.21

11B2g n�π* 5.28 5.26

21Au n�π* 5.39 5.19

formaldehyde 11A2 n�π* 3.88 3.74

11B1 σ�π* 9.04 9.38

21A1 π�π* 9.29 8.96

acetone 11A2 n�π* 4.38 4.37

11B1 σ�π* 9.04 8.42

21A1 π�π* 8.90 6.71

p-benzoquinone 11B1g n�π* 2.74 2.62

11Au n�π* 2.86 3.17

11B3g π�π* 4.44 5.02

11B1u π�π* 5.47 5.92

11B3u n�π* 5.55 5.47

21B3g π�π* 7.16 6.20

formamide 11A00 n�π* 5.55 5.40

21A0 π�π* 7.35 7.23

acetamide 11A00 n�π* 5.62 5.59

21A0 π�π* 7.14 7.47

propanamide 11A00 n�π* 5.65 5.36

21A0 π�π* 7.09 7.30

cytosine 21A0 π�π* 4.66 4.50

11A00 n�π* 4.87 4.98

21A00 n�π* 5.26 5.18

31A0 π�π* 5.62 5.73

thymine 11A00 n�π* 4.82 4.40

21A0 π�π* 5.20 4.69

31A0 π�π* 6.27 5.44

21A00 n�π* 6.16 5.53

41A0 π�π* 6.53 6.70

uracil 11A00 n�π* 5.00 4.88

21A0 π�π* 5.25 5.01

31A0 π�π* 6.26 5.80

21A00 n�π* 6.10 5.84

41A0 π�π* 6.70 6.08

31A00 n�π* 6.56 6.21

adenine 11A00 n�π* 5.12 5.12

21A0 π�π* 5.25 5.32

31A0 π�π* 5.25 5.60

21A00 n�π* 5.75 5.82
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still underestimate the 1B1 state by 0.43�0.83 eV, the MSINDO-
sCIS error is not larger than 0.6 eV. For the problematic 1B2 state
(TBE: 6.68 eV), the MSINDO-sCIS error of �0.61 eV is still
high. But still, MSINDO-sCIS performs better than standard
MNDO methods.17 It has been pointed out by Thiel and Silva-
Junior17 that this state has significant contributions from diffuse
orbitals52 and therefore may be problematic for methods using
minimal basis sets.
Cyclopentadiene. For the first two excited singlet states of

cyclopentadiene, MSINDO-sCIS slightly underestimates the 1B2
state (TBE 5.55 eV) by 0.22 eV and overestimates the 1A1 (TBE
6.28 eV) state by 0.29 eV. This is a slightly better result than that
obtained by OMx, where the error is between 0.41 and 0.79 eV.17

Norbornadiene. Comparing the results for norbornadiene
shows that MSINDO reproduces the first excited A2 state well
with an error of 0.05 eV. For the second excitation with B2
symmetry, MSINDO-sCIS underestimates the TBE by 0.52 eV.
The absolute error is comparable to the OMx methods that
overestimate the excitation energy for both states by more than
0.5 eV. It can be seen from the INDO/S results17 that the
underestimation of the excitation energies in this molecules
seems to be a typical INDO problem. But the underestimation
in the case ofMSINDO is less than for INDO/S (A2 error,�0.87
eV; B2 error, �0.67 eV17).
Aromatic Hydrocarbons and Heterocycles. Benzene. For

benzene, four excited singlet states in the range of 5.0�8.2 eV are
found in the benchmark set.1 For three of the states, MSINDO-
sCIS calculations show good agreement with TBE-2. The first
excited singlet state B2u as well as the two higher excited states
(E1u and E2g) are well reproduced byMSINDO-sCIS with errors
of 0.26 eV, 0.11 eV, and 0.04 eV. Only the B1u state differs more
from the TBE-2 by �0.49 eV. The severe problem of the σ�σ*
contamination in the INDO/S method17 is apparently dimin-
ished with our ansatz. The OMx methods show similar perfor-
mance with errors between 0.1 and 0.67 eV. Therefore, it can be
concluded that the B1u state is in general problematic to describe
within semiempirical methods.
Naphthalene. The lower excited states of naphthalene are

reasonably reproduced, while higher states are less accurate. The
doubles mixing for the Ag states, which has been discussed
before,17 is well described with our empirical correction method.
Comparing the errors of the Ag states of MSINDO-sCIS
(0.13�0.28 eV) with the OMx errors (0.55�0.74 eV) shows
that our simple correction in connection with a good parame-
trization can even outperform the explicit calculation of higher
excited determinants (CISDTQ). But the main difference from
the OMx method is that MSINDO-sCIS overestimates the
excitation energy, while OMx excitation energies are too low.
The MSINDO-sCIS errors are unfortunately much larger for
higher excited states of a given irreducible representation. For
example, the difference for the 2B1g state is 1.27 eV, which is
considerably larger that for OMx (0.15�0.22 eV) and also
INDO/S (0.07 eV). This seems to be a general trend.
Furan. The singlet excitation energies of furan obtained with

MSINDO-sCIS show the same errors as the other semiempirical
methods. The error range of 0.3�1.5 eV is similar to the OMx
methods. It is an improvement over the INDO/S and INDO/S2
methods, where errors up to 2.0 eV are obtained.
Pyrrole. For pyrrole, which is isoelectronic with furan, the

results for the excitation energies are similar. The error range is
somewhat larger (0.65�1.46 eV), and again all energies are
underestimated. This is similar to other semiempirical methods.17

Imidazole. The imidazole spectrum consists of two π�π*
transitions and one n�π* transition. The n�π* transition is well
reproduced by MSINDO-sCIS with an error of 0.26 eV, but the
π�π* transitions are underestimated by approximately 0.8 eV.
This leads to a wrong ordering of the excitations, but the
MSINDO-sCIS errors are still smaller than those of other
semiempirical methods.
Pyridine. Due to the break of symmetry by substituting one

carbon atom by nitrogen in benzene, the four π�π* transitions
split into six transitions withA1 and B2 symmetry in pyridine. The
lowest four of them are included in the benchmark set. Compar-
ing the TBEs with the MSINDO-sCIS results, a large scattering
of the excitation energies is observed. The errors are between
0.05 and 1.04 eV. The scattering is higher than with OMx or
INDO/S, and even the 1B2 � 2A1 ordering is wrong. But here,
the higher excitations are in better agreement with the TBE-2
benchmark results. In particular, the two n�π* transitions are
described rather well. Both values are overestimated (0.07 and
0.18 eV) but still close to the benchmark results.
Pyrazine, Pyrimidine, and Pyridazine. The performance of

MSINDO-sCIS with the azabenzenes with two nitrogen atoms is
similar to that for pyridine. The exception is pyridazine, where the
excitation energies are underestimated by less than 0.2 eV. The
pyrazine results, where eight reference energies are in the bench-
mark set, are very inhomogeneous. Except for the 11B2g state, all
energies are underestimated bymore than 0.5 eV.The state ordering
is in general parallel to the ab initio data, except for the change of the
11B1g and 1

1B1u states. The same effect can be observed in the OMx
benchmark calculations of Thiel and Silva-Junior.17

s-Triazine. The three lowest excitations for s-triazine are
nearly degenerate n�π* transitions (4.70�4.75 eV). Here,
MSINDO-sCIS overestimates the second excitation by 0.85
eV. Since the other two states are overestimated by only
0.09�0.18 eV, this also results in a loss of the near-degeneracy,
similar to the results of AM1 and PM3.17 The π�π* excitation
energy is overestimated by more than 1.0 eV. This is the opposite
of all other semiempirical methods, where all energies are
strongly underestimated, except for OM3, where the error is
only �0.02 eV.
s-Tetrazine.The excited states of s-tetrazine are well described

by MSINDO-sCIS, except for the third n�π* excitation (error:
0.53 eV). The errors for the other states are all below 0.3 eV,
which is superior to all other semiempirical methods, where the
errors are typically over 0.5 eV. Even the OMx methods have
problems with the n�π* excitation, where the maximum error is
over 1.0 eV.
Aldehydes, Ketones, and Amides. Formaldehyde and

Acetone. Formaldehyde and acetone have nearly the same
electronic spectrum. The results obtained by MSINDO-sCIS
are in good agreement with those of TBEs-2 (errors of 0.01�0.34
eV), except for the A1 states (errors of 0.37�2.19 eV), which is
problematic, since the energy is strongly underestimated in the
case of acetone. Even though this is the maximum error in the
complete benchmark set, this is an improvement compared with
the INDO/S and also the INDO/S2 results, where the energy of
these states is overestimated by 3�4 eV. Here, the OMxmethods
perform much better with errors between 0.39 and 0.82 eV.
p-Benzoquinone. The two lowest singlet excited states are

dark states of the n�π* type. MSINDO-sCIS reproduces the
values of these states well. The errors are below 0.25 eV. The
higher lying n�π* state with B3u symmetry is also correctly
described with an error of 0.08 eV. The π�π* states show typical
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errors of round about 0.5 eV, which is similar to all other
semiempirical methods.
Formamide, Acetamide, and Propanamide.The series of the

three smallest amides—formamide, acetamide, and propanamide—
is included in the benchmark set. All of these molecules have a
similar spectrum, with a low lying n�π* transition as the first
excited singlet state. The errors of MSINDO-sCIS are between
0.03 and 0.29 eV, different from all other semiempirical methods,
which strongly underestimate these states (errors of 0.4�1.1 eV).
The errors for the π�π* transitions (0.12�0.34 eV) are slightly
higher than for the n�π* state but still acceptable.
Nucleobases. Cytosine, Thymine, Adenine, and Uracil.The

four nucleobases cytosine, thymine, adenine, and uracil play an
important role in biochemistry. They are suitable representatives
for the whole class of building blocks in larger biomolecules. All
four benchmark states of cytosine are well reproduced by
MSINDO-sCIS; their errors are in the range of 0.08�0.16 eV.
For this molecule, the OMxmethods have errors of 0.27�0.68 eV.
Again, it can be observed that the error for n�π* transitions is lower
than for the π�π* transitions. Thymine is a more proble-
matic case; here, MSINDO-sCIS errors are 0.17�0.83 eV. This is
comparable to the OMx results. The excited-state energies of uracil
are underestimated by 0.12�0.65 eV. Again, we observe that the
lower states are better described than the higher states. The vertical
excitation energies of adenine are overestimated by 0.08�0.35 eV.
Here, we find a correct state ordering compared to the TBE-2.
5.2.2. Vertical Triplet Excitations. The benchmark set of the

calculated triplet excitations can be found in Table 4. We will
discuss all of the results in the following paragraphs.
Unsaturated Aliphatic Hydrocarbons. The triplet state

energies of the unsaturated hydrocarbons are underestimated
for the smaller chains and the rings. For the larger chains
(hexatriene and octatetraene), the energies of the first excited
triplet states are overestimated, while the second excited
triplet state energies are underestimated. The errors are in
the range of 0.16�1.1 eV. This is similar to that for the OMx
methods. Compared to common NDDO methods (MNDO,
AM1, and PM3) and to INDO/S, where the excitation
energies are underestimated by up to 3 eV, MSINDO-sCIS
is an improvement.
Aromatic Hydrocarbons and Heterocycles. The vertical

triplet excitations of benzene are described within an acceptable
error range (0.25�0.85 eV) byMSINDO-sCIS. The 3E1u and the
3B1u state energies are underestimated, while the other states
are slightly overestimated. The state ordering is correct and the errors
decrease when the excitation energy is raised. For naphthalene,

Table 4. Vertical Excitation Energies ΔE [eV] for Triplet
States: MSINDOResults Compared with the Theoretical Best
Estimates TBE-2 from Ref 1

molecule state type TBE-2 MSINDO

ethene 13B1u π�π* 4.50 3.90

E-butadiene 13Bu π�π* 3.20 3.04

13Ag π�π* 5.08 4.31

E-hexatriene 13Bu π�π* 2.40 2.62

13Ag π�π* 4.15 3.69

E-octatetraene 13Bu π�π* 2.20 2.40

13Ag π�π* 3.55 3.23

cyclopropene 13B2 π � π* 4.28 3.48

13B1 σ�π* 6.40 5.93

cyclopentadiene 13B2 π�π* 3.26 2.82

13A1 π�π* 5.09 4.09

norbornadiene 13A2 π�π* 3.68 3.17

13B2 π�π* 4.16 3.14

benzene 13B1u π�π* 4.15 3.30

13E1u π�π* 4.86 5.36

13B2u π�π* 5.88 6.32

13E2g π�π* 7.51 7.26

naphthalene 13B2u π�π* 3.09 2.82

13B3u π�π* 4.09 4.56

13B1g π�π* 4.42 3.93

23B2u π�π* 4.56 4.90

23B3u π�π* 4.92 5.75

13Ag π�π* 5.42 5.10

23B1g π�π* 6.12 6.89

23Ag π�π* 6.17 7.15

33Ag π�π* 6.65 7.40

33B1g π�π* 6.67 7.16

furan 13B2 π�π* 4.11 3.18

13A1 π�π* 5.43 4.26

pyrrole 13B2 π�π* 4.44 3.30

13A1 π�π* 5.42 6.13

imidazole 13A0 π�π* 4.65 3.59

23A0 π�π* 5.64 4.94

13A00 n�π* 6.25 5.81

33A0 π�π* 6.38 6.15

pyridine 13A1 π�π* 4.06 3.71

13B1 n�π* 4.25 4.33

13B2 π�π* 4.64 5.16

23A1 π�π* 4.91 5.62

13A2 n�π* 5.28 5.40

23B2 π�π* 6.08 6.35

s-tetrazine 13B3u n�π* 1.87 2.05

13Au n�π* 3.49 3.31

13B1g n�π* 4.18 4.48

13B1u π�π* 4.36 3.86

13B2u π�π* 4.39 4.45

13B2g n�π* 4.89 4.77

23Au n�π* 4.96 4.92

23B1u π�π* 5.32 6.49

formaldehyde 13A2 π�π* 3.50 3.81

13A1 π�π* 5.87 6.57

acetone 13A2 n�π* 4.05 4.51

Table 4. Continued
molecule state type TBE-2 MSINDO

13A1 π�π* 6.07 6.64

p-benzoquinone 13B1g n�π* 2.50 2.70

13Au n�π* 2.61 3.22

13B1u π�π* 3.02 3.30

13B3g π�π* 3.37 3.44

formamide 13A00 n�π* 5.28 5.60

13A0 π�π* 5.69 6.40

acetamide 13A00 n�π* 5.35 5.80

13A0 π�π* 5.71 6.63

propanamide 13A00 n�π* 5.38 5.54

13A0 π�π* 6.08 6.43
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the errors scatter in the range of 0.27�0.88 eV. This is within the
OMx error range and slightly better than the INDO/S results.
The excited triplet states of furan are strongly underestimated by
0.93�1.17 eV but still less than in the case of the INDO/S
method. Even INDO/S2 underestimates the second excited
triplet state by more than 1.5 eV.
The lowest triplet states of pyrrole and imidazole are strongly

underestimated by up to 1.0 eV. At the same time, the 13A1 state
of pyrrole is underestimated by 0.67 eV, which leads to a
13B2�13A1 splitting of 1.45 eV compared to 0.98 eV in TBE-2.
The OMx methods result in a more correct 13B2�13A1 splitting
between 0.75 and 0.89 eV. The errors for pyridine (0.08�0.52 eV)
are comparably low and can compete with the OMx results,
which are obtained on the CISDTQ level. Here, we see again that
the totally symmetric excitation has the largest difference from
the TBE value. The same holds for s-tetrazine (errors are
0.04�1.17 eV), where the MSINDO-sCIS results are closer to
the TBE-2 values than any other semiempirical method, except
for the highest vertical triplet excitation of s-tetrazine in the
benchmark set. Here, we have a large error of 1.17 eV.
Aldehydes, Ketones, and Amides. The vertical triplet excita-

tion energies of all aldehydes, ketones, and amides are over-
estimated by 0.07�0.88 eV. The qualitative state ordering is
correct for all cases. Formaldehyde and acetone triplet excited
states are described with acceptable errors comparable to OMx.
Within the MSINDO-sCIS approach, we observe the general
trend of an overestimation and no scattering as for all other
semiempirical methods. Compared to OMx methods, the same
behavior is observed for p-benzoquinone within the MSINDO-
sCIS method. All states of this molecule are within a maximum
overestimation of 0.2 eV except for the Au state, where an error of
0.61 eV is obtained with MSINDO-sCIS. This is similar to that
for theOMxmethods, where the error for this state is in the range
of 0.41�0.61 eV. In the case of amides, we see again the effect
that the n�π* transitions are described with a much smaller error
than theπ�π* transitions. The errors are nearly twice as large for
the π�π* transitions. This is an effect which is not observed in
the OMx or INDO/S methods. In the OMx methods, the n�π*
transitions are underestimated by nearly the same amount by
which the π�π* transitions are overestimated. This makes a
simple shift of the values impossible for the OMx methods.
Within the MSINDO-sCIS theory for amides, aldehydes, and

ketones, the values could in principle be shifted by a small
amount to match it with experimental data.
5.3. Statistical Evaluation. To classify the MSINDO-sCIS

method within the mainframe of computationally feasible meth-
ods, we compared the statistical evaluation to three methods. We
have chosen INDO/S because of the conceptual equivalence,
OM3-CISDTQ, because it has been demonstrated that this
semiempirical method is currently the most accurate for the
description of excited states, and TD-B3LYP/TZVP, because of
its popularity in excited-state calculations. A statistical overview is
given in Table 5. Since the benchmark results for TBE-111 and
the more recent TBE-21 do not differ that much, the OM3,17

INDO/S,17 and TD-B3LYP16 statistics available in the literature
may be compared to the MSINDO-sCIS results benchmarked to
TBE-2. It can be seen that for singlet states the MSINDO-sCIS
method provides the same accuracy as the OM3-CISDTQ
method. The mean errors are half those of the OM3 method,
while the mean absolute errors are nearly the same. The standard
deviation for singlets is comparable to those of the OM3 and
lower compared to those of the INDO/Smethod. Themaximum
+/� deviations of MSINDO-sCIS for singlets are higher than in
the OM3 method but still smaller than for the INDO/S method.
The outlier in the MSINDO-sCIS method is the 21A1 state of
acetone, which is a π�π* transition. The totally symmetric
excitations are in general the problematic states in our CIS
method, indicating that the simple correction term (eq 4 ) is
not very accurate. A comparison with the INDO/S method
shows that MSINDO-sCIS is slightly better in all statistical
aspects, while TD-B3LYP/TZVP is in turn better by a factor of
1.5 to 2 in all values. But in the overall view on the important
statistical points, it can be seen that the MSINDO-sCIS accuracy
for singlets is sufficient. For triplet excitations, MSINDO-sCIS is
well behaved. Although no higher excitations than singles are
explicitly included, MSINDO-sCIS is on a similar level as OM3-
CISDTQ. Even the maximum +/� deviations are comparable
to those of OM3-CISDTQ. Comparing the MSINDO-sCIS
statistics with those of INDO/S shows that, although the
methods are conceptionally similar, MSINDO-sCIS is superior.
The comparison with TD-B3LYP shows thatMSINDO-sCIS can
compete with TD-DFT for triplet states. Here, MSINDO-sCIS
has—similar to OM3-CISDTQ—only a slightly larger standard

Table 5. Deviations of Vertical Excitation Energies in eV for Singlet andTriplet Excited States fromTBE for TD-B3LYP, INDO/S,
and OM3-CISDTQa

singlet states (count = 103)b TD-B3LYP/TZVPc INDO/Sd OM3-CISDTQd MSINDO-sCIS

mean error [eV] �0.07 �0.23 �0.22 �0.10

mean abs. error [eV] 0.27 0.51 0.45 0.44

std. dev. [eV] 0.33 0.70 0.54 0.59

max.(+) dev. [eV] 1.02 2.79 1.76 2.19

max.(�) dev. [eV] 0.75 1.45 1.19 1.42

triplet states (count = 63) TD-B3LYP/TZVPc INDO/Sd OM3-CISDTQd MSINDO-sCIS

mean error [eV] �0.45 �0.31 �0.26 �0.01

mean abs. error [eV] 0.45 0.65 0.45 0.50

std. dev. [eV] 0.49 0.86 0.54 0.59

max.(+) dev. [eV] 2.49 1.08 1.17

max.(�) dev. [eV] 0.93 2.01 1.17 1.17
aMSINDO-sCIS errors are given with respect to TBE-2. bCount for TBE-1 is 104 for OM3 andTD-B3LYP/TZVP and 103 for INDO/S. cTBE-1 values
taken from ref 16. dTBE-1 values taken from ref 17.
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deviation, which results in a comparable reliability to that of
TD-B3LYP, although the maximum +/� deviations are higher.

6. CHARGE-TRANSFER STATES

The standard approach for excited state calculations, TD-
DFT, has well-known problems with charge transfer (CT)
states.13�15 In order to compare our present approach with
TD-DFT, we studied the common benchmark system, the
C2H4�C2F4 complex.

53 There is a high-lying CT state at around
13 eV, where one electron of ethene is transferred to the tetra-
fluoro-ethene. To visualize the results, we plotted the excitation
energy against the distance between both molecules (see
Figure 2). For the TD-DFT calculations, we used the ORCA
program package.50 Starting with optimized structures of ethene
and tetra-fluoro-ethene, the excitation energies were calculated
starting with a distance of 4 Å. This distance was increased up to
10 Å with a step value of 1 Å. The energy of the CT state with
respect to its value at R = 4 Å was then plotted against the
distance. It can be seen from Figure 2 that MSINDO-sCIS gives
the correct 1/R behavior, while the TD-DFTmethods fail to give
the correct description. This is a typical problem in TD-DFT and
cannot even be solved by using double hybrid methods.15Within
the ab initio CIS theory, on the other hand, this problem is totally
absent. Therefore, it should not appear in semiempirical methods
that are based on Hartree�Fock theory. Since we have intro-
duced scaling parameters in the description of the excited state
(eq 6), it was necessary to ensure that the CT error does not
occur in our method. But according to the present results, the 1/R
behavior is still correctly reproduced with MSINDO-sCIS.

7. SUMMARY AND CONCLUSIONS

We have introduced a novel method for the calculation of
excited states at a semiempirical level. Since the parametrization
included ground state properties, the MSINDO-sCIS method
yields reliable results for both ground and excited states. This is
an improvement over the common INDO/S methods, which
focus on excited states. We have demonstrated that the vertical
excitation energies obtained with MSINDO-sCIS are in reason-
able agreement with the TBEs, comparable to theOM3methods.
Most errors are in the range of 0.1�0.6 eV, with a trend toward
larger errors for higher excitations. Compared to TD-B3LYP, the

MSINDO-sCIS method has a larger mean error, but it has two
major advantages. First, the calculation times are orders of
magnitude smaller, and second, the charge-transfer error is not
present. A comparison of the accuracy with TD-B3LYP shows
that MSINDO-sCIS can even compete for triplets. This is quite
surprising, but it shows that the parameters are well balanced for
the exchange part. For the triplet case, MSINDO-sCIS is superior
to all other semiempirical methods except the OMx methods.
Furthermore, due to the use of the Davidson�Liu algorithm,
MSINDO-sCIS is computationally more efficient. Conceptually
MSINDO-sCIS is below the OMx level, because OMx methods
include NDDO integrals and also higher excitations. But we
showed that a careful parametrization yields comparable results,
although some of the parameters lost their physical significance.
Therefore, it cannot be excluded that the new parametrization
gives unbalanced results for systems that are quite different from
those not included in the reference set. A couple of outliers have
been observed in the present study, e.g., for the 21A1 state of
acetone. This may be an indicator for an unbalanced treatment of
the excited state energies. There are other outliers where
MSINDO-sCIS gives large errors for excited states with large
doubles contributions (for example, in the polyenes). However,
the overall performance is quite satisfactory.

Although analytical gradients for all sorts of semiempirical
wave functions have been available for a number of years,54 it is
another advantage of the present approach that analytical
gradients of a CIS wave function are much easier to implement55

and faster to calculate than for higher excited determinants. This
opens an efficient way for the calculation of electronic spectra,
including vibrational coupling and excited-state geometries.
Therefore, future applications to technically important systems,
e.g., organic solar cells, are planned, where CT states play an
important role and the molecules consist of several hundred
atoms. Here, the larger errors for high-lying states do not play an
important role since usually only the few lowest states are of
interest.

Due to the implementation of the cyclic cluster model in
MSINDO,56 the calculation of excited state properties of solids and
surfaces is another subject of future research withMSINDO-sCIS.57
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ABSTRACT: The low-lying excited states (La and Lb) of polyacenes from naphthalene to heptacene (N = 2�7) are studied using
various time-dependent computational approaches.We perform high-level excited-state calculations using equation of motion coupled
cluster with singles and doubles (EOMCCSD) and completely renormalized equation of motion coupled cluster with singles, doubles,
and perturbative triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of various range-separated exchange-
correlation functionals within linear-response (LR) and real-time (RT) time-dependent density functional theories (TDDFT). As has
been reported recently, we find that the range-separated family of functionals addresses the well-documented TDDFT failures in
describing these low-lying singlet excited states to a large extent and are as about as accurate as results from EOMCCSD on average.
Real-time TDDFT visualization shows that the excited state charged densities are consistent with the predictions of the perimeter free
electron orbital (PFEO) model. This corresponds to particle-on-a-ring confinement, which leads to the well-known red-shift of the
excitations with acene length.We also use time-dependent semiempirical methods likeTD-PM3 andTD-ZINDO,which are capable of
handling very large systems. Once reparametrized to match the CR-EOMCCSD(T) results, TD-ZINDObecomes roughly as accurate
as range-separated TDDFT, which opens the door to modeling systems such as large molecular assemblies.

1. INTRODUCTION

Polyacenes or acenes constitute a class of polycyclic organic
compounds consisting of linearly fused benzene rings. These
compounds, and their derivatives, have been studied extensively,
and over the last several years, the larger representatives in this class
have been used in a plethora of applications such as light-emitting
diodes,1�4 photovoltaic cells,5�7 liquid crystal displays,8 and organic
field-effect transistors9,10 to name a few. Pentacene, in particular, has
received much attention because of its high charge-carrier (hole)
mobility in films andmolecular crystals.11�13 For an overview of the
electronic applications of acenes, see the reviews by Anthony.14,15

In a nutshell, the electronic properties of these materials are
dictated by the π electrons which occupy the highest occupied and
lowest unoccupied states; theπ interactions between adjacent acene
molecules, for example, give rise to the high hole mobility through
molecular films. In a single molecule, the lowest valence excitations
have π�π* character, and the two lowest singlet excitations are
commonly assigned as the La (B2u symmetry) and Lb (B3u
symmetry) states, respectively. The former represents the polariza-
tion along the short axis, while the latter represents the polarization
along the long axis. The Lb is the lowest excited state in naphthalene
but switches positions with the La state for larger acenes, with the
crossing happening around anthracene. It has long been suggested,
from a valence-bond point of view, that the La state ismostly ionic in
character involving significant rearrangement of the excited-state
density, whereas the Lb state is mostly covalent where the excited-
state density is similar to the ground state.

There has been significant progress in describing these
excitations theoretically,16�23 within which time-dependent

density functional theory (TDDFT)24�26 has been the predo-
minant method. It is now well-known, however, that for TDDFT
traditional and global hybrid functionals fail to describe these
lowest excitations. Grimme and Parac demonstrated that the
ordering switches earlier than expected with both classes of
functionals, and the excitation energy of the La state is severely
underestimated and progressively worsens with system size.20

Increasing the Hartree�Fock (HF) content in the exchange-
correlation improves the picture, but La worsens the excitation
energy of the Lb state. They concluded that it was impossible
to capture both states accurately just by adjusting the HF
content.

Very recently, range-separated hybrid (RSH) functionals have
been applied to the La state in acenes.17�19,22 RSHs correct the
incorrect asymptotic behavior of the exchange by splitting the
exchange into a short-range part and a long-range part. For many
optically active charge transfer states, RSHs rival the accuracy of the
equation of motion coupled cluster singles doubles (EOMCCSD)
method on average. The success of RSHs in this case, however, is in
many ways quite surprising, as the La state is an intramolecular
transverse excitation (along short-axis of molecule) and clearly not
long-range at all. Richard and Herbert labeled this a charge-transfer-
like state in disguise,18 which Kuritz et al. subsequently rationalized
as arising from minimal overlap in auxiliary orbitals,19 akin to
minimal overlap of the hole/charge orbitals in a typical charge
transfer excitation.
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In some sense, acenes serve as a rough prototype for a more
complicated light harvesting system and also as the fundamental
building block for many molecular electronic devices. Careful
analysis of the excitations in these deceptively simple molecules
serves as a crucial test for the accuracy and predictive power of a
theoretical technique, as indicated by the intense interest in
benchmarking TDDFT results in these systems. In this light, our
main goal in this paper is to examine the low-lying excited states
of polyacenes from naphthalene to heptacene (Figure 1) using a
wide selection of time-dependent approaches. We first perform a
systematic analysis based on high-level coupled cluster
(EOMCCSD and CR-EOMCCSD(T)) calculations. These cal-
culations are used to benchmark the performance of various
range-separated exchange-correlation functionals implemented
within linear response and real-time TDDFT. Additionally, we
explore the use of semiempirical time-dependent PM3 and
ZINDO for describing these excitations and reparametrize their
Hamiltonians to better match the results of high level theory. All
structures were obtained using cc-pVTZ/B3LYP.

The rest of the paper is organized as follows: In section 2, we
briefly review the various time-dependent approaches used in
this study and provide the necessary computational details. The
results are presented and discussed in section 3 and the con-
cluding remarks in section 4.

2. METHODOLOGIES AND COMPUTATIONAL DETAILS

Below, we briefly review the formalisms for equation of motion
coupled cluster (EOMCC), real-time time-dependent density

functional theory (RT-TDDFT), and real-time time-dependent
PM3 and ZINDO. All results except the PM3 and ZINDO ones
were obtained using NWChem.27 The TD-PM3 results were
obtained by a modification of the PM3 module from MOPAC
6.0,28,29 to perform iterative time-dependent calculation of the TD-
PM3 excitation energies.30 The TD-ZINDO results were obtained
by an analogous modification of ZINDO from the ZINDO-MN
package.31 The linear response TDDFT results were calculated
using the module in NWChem; since the approach is widely used
(e.g., refs 26 and 32), we omit the details.
2.1. Equation of Motion Coupled Cluster. The EOMCC

formalism33 can be viewed as an excited-state extension of the
single-reference coupled cluster method, where the wave func-
tion corresponding to the Kth state is represented as

jΨKæ ¼ RK eT jΦæ ð1Þ
where T and state-specific RK operators are the cluster and
excitation operators, respectively, and |Φæ is the so-called
reference function usually chosen as a Hartree�Fock determi-
nant. Various approximate schemes range from the basic
EOMCCSD approximation where the cluster and correlation
operators are represented as sums of scalar (RK,0 for excitation
operator only), single (T1,RK,1), and double (T2,RK,2) excitations

jΨEOMCCSD
K æ ¼ ðRK, 0 þ RK, 1 þ RK, 2Þ eT1 þ T2 jΦæ ð2Þ

to the more advanced EOMCCSDT and EOMCCSDTQ ap-
proach, accounting for the effect of triple and/or quadruple
excitations. It has been demonstrated that the progression of
methods, EOMCCSDf EOMCCSDTf EOMCCSDTQ..., in
the limit converges to the exact (full configuration interaction)
energies. However, the rapid growth in the numerical complexity of
theEOMCCmethodsmakes calculationswith theEOMCCSDTor
EOMCCSDTQ methods very expensive, even for relatively small
systems. Unfortunately, the EOMCCSD method is capable of pro-
viding reliable results only for singly excited states. However, as has
recently been demonstrated,34 errors in the range of 0.25�0.30 eV
with respect to the experimental vertical excitation energies (VEE)
persist with increasing system size.
In order to narrow the gap between the EOMCCSD and

EOMCCSDT VEEs, several noniterativeN7-scaling methods that
mimic the effect of triples in a perturbative fashion have been pro-
posed in the past.35�40The completely renormalizedEOMCCSD(T)
approach, denoted CR-EOMCCSD(T),41 falls into this class
(see also refs 42 and 43�45 for the most recent developments).
In this approach, the energy correction δK

CR�EOMCCSD(T) is added
to the EOMCCSD VEE (ωK

EOMCCSD)

ωCR � EOMCCSDðTÞ
K ¼ ωEOMCCSD

K þ δCR � EOMCCSDðTÞ
K ð3Þ

whereδK
CR�EOMCCSD(T) is expressed through the trial wave function

ÆΨK| and the triply excitedEOMCCSDmomentoperatorMK,3
EOMCCSD

(see ref 41 for details):

δCR � EOMCCSDðTÞ
K ¼ ÆΨK jMEOMCCSD

K, 3 jΦæ
ÆΨK jðRK, 0 þ RK, 1 þ RK, 2Þ eT1 þ T2 jΦæ

ð4Þ
Although the CR-EOMCCSD(T) method is characterized by the
same N7 scaling as the ground-state CCSD(T) method,46 the fact
that triply excited EOMCCSD moments need to be calculated
makes this approach a few times more expensive than the ground-
state CCSD(T) approach.

Figure 1. Structures of the acenes studied. From top to bottom:
naphthalene (N = 2), anthracene (N = 3), tetracene (N = 4), pentacene
(N = 5), hexacene (N = 6), heptacene (N = 7).
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2.2. Real-Time TDDFT. In real-time time-dependent density
functional theory (RT-TDDFT), the time-dependent Kohn�
Sham (KS) equations are explicitly propagated in time:

i
∂ψiðr, tÞ

∂t
¼ � 1

2
∇2 þ vKS½F�ðr, tÞ

� �
ψiðtÞ ð5Þ

¼ �1
2
∇2 þ vextðr, tÞ þ vHðr, tÞ þ vXC½F�ðr, tÞ

� �
ψiðtÞ

ð6Þ
where F(r,t) is the charge density, vext(r,t) is the external
potential describing the nuclear�electron and applied field
contributions, vH(r,t) is the electron�electron potential, and
vXC[F](r,t) is the exchange-correlation potential, which is hen-
ceforth assumed to depend only on the instantaneous density
(adiabatic approximation). In a Gaussian-orbital basis, it is
simpler to work with density matrices rather than KS orbitals,
in which case the evolution of the electronic density is governed
by the von Neumann equation:

i
∂P0

∂t
¼ ½F0ðtÞ,P0ðtÞ� ð7Þ

where the prime notation denotes matrices in the orthogonal
molecular orbital (MO) basis and unprimed denotes matrices in
the atomic orbital (AO) basis. Note that in eq 7, all matrices are
complex quantities. The Fock matrix F(t) is computed in the AO
basis similar to ground state DFT, with the important distinction
that in the absence of Hartree�Fock exchange (e.g., pure DFT);
F(t) is real symmetric and only depends on the real part ofP(t). If
HF exchange is included (e.g, hybrid functionals), it becomes
complex Hermitian (see ref 47 for details of the NWChem RT-
TDDFT implementation, derivations, and references).
There are numerous approaches taken to propagate eq 7. In

this study, we use a second order Magnus scheme, which is
equivalent to an exponential midpoint propagator

P0ðt þ ΔtÞ ¼ e�iF0ðt þ Δt=2ÞΔtP0ðtÞ eiF0ðt þ Δt=2ÞΔt ð8Þ
where we compute the Fock matrix at the future time via linear
extrapolation from the previous two values, followed by iterative
interpolation until converged. This approach is extremely stable,
as it maintains the idempotency of the density matrix and yields
order (Δt)2 accuracy. In practice, this allows for time steps on the
order of Δt = 0.1 au = 2.42 � 10�3 fs with a minimal loss of
accuracy. The exponentiation of eq 8 is done via contractive
power series, where the operator is first divided by 2m such that
the norm of the scaled operator is less than 1, performing the
power series (which is guaranteed to converge well numerically
since it is contractive), then squaring the resultm times to recover
the result. All real-time TDDFT simulations here used a time
step of Δt = 0.2 au = 0.0048 fs and ran up to 1500 au = 36.3 fs,
which corresponds to 7500 time steps.
To obtain spectroscopic information, the system is excited via

a linearly polarized (x, y, z) narrow Gaussian electric field kick,
which adds to the Fock matrix via dipole coupling:

EðtÞ ¼ k exp½�ðt � t0Þ2=2w2�d̂ ð9Þ
where d̂ = x̂, ŷ, ẑ is the polarization, k is the field maximum
(dimensions of electric field), t0 is the center of the pulse, andw is
the width, which is typically ∼Δt. This induces all electronic
modes simultaneously, and the Fourier transform of the resulting

time-dependent dipole moment yields the absorption spectrum
for that polarization. The sum of the three spectra gives the full
absorption. In the limit of a small electric field perturbation, real-
time TDDFT and linear-response yield essentially identical
spectroscopic results. Unlike LR-TDDFT, RT-TDDFT is also
valid in the strong perturbation regime, but the studies pre-
sented here are all the weak-field type and thus comparable to
LR-TDDFT. All kick-type results here used a kick with k =
0.002 au = 1.0 V/nm, t0 = 3.0 au = 0.07 fs, and w = 0.2 au =
0.0048 fs.
The true power of RT-TDDFT, however, lies in direct

modeling of the electron dynamics in response to a realistic
stimulus, such as a laser tuned to resonance with a particular
electronic transition. For example, to excite the system into a
particular state of interest, it is simplest to use a Gaussian
enveloped monochromatic laser pulse of the form:

EðtÞ ¼ k exp½�ðt � t0Þ2=2w2� cosðω0tÞ d̂ ð10Þ
where ω0 is the driving frequency and w is broad enough to
encapsulate at least a few oscillations. In this case, the charge
density can be visualized in 4D (three space + time), which yields
detailed insight into the fundamental nature of the excitation.
This is especially important as an intuitive metric for characteriz-
ing charge transfer excitations, and when elucidating the me-
chanism of excitations. In this paper, RT-TDDFT is used as a
visual tool to assign longitudinal and transverse excitations into
two distinct classes (ionic vs covalent, respectively) and to study
the physical origin of the red-shift with acene length.
2.3. Time-Dependent Semiempirical Methods. A well-

known alternative to first-principles approaches is semiempirical
methods (e.g., PM328 and ZINDO48) which can be extended to a
time-dependent formalism.30 A minimal valence basis set is used,
so that there are only four orbitals for each carbon atom.
Typically, the Fock matrix has the generic Hartree�Fock-like
form:

Fij ¼ hij þ ∑
kl
vijklPij ð11Þ

where hij and vijkl are semiempirical one-body and interaction
parameters, respectively. Unlike Hartree�Fock and DFT,
however, the interaction parameters are restricted to be at
most two-center. The calculations are done in an atomic basis
(rather than molecular orbital basis, which earlier TD-semi-
empirical methods use) so that the calculation of the Fock
matrix scales like N2, where N is the number of orbitals.
After the initial SCF solution labeled as P0, the same von

Neumann equation as in TDDFT (eq 7) is propagated.While the
same real-time approach as in eq 8 could have been used, here,
however a different algorithm is found to be more efficient. The
algorithm has been covered recently (see ref 30), so it will only be
briefly reviewed. Basically, the linear-response von Neumann
operator is constructed:

LZ � dZ
dt

¼ � i
½FðP0 þ ηZÞ,P0 þ ηZ� � ½FðP0Þ,P0�

η
ð12Þ

for the deviation from the initial density matrix:

Z � P� P0 ð13Þ
and η is a small parameter ensuring linearity. Then, the time-
dependent dynamics are represented by writing a Chebyshev
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algorithm for the propagator:

ZðtÞ ¼ eLtZ0 ¼ ∑
n
ð2� δn0Þ JnðtΔHÞ Tn

L
ΔH

� �
Z0 ð14Þ

where we introduced the Bessel and modified Chebyshev
operators, with the latter propagated as

Tn
L
ΔH

� �
Z0 ¼ 2

L
ΔH

Tn�1
L
ΔH

� �
Z0 þ Tn�2

L
ΔH

� �
Z0 ð15Þ

and

Z0 ¼ � i½D,P0� ð16Þ
where D is the dipole moment matrix. ΔH is half the spectrum
width, so that (ΔH)�1 is the effective time-step; it is quite large
(almost 0.4 au), so that the overall number of iterations required
is quite small (a few thousands even without any signal proces-
sing approaches). This approachminimizes the number of matrix
multiplications, which in semiempirical calculations are the most
time-consuming steps (scales as N3 unless sparse matrix algo-
rithms are used). Further savings are obtained by Fourier
transforming the time-dependent Bessel function coefficients
in eq 14 analytically, thereby reducing the required number of
iterations. As with RT-TDDFT, spectroscopic information is
obtained via kick-type excitations.

3. RESULTS

In this section, we present acene vertical excitation energies
(VEEs) for a wide range of theories: coupled cluster (EOMCCSD,
CR-EOMCCSD(T)), linear response TDDFT with a global
hybrid functional (B3LYP49) and a variety of range-separated
functionals (CAM-B3LYP,50 LC-BLYP, LC-ωPBE,51 BNL52),
real-timeTDDFTwith the BNL functional, and two semiempirical
methods (TD-ZINDO, TD-PM3). Before discussing results, it is
important to note that vertical excitation energies, which corre-
spond to the energy difference between ground and excited states
without a change in geometry, cannot be directly measured
experimentally (see ref 21). As a good approximation, VEEs can
be measured experimentally via the locations of experimental
UV�vis absorption peaks, but the accuracy of this approximation
varies depending on state andmolecule, with deviations typically on
the order of a few tenths of an electronvolt. To ensure meaningful
comparisons between the computedVEEs and experimental results,
we use the corrected acene experimental values from Grimme and
Parac20 (see ref 53 for the original experimental results). In a
nutshell, these incorporate adjustments to the La and Lb states
computed from TDDFT (B3LYP/TZVP) excitation energies with
fully optimized excited state geometries (calculated for acenesN=2,
3, 4; extrapolated to N = 5, 6, 7). This somewhat accounts for
geometry relaxation effects, but significant theory�experiment
discrepancies still arise from basis set quality and the level of
theory, specifically the treatment of correlation effects.

The La and Lb vertical excitation energies for the set of acenes
are summarized in Table 1, along with the corrected experi-
mental values, and the mean average error (MAE) from the
experiment, for the full set of acenes for each approach. These
VEEs (for a few representative theories) are plotted against acene
size in Figure 4. Qualitatively speaking, all methods capture most
of the gross features, including the red-shift of the Lb (longitudinal)
state with acene length and the steeper red-shift of theLa (transverse)
state with acene length. However, there is only mixed success in

describing the important experimentally observed crossover of
the lowest energy state from La f Lb around anthracene; this is
discussed in more detail below.
3.1. Equation-of-Motion Coupled Cluster. Overall, CR-

EOMCCSD(T) has the best agreement with experimental en-
ergies, with a MAE of 0.07 eV for the La state and 0.06 eV for the
Lb. Most importantly, CR-EOMCCSD(T) simultaneously de-
scribes both states well and captures the crossover at the right
energy (near anthracene). That is, it predicts that La is lower in
energy than Lb for naphthalene. They are roughly equal for
anthracene, and Lb is lower afterwards (see Figure 2). In contrast
to the experimental vertical excitation energies, the EOMCCSD
and CR-EOMCCSD(T) approaches predict for anthracene the
reversed ordering of the La and Lb states. TheCR-EOMCCSD(T)
excitation energy for the Lb state is located 0.1 eV below the one
corresponding to the La state. Similar reverse ordering has been
reported in the context of multireference Møller�Plesset
(MRPT) theory54,55 calculations for low-lying excited states of
anthracene.16 In the case of the MRPT approach, the 0.17 eV
separation between Lb and La states is slightly larger than 0.1 eV
obtainedwith theCR-EOMCCSD(T)method for POL1basis set.
The CC2 model,56 which is an approximation to the EOMCCSD
formalism, predicts the La state to the lowest state, and the
calculated separation between La and Lb states is around 0.2 eV.
3.2. Linear Response TDDFT.The range-separation parameter

for the CAM-B3LYP,50 LC-BLYP, and BNL52 functionals was
taken to be 0.33 au�1; for LC-ωPBE,51 it was 0.30 au�1. For the
transverse charge-transfer-like La state (solid lines in Figure 2), all
of the range-separated TDDFT results agree well with experi-
mental results and EOMCC, with MAE typically around a few
hundredths of an electronvolt. Real-time BNL results are essen-
tially the same as the corresponding linear response ones, since the
kick perturbation was small. Range-corrected TDDFT is less
accurate for the Lb state, however, with MAEs of ∼0.3 eV, which
is almost twice that of B3LYP. Thus, range-separated TDDFT
excels at predicting the challenging charge-transfer-like La state,
but using a range-separated functional significantly compromises
the accuracy of the Lb state versus a global hybrid approach (e.g.,
B3LYP). To better understand the accuracy of RSH functionals,
two versions of the CAM-B3LYP functional were studied: The
first, denoted “CAM-B3LYP (I)”, has an asymptote of 0.65/r (i.e.,
α + β = 0.65), while the second, denoted “CAM-B3LYP (II)”, has
an asymptote of 1.0/r. The full Hartree�Fock asymptote in the
exchange inCAM-B3LYP (II) improves the accuracy in the La state
at a cost of slightly decreasing the accuracy of theLb state.On another
note, range-separated TDDFT correctly predicts the La f Lb
crossover (intersection of like-colored solid and dashed lines in
Figure 2), albeit at a lower energy than the experiment. B3LYP, in
contrast, fails to even qualitatively capture this crossover. In short,
using range-separated functionals overcomes many of the failures
of pure or hybrid DFT functionals in describing the transverse La
state and the Laf Lb crossover, with overall accuracy rivaling that
of CC2. The use of “tuned” RSHs, which has been pioneered by
Baer and co-workers,57 shows promise in further improving the
accuracy of TDDFT for systems such as this.19

3.3. Time-Dependent PM3 and ZINDO.We performed time-
dependent simulations with two typical semiempirical methods,
PM3 and ZINDO. The latter is well-known to be better for
spectra, as our results indicate. In order to parametrize the TD-
ZINDOapproach against the coupledCR-EOMCCSD(T) results
for the charge-transfer-like La, we scaled down the strength of the
ππ0 interaction potentials, as is commonly done in ZINDO. We
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found that a scaling factor of 0.64, whichwe denote “ZINDO(II)”,
yielded the best fit, compared to the stock scaling factor of 0.70
(denoted “ZINDO (I)”). In the case of the general ZINDO (I),
the La is fairly poorly described (MAE of 0.24 eV), whereas the
longitudinal Lb is quite well described, akin to the B3LYP results.
The La-tuned ZINDO (II), however, is extremely accurate for the
La state, but as with range-separated TDDFT, the corresponding
accuracy in the Lb state suffers. One drawback of ZINDO,
however, is that it fails to properly capture the crossover. ZINDO
(I) predicts that La and Lb are roughly equal in energy at N = 2,
whereas ZINDO (II) incorrectly predicts that Lb is always higher
in energy than Lb. Of course, the excellent quality of ZINDO (II)
results for the La are a consequence of being fit to this particular

state, but it is still quite remarkable that with a single parameter it is
possible to simultaneous fit six molecules so well. These results
suggest that carefully parametrized semiempirical approaches are
an excellent tool for modeling excitations in large polyaromatic
hydrocarbons, where large system size makes coupled cluster, or
even TDDFT, unfeasible.
3.4. Real-Time Visualization of the Excited Charge Density.

Next, to gain insight into the nature of the excitations, we present
real-time real-space visualization of the excited state charge den-
sity for the (transverse) La state. The (longitudinal) Lb state has
too small an oscillator strength to visualize clearly, so the major
bright longitudinal UV Bb absorption (see Figure 3) was chosen
as an illustrative analogue (note this peak is not compared in
Table 1). As before, the system was described using the BNL
functional, and for speed the smaller 6-31G** basis set was used
instead of POL1. The spectra of the acenes with 6-31G** basis
sets were extremely similar to the POL1 spectra, save a slight
blue-shift due to the smaller basis.
Figure 4 shows real-time TDDFT snapshots of the deviation of

the charge density from the ground state for anthracene and
heptacene after resonant excitation to the La state. Unlike plots of
molecular orbitals, which are strictly ground state quantities,
Figure 4 corresponds to the actual charge density dynamics result-
ing from an excitation. For the longitudinal excitation (top), blue
isosurfaces correspond to positive charge density deviation from
the ground state, F(r,t) � F(r,t = 0) = 10�6 Å�3, and red iso-
surfaces to the corresponding negative deviation. In the transverse
excitation (bottom), the isosurface values were 10�7 Å�3. The two
excitations were induced via longitudinal or transverse polarized
enveloped laser pulses (see eq 10), with w = 2π/ω0 and t0 = 5w;
the values of the driving frequencies ω0 are shown in Figure 4,
along with the time taken for half an oscillation to occur.

Table 1. The Two Lowest Singlet Excitation Energies in eV for the N = 2�7 Series of Acenes for a Range of Theories and the
Corresponding Mean Absolute Error (MAE) and Maximum Absolute Error (XAE) in eV from the Experimental Valuesa

N PM3

ZINDO

(I)

ZINDO

(II) B3LYP

CAM-

B3LYP (I)

CAM-

B3LYP

(II)

LC-

BLYP

LC-

ωPBE BNL BNL (real-time) CC220
EOM-

CCSD

CR-EOM-

CCSD(T) exptl20

La state (transverse; bright)

2 3.50 4.23 4.59 4.35 4.64 4.81 4.77 4.77 4.86 4.79 4.88 5.09 4.79 4.66

3 2.94 3.30 3.55 3.19 3.51 3.71 3.66 3.66 3.72 3.68 3.69 4.00 3.69 3.60

4 2.53 2.67 2.85 2.42 2.75 2.95 2.91 2.90 2.94 2.91 2.90 3.25 2.94 2.88

5 2.22 2.23 2.37 1.88 2.21 2.40 2.37 2.37 2.39 2.41 2.35 2.72 2.42 2.37

6 1.99 1.92 2.03 1.48 1.82 2.00 1.99 1.99 2.00 1.96 1.95 2.34 2.05 2.02

7 1.81 1.68 1.77 1.17 1.52 1.70 1.69 1.70 1.70 1.69 1.60 2.05 1.77 �
MAE 0.47 0.24 0.03 0.44 0.12 0.08 0.05 0.04 0.08 0.07 0.08 0.37 0.07 �
XAE 1.16 0.43 0.07 0.54 0.20 0.15 0.11 0.11 0.20 0.13 0.22 0.43 0.13 �

Lb state (longitudinal; dim)

2 3.34 4.21 4.63 4.44 4.59 4.68 4.58 4.58 4.64 4.61 4.46 4.43 4.13 4.13

3 2.91 3.67 4.03 3.85 4.02 4.09 4.02 4.02 4.07 4.03 3.89 3.90 3.59 3.64

4 2.62 3.32 3.65 3.46 3.64 3.71 3.65 3.65 3.70 3.68 3.52 3.54 3.25 3.39

5 2.42 3.10 3.41 3.19 3.38 3.44 3.39 3.40 3.44 3.42 3.27 3.30 3.02 3.12

6 2.27 2.96 3.24 3.01 3.20 3.25 3.21 3.22 3.26 3.23 3.09 3.12 2.86 2.87

7 2.15 2.82 3.11 2.87 3.06 3.10 3.07 3.09 3.12 3.03 2.97 2.99 2.74 �
MAE 0.72 0.06 0.36 0.16 0.34 0.40 0.34 0.34 0.39 0.36 0.22 0.23 0.06 �
XAE 0.79 0.09 0.50 0.31 0.46 0.55 0.45 0.45 0.51 0.48 0.33 0.30 0.14 �

aThe La state corresponds to a transverse excitation with high oscillator strength (bright) and the Lb state to a longitudinal excitation with low oscillator
strength (dim). All TDDFT results are linear response unless noted otherwise.

Figure 2. Comparison between the two lowest singlet excitation
energies of the set of acenes for a selection of theories, along with the
experimental values. The solid lines correspond to the La (transverse)
excitation and the dashed lines to the Lb (longitudinal) excitation.
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Two distinct mechanisms of excitation are clearly visible in
Figure 4. The longitudinally excited charge density (Bb state;
top) sloshes back and forth along the π* orbitals along the acene
backbone; at the extrema, the charge density has piled up at one
end of the molecule, with corresponding depletion (hole) on the
opposite end. After transverse excitation (La state; bottom),
however, the density is driven from delocalized π orbitals across

the acene and forced to populate the orbitals above and below the
C�H bonds, which leads to alternating “fingers” of accumulated
charge, and thus alternating 3 3 3C

δ+Cδ�Cδ+Cδ�
3 3 3 atoms along

the acene. In a valence bond picture, this is an ionic-like excita-
tion, in agreement with previous analyses.18,20 The intra-
molecular charge-transfer-like character (or charge transfer in
disguise) is not due to a long-range pileup of charge but instead
arises from this ionic-like character. Here, range-separated func-
tionals perform well because they are able to capture interaction
between these regions of alternating charge and hole. This is
related to Kuritz et al.’s discussion, where a state is characterized
as charge-transfer-like on the basis of minimal overlap of auxiliary
orbitals.19

RT-TDDFT can also shed light on the origin of the red shifts.
As the acenes increase in length, the time taken to oscillate
increases (frequency decreases) for both the transverse and
longitudinal excitations. Although not immediately obvious,
the red shifts of both excitations can be rationalized in a similar
way. The simplest physical description for this comes from the
perimeter free electron orbital (PFEO) theory,1,58 which models
the π electrons as being confined in an oval-shaped infinite
potential with no other electron�nuclear or electron�electron
interactions. This leads to a particle-on-a-ring wave function for
each π electron; a particular electronic state is then characterized
by the total ring quantum number Q, which is the sum of the
individual ring quantum numbers. The number of nodal planes

Figure 3. Absorption spectrum of anthracene (N = 3) obtained via RT-
TDDFT (POL1/BNL). The bright La and dim Lb peaks correspond to
transverse and longitudinal excitations, respectively. The intensely bright
longitudinalUVBbpeak is visualized in Figure 4 but not compared inTable 1.

Figure 4. Real-time TDDFT (6-31G**/BNL) isosurface snapshots of the deviation of the charge density from the ground state for anthracene (N = 3)
and heptacene (N = 7), after resonant excitation (frequencies shown in eV). Positive deviation (more charge density than in the ground state) is shown in
blue, while negative deviation (less charge density than ground state) is shown in red. The time for a charge oscillation (half period) is shown in
femtoseconds. The longitudinal Bb state (note: not compared in Table 1) is covalent in nature. The ionic character of the La state is clearly visible from
the alternation of charge buildup above/below the C�H bonds and charge depletion on the carbon atoms between. The corresponding perimeter free
electron orbital (PFEO) theory structures are shown, confirming that the excited state densities at the oscillation maxima are extremely similar to those
arising from π electrons confined to a ring. The densities were visualized using Blender.59
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for a particular state is then Q, with alternating positive and
negative charge buildup at each antinode. This is clearly visible in
Figure 4, where the charge density deviations at the maxima of
the oscillations (i.e., the excited electronic states) directly match
up to the PFEO predictions. In anthracene, for example, the
excited state charge density of the Bb state corresponds to aQ = 1
state (one node; high longitudinal dipole moment), whereas the
La state corresponds to Q = 7 (seven nodes; low but nonzero
transverse dipole moment). The transition toQ = 7 (La) requires
less energy than that to Q = 1 (Bb), which is a consequence of
Hund’s rule.1 Larger acenes have larger circumferences, and thus
their excitation energies are red-shifted.

4. CONCLUSIONS

In summary, we have computed the La and Lb vertical
excitation energies for the acenes ranging from anthracene to
heptacene, using a broad spectrum of excited-state theoretical
approaches. High accuracy coupled cluster calculations (CR-
EOMCCST(T)) agree extremely well with experimental results
for both states and thus serve as a baseline for validating the lower
level theories. Global hybrid TDDFT (e.g, B3LYP) performs
poorly for theLa state, as expected, whereas range-separated
hybrid (RSH)TDDFT (e.g, CAM-B3LYP, LC-BLYP, etc) better
describes the ionic La state, at a cost of lost accuracy for the Lb
state. Real-time RSH TDDFT visualization shows that the
excited state charge densities are consistent with the predictions
of perimeter free electron orbital (PFEO) theory, and the red
shifts of the excitations are due to particle-on-a-ring-like con-
finements. For the semiempirical methods, with proper parame-
trization, ZINDO rivals range-separated hybrids in accuracy, at a
fraction of the computational cost. This suggests a multitiered
approach to modeling complicated acene derivatives, as well
films and crystals of these molecules: high accuracy coupled
cluster calculations validate RSH TDDFT calculations on small
(perhaps pairs of) molecules, which in turn enables careful
parametrization of semiempirical calculations capable of model-
ing large systems.
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ABSTRACT: The fluorazene molecule presents dual fluorescence in polar solvents. Its absorption and emission properties in gas
phase and in acetonitrile solution have been studied theoretically using the complete active space second-order perturbation//
complete active space self-consistent field quantum methodology and average solvent electrostatic potential from molecular
dynamics for the solvent effects. In gas phase, two optimized excited-state geometries were obtained, one of them corresponds to a
local excitation (LE), and the other is an intramolecular charge transfer (ICT) and lies higher in energy. In acetonitrile solution, a
second ICT structure where the molecule remains planar is found, and the energy differences are reduced. Fluorescence energies
from LE and the planar ICT have a good agreement with the experimental bands, but emission from the bent ICT has too low an
energy.

1. INTRODUCTION

A significant number of organic molecules with electron-donat-
ing and -withdrawing groups when immersed in polar solvents
display what is known as dual fluorescence. In nonpolar solvents,
as for most molecules, the fluorescence spectrum exhibits a single
band, whose maximum is only slightly shifted as the solvent
polarity increases, this is called the “normal” band. In polar
solvents, a second fluorescence band appears in the spectrum,
and the position of this second band varies more significantly
with the solvent polarity, this is called the “anomalous” band. The
relative intensity of the anomalous band increases with the
polarity, so that in highly polar solvents, the normal band can
disappear, and only the anomalous band is observed. This dual
fluorescence phenomenon has been profusely studied in the
literature since its discovery half a century ago.1,2 Most of these
studies are focused on the prototype molecule 4-(N,N-dimethyl-
amino)benzonitrile (DMABN) or its derivatives, including ex-
perimental investigations3�8 and theoretical works.9�16 It was
suggested early on that the origin of the anomalous fluo-
rescence band is the existence of an intramolecular charge
transfer (ICT) excited state, which is not normally accessible
in nonpolar solvents but which is stabilized in polar solvents and
can thus compete with the state responsible for the normal band,
usually called a local excitation (LE) state.

The validity of this explanation for the dual fluorescence is still
generally accepted. There is, however, a continuing controversy
between the various groups that have investigated this subject,
regarding the nature and the geometry of the ICT state, the
mechanism through which the LE and ICT states are formed, the
possible existence of further intermediate states, and practically
every other detail of the dual fluorescence phenomenon.

Probably the most accepted models for the dual fluorescence
in the DMABN molecule, and related compounds are the ones
known as twisted ICT (TICT) and planar ICT (PICT). These
models propose an ICT state where the donor and acceptor
groups adopt, respectively, a perpendicular or coplanar confor-
mation. Experimental evidence favoring one model or the other
is usually derived from comparison of the properties of com-
pounds with different geometric constraints and substituents.

For example, compounds, like 3,5-dimethyl-4-(N,N-dimethyla-
mino)benzonitrile, where the dimethylamino group is forced to
be twisted, display only the ICT band in fluorescence, suggesting
a TICT is responsible for the band. Other compounds where the
twisting is hindered (like 6-cyano-1,2,3,4-tethrahydroquinoline,
NTC6) can present dual fluorescence, which points to a PICT
state. These apparently contradictory conclusions possibly in-
dicate that the two models are not exclusive, and each particular
system will favor one of them.

In recent years, a pair of closely related molecules has been
studied for their dual fluorescence properties, see Figure 1. The
two rings in 1-phenylpyrrole (PP) can freely rotate around the
middle bond, while the methylene bridge in fluorazene (FPP)
effectively locks the rings in an almost planar conformation. Both
molecules display a very similar photophysical behavior, and in
particular, both show dual fluorescence in polar solvents. One of
the differences between the twomolecules is that apparently FPP
presents enhanced ICT emission compared to PP: the ICT band
appears in less polar solvents, and its quantum yield is higher.
This fact naturally leads to the conclusion that the PICT model
applies better to these molecules.17,18 However, most theoretical
calculations predict a twisted structure for the ICT state of
PP,19�23 which seems unsatisfactory.

In a previous work,24 we carried out a theoretical study on the
absorption and fluorescence properties of the PP molecule, both
in the gas phase and in acetonitrile solution. Our conclusion was
that there are different molecular structures accessible for the PP
and that the twisting of the rings is not necessary for reaching the
emitting ICT state. In this work we present a similar study for the
FPP molecule, where its electronic states are described with a
multiconfigurational quantum method, and we used an explicit
model of atomic detail for the solvent. By examining the relative
energies, geometries, and emission energies of the different
electronic states, we expect to obtain meaningful conclusions
for the study of this system.

Received: July 28, 2011
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2. METHODS AND DETAILS

Solvent effects on the FPP UV�vis spectra were calculated
with the average solvent electrostatic potential from molecular
dynamics (ASEP/MD) method. This is a sequential quantum
mechanics/molecular mechanics (QM/MM) method imple-
menting the mean field approximation. It combines, alternately,
a high-level QM description of the solute with a classical MM
description of the solvent. One of its main features is the fact that
the solvent effect is introduced into the solute’s wave function
as an average perturbation. Details of the method have been
described in previous papers,25�27 so here we will only present a
brief outline.

As mentioned above, ASEP/MD is a method combining QM
and MM techniques, with the particularity that full QM and
molecular dynamics (MD) calculations are alternated and not
simultaneous. During the MD simulations, the intramolecular
geometry and charge distribution of all molecules are considered
fixed. From the resulting simulation data, the average electro-
static potential generated by the solvent on the solute (ASEP) is
obtained. This potential is introduced as a perturbation into the
solute’s quantum mechanical Hamiltonian, and by solving the
associated Schr€odinger equation, one gets a new charge distribu-
tion for the solute, which is used in the next MD simulation.
This iterative process is repeated until the electron distribution of
the solute and the solvent structure around it are mutually
equilibrated.

The ASEP/MD framework can also be used to optimize the
geometry of the solute molecule.28 At each step of the ASEP/MD
procedure, the gradient and Hessian on the system’s free energy
surface (including the van der Waals contribution) can be
obtained, and thus they can be used to search for stationary
points on this surface by some optimization method. In the
computation of the gradient and Hessian, the free energy
gradient method29 is used, with the incorporation of the mean
field approximation to reduce the number of quantum calcula-
tions needed. In this way, after each MD simulation, the solute
geometry is optimized within the fixed “average” solvent struc-
ture by using the free energy derivatives. In the next MD simula-
tion, the new solute geometry and charge distribution are used.
This approach allows the optimization of the solute geometry in
parallel to the solvent structure.

For calculating transition energies, nonequilibrium solvation
is assumed. The iterative process is only performed on the initial
state of the transition (the ground state for absorption, the
excited state for emission), i.e., the atomic charges for the MD
and the energy derivatives for the geometry optimization of the
solute are calculated with the initial state’s wave function. Then,
with a frozen solvent model, the energies of the final states are
obtained.

Once the different solute electronic states and the solvent
structure around them have been optimized and equilibrated, the
free energy differences between those states can be calculated,
within the ASEP/MD framework, making use of the free energy

perturbation method.30,31 The expression we use to calculate the
free energy difference between two species in equilibrium in solu-
tion, ΔG, is

ΔG ¼ ΔE þ ΔGint þ ΔV ð1Þ

whereΔE is the difference in the internal quantum energy of the
solute between the two species, ΔGint is the difference in the
solute�solvent interaction energy, which is calculated classically
with the free energy perturbation (FEP) method, and ΔV is a
term that includes the difference in the zero point energy and
entropic contributions of the solute. The last term, ΔV, is
normally evaluated by applying the harmonic approximation to
the vibrational modes of the solute in solution, and it needs the
information provided by the Hessian matrix. In this work, obtain-
ing an accurate enough Hessian matrix required computational
resources that were too large, and we decided to approximate the
results by neglecting this term. It must be noted that thisΔV term
refers only to the internal nuclear degrees of freedom of the
solute; free energy contributions from the solvent around the
solute are properly accounted for in the ΔGint term.
2.1. Computational Details. The quantum calculations on

the solute molecule were done with the complete active space
self-consistent field (CASSCF) method,32 using the cc-pVDZ
basis set and aug-cc-pVDZ in some selected cases. The active
orbitals were the 6 π and π* valence orbitals of the phenyl ring,
plus the 5 π and π* of the pyrrole ring, and 12 electrons were
included in these orbitals, for a (12,11) total active space. All
calculations were performed using a state average (SA) of the first
five singlet states, with equal weights. It is known that, in order to
obtain accurate transition energies, it is necessary to include the
dynamic electron correlation in the quantum calculations, which
we did with the complete active space second order perturbation
(CASPT2) method,33,34 using the SA(5)-CASSCF(12,11) wave
functions as a reference. An ionization potential�electron affi-
nity (IPEA) shifted zeroth-orderHamiltonian has been proposed
for CASPT2 calculations,35 which is supposed to reduce sys-
tematic overstabilization errors in open-shell systems (as is the
case of the excited states studied here). We did all CASPT2 with
the proposed IPEA shift of 0.25 Eh(CASPT2(0.25)) as well as
with no IPEA shift (CASPT2(0.00)). To minimize the appear-
ance of intruder states, an additional imaginary shift of 0.1 iEh was
used. No symmetry was assumed in any case.
The MD simulations were carried out with rigid molecules,

with acetonitrile (CH3CN) as a solvent. Lennard-Jones param-
eters and solvent atomic charges were taken from the optimized
potentials for liquid simulations, all atoms (OPLS-AA) force
field,36 solute atomic charges were calculated from the quantum
calculations through a least-squares fit to the electrostatic poten-
tial obtained at the points where the solvent charges are located.
The geometry of acetonitrile was optimized with Becke’s three-
parameter Lee�Yang�Parr density functional (B3LYP) and the
6-311G** basis set. A total of 375 CH3CN molecules and the
solute were included at the experimental solvent density (779.3
kg/m3). Periodic boundary conditions were applied, and sphe-
rical cutoffs were used to truncate the interatomic interactions at
12.75 Å. Long-range interactions were calculated using the Ewald
sum technique. The temperature was fixed at 298.15 K by using
the Nos�e�Hoover thermostat. A time step of 0.5 fs was used
during the simulations, and each one was run for 50 ps after 25 ps
of equilibration.

Figure 1. Two related compounds with dual fluorescence.
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At each step of the ASEP/MD procedure, 500 configurations
evenly distributed from the MD run were used to calculate the
ASEP. The charges from each solvent molecule were kept
explicitly whenever the molecule’s center of mass was closer
than 9 a0 to any solute nucleus; the effect of the farther molecules
was included in an additional shell of fitted charges. Each ASEP/
MD run was continued until the energies and solute geometry
and charges were stabilized for at least five iterations, results are
reported as the average of these last five iterations.
For in solution calculations, a development version of the

ASEP/MD software26 was used. All quantum calculations were
performed with Molcas-7.4.37 All MD simulations were per-
formed using Moldy.38 The electrostatic potential generated by
the solute was calculated with Molden.39

3. RESULTS AND DISCUSSION

3.1. Gas Phase. 3.1.1. Optimized Geometries.The geometry of
the FPP molecule was optimized in the gas phase at the SA(5)-
CASSCF(12,11)/cc-pVDZ level for the electronic ground state
and different singlet excited states. For describing and comparing
the structures, we use some geometric parameters, such as the
average bond length of the phenyl ring (Ph), the average bond
length of the pyrrole ring (Py), the phenyl-pyrrole bond length
(Ph�Py), or the phenyl pyrrole twist angle (θ). See Figure 2 and
Table 1 for the atom numbering and parameter definitions.

The optimized ground state (GS) structure shows benzene
and pyrrole rings with normal aromatic bond lengths (Ph = 1.400Å,
Py = 1.391 Å). The two rings are coplanar, as can be seen in the
values of the angles ϕ,ψ andθ in Table 2. The bond lengths are in
general agreement with other published computed values,23,40

although our Ph�Py length, 1.376 Å, is 0.02 Å shorter than the
value reported in those works. This difference is probably due to
the state averaging in our calculations.
At the ground state geometry, the first excited state corre-

sponds mainly to a π f π* transition in the phenyl ring.
Optimisation of this state leads to the LE (local excitation)
geometry. In this structure the rings are also coplanar and Ph�Py
is shorter than for the GS (1.363 Å). The local excitation
character of this state is reflected in the significant increase of
Ph to 1.433 Å. These features agree with the results of Xu et al.,23

with about the same difference in Ph�Py as with GS. He and
Li,40 however, report a LE geometry with more important
differences, which they call “quinoid-like”, with a still shorter
Ph�Py length (1.347 Å) and smaller Ph; this might be due to
their use of a reduced active space (10 electrons in 9 orbitals).
The dipole moment of this state is practically zero.
The higher excited states at the GS geometry have a marked

charge transfer character. The electron density polarization is
inverted with respect to the ground state and the negative charge
is displaced toward the phenyl ring (this change of direction in
the polaraziation is indicated with a negative sign in the dipole
moment values in the tables). We optimized the geometry of a

Figure 2. Atom numbering of the FPP molecule.

Table 1. Definition of geometric parameters for the FPP
molecule. d is a bond length, a a bond angle, and D a dihedral
angle. Point A is placed at C6 + n(Ph), where n(Ph) is the
normal vector of the best-fit plane for the phenyl carbon
atoms, except C6. Point B is defined similarly for the N1 atom
and the pyrrole ring (including the nitrogen)

Ph ¼ 1
6
ðdðC6C7Þ þ dðC7C8Þ þ dðC8C9Þ þ dðC9C10Þ

þ dðC10C11Þ þ dðC11C6ÞÞ

Py ¼ 1
5
ðdðN1C2Þ þ dðC2C3Þ þ dðC3C4Þ þ dðC4C5Þ þ dðC5N1ÞÞ

Q ðPhÞ ¼ 1
4
ðdðC6C7Þ þ dðC8C9Þ þ dðC9C10Þ þ dðC11C6ÞÞ � 1

2
ðdðC7C8Þ þ dðC10C11ÞÞ

Q 0ðPhÞ ¼ 1
4
ðdðC6C7Þ þ dðC7C8Þ þ dðC9C10Þ þ dðC10C11ÞÞ

� 1
2
ðdðC8C9Þ þ dðC11C6ÞÞ

Q ðPyÞ ¼ 1
3
ðdðN1C2Þ þ dðC3C4Þ þ dðC5N1ÞÞ � 1

2
ðdðC2C3Þ þ dðC4C5ÞÞ

Ph� Py ¼ dðN1C6Þ
ϕ ¼ aðAC6N1Þ � 90�

ψ ¼ aðBN1C6Þ � 90�

θ ¼ DðAC6N1BÞ

Table 2. Geometrical parameters and dipole moments of the
different optimized structures of FPP in the gas phase.
Geometries optimized at the SA-CASSCF level, dipoles cal-
culated at the CASPT2(0.00) level. The negative sign in the
dipole indicates the negative charge is displaced toward the
phenyl ring

GS (S0) LE (S1) BQ (S1)

Ph (Å) 1.400 1.433 1.421

Py (Å) 1.391 1.393 1.396

Q(Ph) (Å) 0.005 �0.003 0.069

Q(Py) (Å) 0.016 0.030 �0.105

Ph�Py (Å) 1.376 1.363 1.446

ϕ (�) �0.1 0.0 30.1

ψ (�) �0.1 0.0 �4.9

θ (�) 0.0 0.0 2.1

μ (D) 1.18 0.10 �6.33

Table 3. Vertical Absorption Energies (in eV), Dipole Mo-
ments (in D), and Oscillator Strengths For the FPP Molecule
in the Gas Phase at the GS Geometrya

vertical energies

CASSCF CASPT2 exptb μ f

S0 1.18

S1 4.63 4.64 4.26 4.22 0.09 0.013

S2 5.75 5.18 4.68 4.71 �3.65 0.276

S3 5.91 5.56 5.18 (5.05) �6.12 0.028

S4 6.21 5.69 5.23 �7.99 0.174
aDipole moments and oscillator strengths calculated at the CASPT2-
(0.00) level. b In n-hexane.18
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charge transfer state in the gas phase, characterized by a quinoidal
phenyl ring and a bend between the two aromatic rings, and
therefore we will name it BQ (bent quinoidal). This structure has
a pyramidalised C6 atom, which is also displaced out of the main
phenyl plane. The two rings are distorted as described by the
values of Q(Ph) (positive) and Q(Py) (negative), and the
Ph�Py length is significantly larger than for the GS and LE
structures. Xu et al.23 report a similar structure for the ICT
minimum, but He and Li40 give a structure with “anti-quinoidal”
phenyl ring (negativeQ(Ph)). We could not obtain any different
ICTminimum in our calculations in the gas phase, which may be
due again to the different computational level employed.
3.1.2. Absorption. The vertical absorption properties of FPP

calculated at the optimized ground-state geometry (GS) are
summarized in Table 3. The CASSCF transition energies are
included for comparison, but it is known that dynamic electron
correlation must be included to obtain reliable results, and
therefore, we will only discuss CASPT2 energies in the rest of
the article. By comparing the two CASPT2 columns, it is clear
that CASPT2(0.25) values are consistently 0.4 eV to 0.5 eV
larger than CASPT2(0.00) values, a difference that has been
found and discussed in other works.24,41�43 Other properties like
dipole moments or oscillator strengths do not show such
variations, and only CASPT2(0.00) values are reported for them.
From the values in Table 3, the S0 f S2 transition appears to be
themost active in absorption, while the S0f S1 transition should
be much weaker, and the S0 f S4 transition could also be
observed. The experimental absorption spectrum of FPP in n-
hexane18 has a strong band at 4.71 eV, a much weaker band at
4.22 eV, and a shoulder at around 5.05 eV. Although CASPT2-
(0.25) results are generally less sensitive to basis set or active
space changes and more similar to other methods of like quality,
for the present calculations CASPT2(0.00) results are in better
agreement with the experimental values. Therefore, to facilitate
the discussion, in the rest of this work, we will refer in general to
CASPT2(0.00) values. A single-point calculation with diffuse
functions, using the aug-cc-pVDZ basis set, yielded very similar

results, with all absorption energies 0.1 eV to 0.2 eV lower, as
observed in previous works when the basis set is enlarged.
The electronic states S3 and S4 are dominated by single

excitations from the pyrrole ring to the phenyl. In terms of the
simplified molecular orbitals pictured in Figure 3, S3 is a 2 f 3
transition, and S4 is a 2f 4 transition. S1 and S2 are not so clearly
dominated by one configuration, but they have the larger
contribution from 1 f 4 and 1 f 3 transitions, respectively.
The electronic state optimized in the LE structure described
above is equivalent to S1, while the state optimized in the BQ ICT
structure corresponds to S3 (2 f 3 transition), as suggested by
the values of Q(Ph) and Q(Py).
3.1.3. Fluorescence. The fluorescence energies from the two

excited states optimized in the gas phase are shown in Table 4.
The predicted emission from the LE state is 0.34 eV lower that
the absorption with both CASPT2 variants, this agrees fairly well
with the experimental Stokes shift of 0.24 eV in n-hexane. As
occurred in the absorption, the best agreement with the experi-
mental fluorescence is obtained with CASPT2(0.00). The ΔE
value of 4.03 eV can be compared with the experimental value
obtained from the crossing point of the absorption and fluores-
cence spectra, which is 4.24 eV in n-hexane. Fluorescence at the
BQ geometry is calculated to have a much lower energy (0.63 eV
lower at the CASPT2(0.00) level), but the emitting state is 0.52
eV above the LE state and above the Franck�Condon S1 state at
the GS geometry. This is probably a reason why there is no
observed ICT fluorescence in nonpolar solvents. A scheme of the
relative energies of the electronic states at the different geome-
tries is presented in Figure 4. Again, aug-cc-pVDZ single-point
calculations give very similar result, with fluorescence energies
around 0.1 eV lower in all cases.

Figure 3. Main active molecular π orbitals of FPP (simplified). In the
dominant ground-state configuration, orbitals 1 and 2 are doubly
occupied, while 3 and 4 are empty (12223040).

Table 4. Vertical Emission Energies (transitions to S0, in eV),
Dipole Moments (in D), and Oscillator Strengths for the FPP
Molecule in the Gas Phasea

vertical energies

CASPT2 exptb μ f ΔE

LE (S1) 4.30 3.92 3.98 0.10 0.015 4.03

BQ (S1) 3.55 3.29 �6.33 0.005 4.55
aΔE is the relative energy (in eV) with respect to the ground-state
minimum, GS. Dipole moments, oscillator strengths, and ΔE calculated
at the CASPT2(0.00) level. b In n-hexane.18 Figure 4. Relative energies (CASPT2(0.00), in eV) of the calculated

electronic states of FPP in the gas phase at the optimized geometries.
The state for which each geometry is optimized is drawn as a wavy line.
States of equivalent electron configuration are joined by lines. For the
nature of the different states, labeled on the left, refer to Table 3,
Figure 3, and the corresponding text.
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3.2. Acetonitrile Solution. 3.2.1. Optimized Geometries. The
different electronic states obtained in the gas phase for the FPP
molecule were also optimized in acetonitrile solution, using the
ASEP/MD method25�27 to model the solvation process. The
resulting geometries are given in Table 5. The changes in the
geometry are small in all cases, and practically negligible for GS
and LE. In the BQ structure the most significant change between
the gas phase and acetonitrile is the lengthening of the Ph�Py
bond and a slight planarization of the ϕ angle. As expected in a
polar solvent, dipole moments are enhanced, only slightly in GS
and LE, and more significantly in BQ.
In addition to the minima already described, in solution it was

possible to find another minimum in the S1 surface with ICT
character. This minimum is characterized by a planar structure
(ϕ, ψ, and θ angles close to zero) and a quinoidal phenyl ring
(with two opposite bonds shorter than the other four), and
therefore we name it linear quinoidal (LQ). It is interesting that

in this LQ structure the phenyl deformation does not happen
along the C10�C11 bond but along the C11�C6 bond, so that it is
best described with Q0(Ph) instead of Q(Ph) (see Table 1). The
dipole moment of this structure is even larger than for BQ, and it
can be noted that the dipole moments of the GS, LE, and LQ
structures are in very good agreement with the experimental
estimations17 (1.7 D for the ground state, 1 D for the LE state,
and�13D for the ICT state). The two structures BQ and LQ are
compared in Figure 5.
3.2.2. Absorption.The calculated absorption properties of FPP

in acetonitrile are summarized in Table 6. All values are very close
to the gas phase results, which is not surprising given the weak
dipole moment of the ground state and the negligible change in
the optimized GS geometry. In the two lowest transitions, a small
blue shift is predicted, in accordance with the change of dipole
moment between the states. This small blue shift is also observed
experimentally when the absorptions in n-hexane and acetonitrile
solutions are compared.18

3.2.3. Fluorescence. The results for the excited state emission
properties from the different optimized structures of FPP in
solution are shown in Table 7. Similarly to what was found for the
absorptions, there is very little change in the LE emission from

Table 5. Geometrical Parameters andDipoleMoments of the
Different Optimized Structures of FPP in Acetonitrile
Solutiona

GS (S0) LE (S1) BQ (S1) LQ (S1)

Ph (Å) 1.400 1.433 1.419 1.413

Py (Å) 1.391 1.393 1.393 1.391

Q(Ph) (Å) 0.005 �0.003 0.064 0.052b

Q(Py) (Å) 0.015 0.030 �0.101 �0.085

Ph�Py (Å) 1.380 1.364 1.462 1.451

ϕ (�) �0.1 �0.1 26.0 0.6

ψ (�) �0.3 �0.1 �4.6 0.0

θ (�) 0.0 0.0 4.4 �0.3

μ (D) 1.75 0.27 �9.61 �12.06
aGeometries optimized at the SA-CASSCF level, dipoles calculated at
the CASPT2(0.00) level. The negative sign in the dipole indicates the
negative charge is displaced toward the phenyl ring. b Q0(Ph).

Figure 5. Perspective view of the two optimized ICT structures in
acetonitrile.

Table 6. Vertical Absorption Energies (in eV), Dipole Mo-
ments (in D), and Oscillator Strengths for the FPP Molecule
in Acetonitrile at the GS Geometry

vertical energies

CASPT2 expt18 μ f

S0 1.76

S1 4.31 4.26 0.82 0.011

S2 4.75 4.73 �2.55 0.291

S3 5.28 �5.29 0.031

S4 5.41 �7.66 0.142

Table 7. Vertical Emission Energies (transitions to S0, in eV),
Dipole Moments (in D), and oscillator Strengths for the FPP
Molecule in Acetonitrilea

vertical energies

CASPT2 expt18 μ f ΔG

LE (S1) 3.94 3.94 0.27 0.014 4.06

BQ (S1) 2.70 �9.60 0.003 4.36

LQ (S1) 3.31 3.29 �12.06 0.003 4.46
aΔG is the relative free energy (in eV) with respect to the ground-state
minimum, GS.

Figure 6. Relative free energies (CASPT2(0.00), in eV) of the calculated
electronic states of FPP in acetonitrile solution at the optimized geome-
tries. The state for which each geometry is optimized is marked as a wavy
line, this is also the state with which the solvent is in equilibrium. States of
equivalent electron configuration are joined by lines. For the nature of the
different states, labeled on the left, refer to Table 6 and Figure 3.
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the gas phase to acetonitrile, this is consistent with the experi-
ments, where the LE fluorescence band shows practically no
solvatochromic shift from n-hexane to acetonitrile18

The two optimized ICT structures have very different emis-
sion energies, with the value for LQ being 0.6 eV larger than for
BQ. The observed red-shifted band of FPP in acetonitrile is
centered at around 3.29 eV, which is in excellent agreement with
the predicted LQ emission. On the basis of the fluorescence
energies, the BQ structure can be ruled out as the main source of
the ICT band. The relative free energy of the states is listed in the
ΔG column, where it can be seen that the difference in free
energy between BQ and LQ is small (0.1 eV or 2.3 kcal/mol),
and LE is around 0.3 eV (7 kcal/mol) below BQ. All three states
are below the absorption Franck�Condon energy (S2 at GS). A
scheme of the energies of the first five states at each structure is
shown in Figure 6. Due to the different phenyl deformation in
LQ, the equivalence between the states (the lines joining the
horizontal lines) is only partial, and there is considerable mixture.
In a theoretical study of PP and FPP, using the polarizable

continuum model (PCM) method to include solvent effects, Xu
et al.23 also found that the free energy difference between the ICT
structures of FPP is relatively small. In agreement with our re-
sults, they obtained a significantly lower fluorescence energy for
BQ than for a planar (symmetry-constrained) structure. How-
ever, the solvatochromic shift given by PCM is much weaker than
ours (0.26 eV vs 0.59 eV for BQ), which leads them to conclude
that the emission from BQ in acetonitrile is more similar to the
observed ICT band, while the emission from the planar structure
would be indistinguishable from the LE emission. In contrast, the
fluorescence energies reported in this work indicate that BQ
emission is too low to correspond to the experimental band,
while the emission from the planar LQ structure is a much better
candidate. The difference between our results and those of Xu
et al. can be attributed to the absence of specific solute�solvent
interactions in PCM and to the different active spaces used in
both works.
Druzhinin et al. have estimated some thermodynamic quan-

tities for the FPP system from the fluorescence properties;18 in
particular, from their data it can be concluded that the free energy
difference between the emitting LE and ICT states is around 1
kcal/mol in acetonitrile at room temperature. Our results yield
the two candidate ICT states about 8 kcal/mol higher in energy
than the LE state. Here wemust recall that we are usingCASPT2-
(0.00) values in this discussion because they make comparison of
electron transition energies with experiments easier. As we in-
dicated previously, transition energies with CASPT2(0.25) are
0.4 to 0.5 eV larger, but the relative stability of the different
excited states does not change much. Nevertheless if we take
CASPT2(0.25) values, then LE is only around 0.2 eV (4 kcal/
mol) belowBQ, the free energy difference between LQ and BQ is
lower than 2 kcal/mol, and both ICT states lie very close to the S1
state at GS. Considering the errors, approximations and assump-
tions in the experiments, interpretations, and calculations, there
is qualitative agreement with the recent experimental findings.
If, as we propose, the experimental ICT band corresponds to

emission from the LQ structure, there must be a reason why the
BQ structure is not formed or its fluorescence is not observed.
Since, as seen in Figure 6 and Table 7, the free energies of LQ and
BQ, and the oscillator strengths for their vertical emissions are
very close, it can be interesting to analyze which ICT structure is
reached first during the solute relaxation after the initial absorp-
tion. The structural similarity between GS and LQ suggests that

relaxation leads to LQ first, but a complete description of the
process would require a study of the coupled dynamics of solute
and solvent, which is beyond the scope of this work. However,
within the mean field approximation of ASEP/MD, we can get a
qualitative picture by following the gradient during the solute
geometry optimization. We did this, optimizing the solute
geometry starting with the S2 state at the GS geometry (Franck�
Condon absorption) and observed that the solute structure tends
to LQ. The process followed corresponds to that pictured in
Figure 7, where there is initially a crossing between the surfaces of
S2 and S3 and a change in the wave function nature occurs, such
that after the crossing there is a clear ICT character in the S2
surface. Afterward, there is an intersection between the electronic
surfaces corresponding to the LE and LQ states; after this
intersection, the solute can proceed to either the LQ or LE
structures, depending on which surface is followed, which would
be determined by the system dynamics.
Once the LQ structure has been reached, there must be some

barrier preventing the interconversion between LQ and BQ. We
tried to estimate this barrier by performing a FEP calculation
between the two ICT structures. The solute geometry was
interpolated (in internal coordinates) in 10 steps between LQ

Figure 7. Qualitative scheme of the excited-state optimization of FPP in
acetonitrile, starting from the Franck�Condon absorption at the GS
structure. The electronic surfaces are labeled as in Figure 6. The bold
lines and arrows indicate the path followed by the solute wave function.

Figure 8. Free energy profile for a geometry interpolation (λ parameter)
between the LQ and BQ structures, in acetonitrile.
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and BQ, and at each step, the solute wave function and the
solvent were equilibrated. The resulting free energy profile
(see Figure 8) shows a barrier of around 0.1 eV (2 kcal/mol)
in the direction LQf BQ. This value is only an upper bound for
the barrier in equilibrium conditions, because the path followed is
not optimized. The low value obtained for the barrier indicates
that dynamical effects are probably important, and therefore
further investigations are needed to elucidate the reasons why
apparently no emission from BQ is observed experimentally.
It is interesting to compare the results obtained for FPP with

those for the related PP.24 In both systems we find an LQ ICT
state, with a fluorescence energy matching the observed spec-
trum, and other bent structures (BQ) close in energy but with a
predicted emission that is too low for the experimental band.
These similarities between the two molecules can explain the
parallels in their photophysical behavior. In the case of PP, a
perpendicular state (PQ) was also found to be possible, which
could be a route to nonradiative deactivation, thus decreasing the
relative intensity of the ICT emission when compared to FPP,
where this PQ structure is not available.
3.3. Excited-State Absorption. Druzhinin et al. have also

measured the transient absorption spectra of FPP in n-hexane
and acetonitrile18 at different delay times, which has allowed
them to assign certain absorption bands to the emitting states
responsible for the two fluorescence bands. We have calculated
the absorption energies from S1 to higher excited states at the
different optimized structures, with the goal of confirming the
nature of the emitting states and their identity with the states
probed in the transient absorption. For these calculations we had
to include a larger number of states in the CASSCF state
averaging (ten in total), and the multistate variant of CASPT2
was needed to separate the electronic states.44

The results are summarized in Table 8. Experimentally, the
excited state absorption (ESA) spectrum of FPP in n-hexane is
dominated by a band at 1.50 eV, with a minor band at 2.92 eV,
which are attributed to the LE state, since this is the only state
observed in the fluorescence spectrum. In acetonitrile, the band
at 1.55 eV decreases over the first few ps, while the band at 3.40
eV increases and is therefore assigned to the ICT state.
The most intense absorption predicted by the present calcula-

tions occurs at around 1.58 eV, for the LE structure, and changes
very little from the gas phase to acetonitrile. This value can be
compared with the 1.50 and 1.55 eV bands observed in the
experiments, confirming that the LE state can be the source of

these bands. The other absorption found in n-hexane should also
correspond to the LE state, but to adequately reproduce it in the
calculations, a higher number of states would probably be needed
(the ninth root is still only 2.7 eV above S1).
For the ICT structures in acetonitrile solution, BQ, and LQ,

we do not find any absorption of similar intensity, all oscillator
strengths being significantly lower. This somewhat agrees with
the ESA spectrum measured at longer delay times, which is
relatively weak. The experimental band at 3.40 lies approximately
between the two most intense absorptions predicted, at 3.17 and
3.40 eV. It can be tempting to assign the experimental band to
either of the two predicted transitions (or a combination there-
of), but both theoretical values correspond to high excited states
and are therefore subject to significant errors. The fact is that the
present results do not allow an inequivocal determination of the
origin of the ESA spectrum of FPP in acetonitrile at long delays.

4. CONCLUSIONS

We have studied the ground and excited singlet states of
fluorazene in the gas phase and in acetonitrile solution, using a
high-level quantum method for the electronic structure and an
explicit mean-field MM model for the solvent. The optimized
structures for the GS and the LE state provide good agreement
with the observed absorption bands and the higher-energy
fluorescence band. These states are characterized by very low
dipole moments and are only weakly affected by the solvent; in
consequence, their photophysic properties show little change
between the gas phase and solution. The agreement between the
computed results for the LE state and the emission and excited-
state absorption properties in n-hexane indicates that this state is
adequately described by the present theoretical methods, and
there is, in our opinion, little doubt on its nature and participation
in the dual fluorescence of FPP.

The situation is less clear for the ICT state, responsible of the
lower-energy fluorescence band. In the gas phase only a minimum
is located, and this state is 0.5 eVhigher in energy than the LE state.
In acetonitrile solution we obtain two optimized structures for
states of significant charge-transfer character, both structures being
similar in energy. In one of these structures, LQ, the molecule
skeleton is kept planar, and its emission energy and dipolemoment
are in good agreement with the experimental band, while in the
other, BQ, the C6 atom is pyramidalized, and its emission energy is
around 0.6 eV lower. Our results therefore suggest that the
experimental ICT fluorescence originates from LQ.

The excited-state absorption calculations for the different struc-
tures confirm the LE state as responsible for the 800 nm band, but
they do not allow a conclusive assignment for the ICT signals.

Finally, why emission from BQ is not experimentally regis-
tered remains an open question, and to arrive to a definitive
conclusion, possibly more sophisticated and accurate electronic
structure methods are needed, along with the inclusion of further
effects not considered in this work, such as the excited-state
dynamics or vibronic coupling. With the current results, how-
ever, we can state that the twist between the electron-donor and
-acceptor groups is not necessary for an ICT state to be stabilized.
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Table 8. Main Experimental and Calculated Excited-State
Absorption Bands of FPP (in eV)a

expt18

n-hexane 1.50 2.92

acetonitrile 1.55 2.05 3.40

MS-CASPT2, gas phase

LE 1.58 (0.149) 3.39 (0.011)

BQ 2.97 (0.008) 3.32 (0.094)

MS-CASPT2, acetonitrile

LE 1.56 (0.126) 2.24 (0.027)

BQ 2.91 (0.008) 3.17 (0.044)

LQ 2.31 (0.011) 3.75 (0.034)
aOscillator strength is in parentheses.
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ABSTRACT: The vibrational spectrum (frequencies as well as intensities) of uracil has been investigated at a high level of theory.
The harmonic force field has been evaluated at the coupled-cluster (CC) level in conjunction with a triple-ζ basis set. Extrapolation
to the basis set limit as well as inclusion of core-correlation and diffuse-function corrections have been considered by means of the
second-order Møller�Plesset perturbation theory. To go beyond the harmonic approximation, a hybrid CC/DFT approach has
been employed, which will be proved to provide state-of-the-art results. As the spectroscopic investigation of uracil is hampered by
numerous Fermi resonances, models for explicitly taking them into account have been implemented and applied. On general
grounds, the computational procedure presented is able to provide the proper accuracy to support experimental investigations of
large molecules of biological interest.

’ INTRODUCTION

Nowadays, spectroscopic techniques represent the most reli-
able and flexible approaches for the investigation of structural and
dynamical properties of molecular and supra-molecular systems,
either isolated or in condensed phases. However, interpretation
of spectra is seldom straightforward, and integrated experimen-
tal/computational investigations are becoming more and more
popular, thanks to the improved reliability and effectiveness of
quantum mechanical (QM) computations.1,2 For small mol-
ecules, the most refined QM methods provide such accurate
results that any disagreement between computational data and
experimental findings casts serious doubts on the reliability of the
latter.3,4With regard to the topic of the present work, as a signific-
ant example, we mention the new IR spectrum assignment for
the vinyl radical based on anharmonic force field computa-
tions5�7 that was eventually confirmed by new purposely tailored
experiments.8

For polyatomic molecules, effective computational solutions
of the vibrational problem and simulation of IR and Raman
spectra are among the most important tasks of contemporary
computational chemistry.9 While theoretical evaluations of vi-
brational frequencies and IR/Raman intensities within the
harmonic approximation have become a routine tool for assisting
the interpretation of spectroscopic experiments, in the past decade
great effort has been made to go beyond the harmonic approx-
imation and perform anharmonic computations by means of
perturbative10�23 or variational approaches.24�32 An effective
approach is obtained when the vibrational second-order pertur-
bation theory (VPT2)10�14,23 is applied to a fourth-order
representation of the potential energy surface (PES). In parti-
cular, Density Functional Theory (DFT) using hybrid (especially
B3LYP7,33�37) or double-hybrid (especially B2PLYP38�40)
functionals in conjunction with medium-sized basis sets is known
to provide rather accurate results and can be exploited for large
systems. Further improvements in accuracy can be obtained by

computing the harmonic part of the force field at a more refined
level, with the coupled cluster (CC) method providing the most
effective route, at least in the absence of strong multireference
character.33,37,41�44 The inclusion of the CCSD(T) harmonic
part in a DFT anharmonic force field leads to the definition of
hybrid CC/DFT approaches,37,43,44 which nowadays represent
the method of choice for computing accurate vibrational spectra
of semirigid systems.

The present work is part of a comprehensive research project
aimed at extending composite schemes to the accurate prediction
of molecular and spectroscopic properties for small- to medium-
sized molecules. On this topic, we are particularly interested in
building blocks of biomolecules in view of their relevance in
several fields ranging from prebiotic systems to biosensors.
Characterization of isolated molecules in the gas phase is a
mandatory prerequisite for the subsequent analysis of the role
of different effects (e.g., hydrogen bonding, environmental
effects, etc.) in determining the overall behavior of these systems.
However, from an experimental point of view, the structural
characterization of the simplest building blocks of biomolecules
(e.g., amino acids or nucleic acid bases) in the gas phase is not
straightforward at all. In the field of vibrational spectroscopy,
interpretation of spectra suffers from the overlapping of several
bands and from the presence of strong resonances. In the case of
uracil, the simplest nucleobase (see Figure 1), encouraging
results have already been obtained for the molecular parameters
and spectroscopic properties related to rotational spectroscopy
by means of a composite QM scheme.45 On the other hand, such
an accurate approach can be used to benchmark less accurate but
computationally cheap methods rooted in the density functional
theory as well as to set up hybrid CC/DFT models.
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Moving to the topic of the present work, vibrational spectra of
uracil have been investigated in several theoretical and experi-
mental works. The IR and Raman spectra of gaseous,46 dis-
solved,47,48 polycrystalline,49�51 and matrix-isolated52�60 uracil
were recorded. A number of semiempirical and ab initio quantum
mechanical approaches were also used to compute and analyze
the vibrational spectra (see refs 61 and 62 and references therein).
However, a number of unresolved questions are still open, and
they mostly concern the intensities of the C�O stretching vibra-
tions and the assignment of some other bands. As a consequence,
there are still significant doubts on the interpretation of the
vibrational spectrum of isolated uracil, the main problem being
the large number of overtones and combination bands having
intensities comparable to those of some fundamentals. This is
mainly due to Darling�Dennison and Fermi resonances, which
need to be properly taken into account in order to reliably
reproduce the uracil IR spectrum. This implies that one should
calculate the latter at the anharmonic level by means of an
accurate quantum chemical approach, also including Fermi and
Darling�Dennison resonances.

The paper is organized as follows. In the next section, the
methodology used is explained together with the corresponding
quantum-chemical details. Thereafter, the results are reported
and discussed with particular emphasis on the proper account of
interactions in the anharmonic frequency calculations. Harmonic
frequencies and intensities are also reported and discussed.

’METHODOLOGY AND COMPUTATIONAL DETAILS

Coupled-Cluster Computations.The best-estimated harmo-
nic force field for uracil in its electronic ground state has been
evaluated bymeans of a composite scheme to account for electron-
correlation and basis-set effects. This approach is based on the
assumption of the additivity for various contributions. The
second-order Møller�Plesset perturbation theory (MP2)63

and CC singles and doubles approximation augmented by a per-
turbative treatment of triple excitations [CCSD(T)]64 have been
employed. Correlation-consistent basis sets, (aug)-cc-p(C)VnZ
(n = T,Q),65�67 have been used in conjunction with the above-
mentioned methods.
The harmonic force field has been computed at the MP2 and

CCSD(T) levels employing different basis sets.68 Following the
procedure introduced in ref 17, the harmonic frequencies, ω,

have been extrapolated to the complete basis set (CBS) limit
starting from the results obtained at the MP2/cc-pVTZ and
MP2/cc-pVQZ levels. More precisely, the extrapolated correla-
tion contribution has been added to the HF-SCF CBS limit,
which is assumed to be reached at the HF/cc-pVQZ level. The
latter assumption seems to be reasonable, as in most cases the
differences in frequency between the HF/cc-pVTZ and HF/cc-
pVQZ levels are smaller than 1 cm�1 and always much smaller
than 0.5% in relative terms. Corrections due to core�valence
(CV) correlation and effects due to diffuse functions (aug) in
the basis set have then been evaluated at the MP2/cc-pCVTZ
(Δω(CV) =ω(MP2/cc-pCVTZ,all)�ω(MP2/cc-pCVTZ,fc))
and MP2/aug-cc-pVTZ levels (Δω(aug) = ω(MP2/aug-cc-
pVTZ,fc) � ω(MP2/cc-pVTZ,fc)), respectively. The latter cor-
rection has been introduced, as diffuse functions are required to
properly describe electronegative atoms and thus to recover the
limitations that are inherent in the extrapolation of the cc-pVTZ
and cc-pVQZ basis sets to the CBS limit. In the expressions given
in parentheses, “fc” and “all” stand for frozen-core approximation
and all electrons (also 1s electrons of C, N, and O) correlated,
respectively. Higher-order electron-correlation energy contribu-
tions (Δω((T)) have also been considered. The corresponding
corrections have been derived by comparing the harmonic
frequencies at the MP2 and CCSD(T) levels, both in the cc-
pVTZ basis set. Inclusion of all terms

ωðbestÞ ¼ ωðCBSðT,Q ÞÞ þ ΔωðCVÞ
þ ΔωðaugÞ þ ΔωððTÞÞ ð1Þ

finally provides the best estimated harmonic frequencies.
An analogous composite scheme has also been used to deter-

mine best estimates for the infrared intensities, I(best), within the
harmonic approximation. As extrapolation schemes have not been
formulated yet for such a property and diffuse functions are
known to be important to correctly describe dipole moment
derivatives, eq 1 has been rearranged as follows:

IðbestÞ ¼ IðMP2=augVTZÞ þ ΔIðCVÞ
þ ΔIðQZ� TZÞ þ ΔIððTÞÞ ð2Þ

where ΔI(QZ � TZ) is the correction due to the MP2/
cc-pVQZ � MP2/cc-pVTZ difference.
The CFOUR program package69 has been employed for all

computations mentioned in this section.
Density Functional Theory Computations. Density Func-

tional Theory has been employed to compute harmonic and
anharmonic force fields. Within the DFT approach, the standard
B3LYP functional70 has been used in conjunction with the aug-
N07D71 and aug-cc-pVTZ65,66 basis sets. Recently, the original
polarized double-ζ basis set N07D71�74 has been modified by
consistent inclusion of diffuse s functions and then further
augmented by one set of diffuse d functions on C and N atoms
(already present on O). On general grounds, the DFT/N07D
approach has been developed for spectroscopic studies of medium-
to-large molecular systems and provides an excellent compro-
mise between reliability and computational effort.7,37,39,75,76 The
two different basis sets employed allow us to monitor basis set
effects as well as the performance of the newly developed aug-
N07D set. Harmonic and anharmonic force fields have been
computed starting from equilibrium structures optimized using
tight convergence criteria.
As concerns anharmonic force fields, the third and semidia-

gonal fourth force constants have been obtained by numerical

Figure 1. Molecular structure of uracil: atoms labeling.
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differentiation of the analytical second derivatives. The semidia-
gonal quartic force fields77 have then been used to compute
spectroscopic parameters and, in particular, anharmonic frequen-
cies by means of the fully automated generalized second-order
vibrational perturbation (GVPT2) approach,10,11 as implemen-
ted in the Gaussian package.13,14,23 As in perturbative treatments
nearly resonant contributions should be removed, in the present
work two possible approaches to defining Fermi and Darling�
Dennison resonances have been followed. First, an automatic
procedure (GVPT2, Fermi: auto) based on the criteria proposed
byMartin et al.,15 which are known to provide accurate results,35,61

has been used to remove potentially divergent terms. In the cur-
rent version of the code, an ad hoc procedure (GVPT2, Fermi:
INP) to directly specify resonant terms has been also implemen-
ted. The latter allows us to directly compare with other theoretical
approaches as well as to test the influence of any specific inter-
action on the overall results. In both cases, in a second step, all
resonant terms are then treated variationally.11,13 Finally, simple
removal of resonant terms leads to the so-called deperturbed
model, DVPT2.
All DFT computations have been performed employing the

Gaussian suite of programs for quantum chemistry.78

The Hybrid CC/DFT Approach. A hybrid CCSD(T)/DFT
approach33,37,41�44 has also been used to evaluate anharmonic

frequencies. This model is based on the assumption that the
differences between CCSD(T) and B3LYP anharmonic frequen-
cies are solely due to the harmonic terms. In this way, prohibi-
tively expensive computations of cubic and quartic force
constants at the CCSD(T) level are avoided, and the hybrid
CCSD(T)/DFT scheme therefore provides a viable route to
extend accurate predictions of anharmonic frequencies to rela-
tively large systems. In the present case, two possible approaches
have been implemented. In the simplest one, the hybrid frequen-
cies have been computed by means of a posteriori DFT cor-
rections to the best-estimated harmonic frequencies: νCC/DFT =
ω(best) + ΔνDFT. Such an approximation has already been
validated for several closed- and open-shell systems (see, for
instance, ref 37). On the other hand, in the second approach, the
best-estimated harmonic frequencies are directly introduced into
the GVPT2 computations along with the 3rd and 4th force con-
stants obtained at the DFT level. It should be noted that the latter
scheme can significantly improve the quality of the results when
the discrepancy between harmonic frequencies computed at the
DFT level and best estimates leads to an incorrect definition of
Fermi resonances through automatic procedures.37,39 However,
a more general way to overcome such inconsistencies relies on
generalized treatment that completely avoids divergent terms.79

Table 1. Harmonic Vibrational Frequencies (cm�1) of Uracil

assignment B3LYP/aug-N07D B3LYP/aug-cc-pVTZ MP2/cc-pVTZ MP2/cc-pVQZ CBS ΔCV Δaug Δ(T) besta estimate

ν(N1�H) 3640.9 3634.4 3669.4 3666.4 3665.8 5.3 �14.9 �3.4 3652.7

ν(N3�H) 3596.4 3589.5 3616.4 3612.9 3612.3 5.4 �15.6 �0.0 3602.2

ν(C5�H) 3248.7 3243.9 3292.0 3289.2 3287.6 6.1 �10.5 �30.5 3252.8

ν(C6�H) 3207.7 3200.6 3246.5 3246.8 3245.9 5.9 �6.9 �27.5 3217.5

ν(C2dO) 1798.9 1792.7 1828.6 1818.3 1815.6 4.6 �24.3 �5.9 1790.0

ν(C4dO) 1764.3 1760.2 1790.4 1780.8 1779.1 5.0 �21.6 �1.0 1761.5

ν(C5dC6) 1674.0 1672.3 1686.2 1684.2 1684.8 6.0 �8.3 �5.0 1677.5

δ(N1�H) 1499.7 1497.8 1513.4 1513.5 1513.8 4.4 �4.9 �7.9 1505.4

δ(C6�H) 1403.5 1405.5 1427.2 1428.6 1428.7 4.3 �3.8 �2.1 1427.2

δ(N3�H) 1417.8 1422.3 1413.3 1413.8 1414.8 4.0 �3.9 �0.8 1414.0

δ(C5�H) 1383.2 1382.5 1389.2 1389.6 1390.1 3.2 �0.4 1.0 1394.0

ν(ring) 1229.0 1227.9 1246.8 1247.3 1248.6 5.0 �1.6 �3.9 1248.2

ν(ring) 1195.7 1192.5 1212.2 1212.4 1212.3 3.5 �2.5 �8.0 1205.3

ν(ring) 1086.8 1097.2 1095.3 1094.7 1094.3 3.5 �4.1 �9.5 1084.2

ν(ring) 992.8 993.7 992.7 994.7 995.1 3.3 �0.9 �0.9 995.4

ν(ring) 973.4 985.9 968.9 969.7 970.5 3.9 2.2 �9.0 967.7

ν(ring) 770.6 769.7 774.9 776.5 777.6 2.9 �1.5 �6.2 772.8

δ(ring) 557.5 574.0 562.2 564.5 565.6 3.9 3.2 �27.5 545.3

δ(ring) 542.4 543.6 538.1 539.4 540.3 2.5 �2.0 �0.0 540.8

δ(ring) 521.4 522.5 515.4 516.6 516.9 2.2 �1.0 �1.0 517.2

δ(CdO) 386.9 387.7 385.7 386.7 386.8 1.7 �1.5 0.4 387.4

γ(C6�H) 965.3 964.0 977.0 978.3 978.6 3.3 �1.0 �7.6 973.3

γ(C5�H) 823.5 828.2 817.8 816.6 815.7 3.6 3.1 �8.8 813.6

γ(C2dO) 767.0 771.8 762.8 764.5 765.9 4.8 �1.9 �3.5 765.2

γ(C4dO) 730.5 734.3 735.2 734.2 733.8 2.5 �0.4 �8.2 727.6

γ(N3�H) 675.8 687.9 691.6 690.5 690.1 2.6 �3.5 �18.8 670.3

γ(N1�H) 559.3 559.9 559.0 559.9 559.8 2.3 �2.1 �1.2 558.7

γ(ring) 399.3 404.5 394.8 395.7 395.9 2.8 �11.5 �11.5 387.9

γ(ring) 168.5 169.8 163.2 163.7 164.1 1.1 �0.3 �5.8 159.1

γ(ring) 154.1 152.4 146.4 147.0 146.9 1.4 �1.5 �6.4 140.4
a From eq 1.
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’RESULTS AND DISCUSSION

Harmonic Vibrational Frequencies. Harmonic vibrational
frequencies, as obtained from the composite scheme described in
the Methodology and Computational Details section, are col-
lected in Table 1. From this table, we first note that the MP2/cc-
pVQZ level of theory already provides results close to the CBS
limit, the differences being in most cases smaller than 1 cm�1;
this is mostly related to the fact that the correlation contributions
are already well converged at the MP2/cc-pVQZ level of theory.
While core-correlation corrections are quite small, i.e., they range
from 1 to 6 cm�1, and tend to enlarge when the frequency value
increases, the effects due to the inclusion of diffuse functions in
the basis set are contradictory, as they range from being negligible
(<1 cm�1) to being large (>20 cm�1 in absolute value terms).
While CV corrections are always positive, those related to the

diffuse functions are in most cases negative. As concerns the
effect of higher-order electron-correlation corrections, for which
the inclusion of triples is expected to be the most relevant
contribution, we note that they are rather large and mostly
negative. The particularly large corrections observed for a few
cases when accounting for theΔω(aug) andΔω((T)) contribu-
tions deserve to be discussed a little bit more in detail. For the
former, as already noticed for themolecular structure (see ref 45),
diffuse functions in the basis set are important for correctly
describing the oxygen atoms; in fact, large Δω(aug) corrections
are observed for the two C�O stretchings. As mentioned above,
the inclusion of such corrections is expected to recover the
limitations of our extrapolation based on the cc-pVTZ and cc-
pVQZ basis sets. Less straightforward is how to understand the
large effect due to higher excitations observed for the two C�H
stretchings, two N�H out-of-plane vibrations, and one ring

Table 2. Anharmonic Vibrational Frequencies (cm�1) of Uracil from the CCSD(T)/B3LYP Hybrid Force Fielda

GVPT2 experimentb

symmetry/mode assignment

harmonic best

estimate DVPT2

Fermi:

DFTd

Fermi:

CCe

Fermi:

DFT+INPf
Fermi:

CC+INPf
B3LYP/6-31+G(d,p)c

(Ten et al.) frequency intensity

A0 ω1 ν(N1�H) 3652.7 3484 3484 3485 3484 3485 3480 3485 166

A0 ω2 ν(N3�H) 3602.2 3436 3436 3436 3436* 3436* 3436 3435 100

A0 ω3 ν(C5�H) 3252.8 3117 3117 3117 3117 3117 3140 4

A0 ω4 ν(C6�H) 3217.5 3084 3072* 3072* 3083* 3072* 3082

A0 ω5 ν(C2dO) 1790.0 1760 1762* 1762 1771* 1761* 1776 1764 680

A0 ω6 ν(C4dO) 1761.5 1735 1744* 1737* 1760* 1733* 1762 1706 291

A0 ω7 ν(C5dC6) 1677.5 1644 1644 1644 1644 1643 1643 1643 33

A0 ω8 δ(N1�H) 1505.4 1465 1461* 1465 1484* 1466* 1461 1472 83

A0 ω9 δ(C6�H) 1427.2 1382 1386* 1385 1392* 1388* 1394 1400 56

A0 ω10 δ(N3�H) 1414.0 1394 1391* 1386* 1384* 1384* 1374 1389 21

A0 ω11 δ(C5�H) 1394.0 1360 1360* 1353 1361* 1355* 1353 1359 13

A0 ω12 ν(ring) 1248.2 1220 1223* 1221 1226* 1221* 1210 1217 4

A0 ω13 ν(ring) 1205.3 1176 1176 1176 1176 1176 1171 1185 109

A0 ω14 ν(ring) 1084.2 1063 1061* 1061* 1064* 1061* 1073 1075 14

A0 ω15 ν(ring) 995.4 980 981* 978 995* 978* 961 980

A0 ω16 ν(ring) 967.7 940 940 940 940 940 947 958 7

A0 ω17 ν(ring) 772.8 756 756 752* 756 751* 756 759

A0 ω18 δ(ring) 545.3 552 549* 555* 545* 549* 550 562 17

A0 ω19 δ(ring) 540.8 533 533 530 529 530 534 537 7

A0 ω20 δ(ring) 517.2 511 511 510 511 510 515 516 23

A0 ω21 δ(CdO) 387.4 383 383 384 383* 386* 385 391 33

A00 ω22 γ(C6�H) 973.3 955 955 954 955* 954* 950 987 2

A00 ω23 γ(C5�H) 813.6 793 793 793 793 793 803 804 175

A00 ω24 γ(C2dO) 765.2 746 746 746 746 746 749 757 125

A00 ω25 γ(C4dO) 727.6 711 711 711 711* 711* 715 718 14

A00 ω26 γ(N3�H) 670.3 654 654* 654 660* 654* 666 662 100

A00 ω27 γ(N1�H) 558.7 546 546 549 546 555 567 551 25

A00 ω28 γ(ring) 387.9 387 387 387 387 384 398 411

A00 ω29 γ(ring) 159.1 155 155 155 155 155 167 185

A00 ω30 γ(ring) 140.4 133 133 132 133 132 155

MAEg 9 10 10 11 9 10 9
aThe asterisks denote the modes explicitly considered in the variational treatment of Fermi resonances. See text. bRefs 58�60. cRef 62: Anharmonic
frequencies and intensities at the B3LYP/6-31+G(d,p) level with Fermi resonances accounted for. d Fermi resonances identified through automatic
procedure using harmonic frequencies and anharmonic force constants computed at the DFT level. e Fermi resonances identified through automatic
procedure using harmonic frequencies computed at the CC level and anharmonic force constants computed at the DFT level. fAll Fermi resonances
reported in Ten at al.62 have been considered. gMAE stands for Mean Absolute Error. See text.
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deformation of A0 symmetry. For instance, in the case of the
C�H stretchings, such an effect might be related to the signific-
ant coupling between the two vibrational modes, which probably
requires an improved correlation treatment. Finally, a brief discus-
sion on the accuracy of the best estimated harmonic frequencies
is warranted. First of all, we need to point out the role of higher-
order effects in the correlation treatment beyondCCSD(T). From
the literature available (see for example refs 80 and 81), the full CC
singles, doubles, and triples method (CCSDT) is expected to
provide no improvements with respect to CCSD(T). The correc-
tions due to quadruple excitations seem to be non-negligible and
opposite in sign with respect to core-correlation effects.81,82 On
the other hand, for these contributions, the literature available is
very limited and mostly related to diatomics, while the importance
of taking into account the effects of core correlation is well
recognized.81�83 On the basis of the approximations made, the
estimates for neglected contributions (mainly due to higher
excitations beyond CCSDT:�0.1% to�0.3%, in relative terms),
the corrections included as well as the literature on this topic (see,
for example, refs 17 and 81), we expect that the accuracy obtained
is a few wavenumbers: from 4 cm�1 to 11 cm�1, where the latter
value essentially applies to the larger frequency values.
A comparison of best-estimated harmonic frequencies with

DFT results (Table 1) confirms the overall good accuracy of the
latter in the present case. In fact, such a comparison shows amean

absolute error (MAE), with respect to best-estimated values, of
about 7 cm�1 and 11 cm�1 for the B3LYP/aug-N07D and
B3LYP/aug-cc-pVTZ levels of theory, respectively. The MAEs
point out that the B3LYP/aug-N07D level of theory performs a
little bit better than the B3LYP/aug-cc-pVTZ one, despite the
significantly lower computational cost (232 vs 460 basis sets,
respectively). Although this can be due to error compensation,
the observed trend is quite general and suggests the B3LYP/
augN07D level as the method of choice for spectroscopic
investigations of large molecules, provided that DFT does not
fail in describing the system under consideration.39,84

In the literature, some previous theoretical and experimental
data are available for comparison.While the comparison to experi-
ment is meaningful only once anharmonic corrections are ac-
counted for (we therefore postpone such a comparison to the next
section), a brief comment is deserved for what concerns theory.
Among the literature papers available, we mention the works
carried out by Barone et al.61 and Ten et al.62 Within the B3LYP
approach, the former allows us to point out the improvement in
the performance obtained by the aug-N07D set with respect to
the 6-31G(d) basis set augmented by diffuse functions only on
oxygen atoms. In fact, the discrepancies with respect to the
best estimates decrease by a few (2�5) to somewhat greater (up
to ∼20) wavenumbers. As concerns ref 62, rather good agree-
ment between the B3LYP/6-31+G(d,p) harmonic frequencies

Table 3. Combination Bands and Overtones (cm�1) of Uracil from the CCSD(T)/B3LYP Hybrid Force Fielda

GVPT2

assignment DVPT2 Fermi: DFTc Fermi: CCd Fermi: DFT+INPe Fermi: CC+INPe
B3LYP/6-31+G(d,p)b

(Ten et al.) Experimentf

ω28 + ω29 544 544 543 544 542 569 557

ω19 + ω30 667 667 669 665* 669* 691 682

ω18 + ω30 672 672 685 667* 685* 707 685

ω27 + ω28 947 947 936 947* 936* 984 963

2ω19 1065 1067* 1069* 1053* 1069* 1069 1070

2ω27 1126 1126 1110* 1126 1110* 1141 1102

ω23 + ω28 1180 1180 1179 1180 1179 1197 1192

ω24 + ω27 1304 1304 1294 1304 1294 1317 1283

2ω26 1297 1297 1298 1311 1303 1325 1314

ω25 + ω26 1369 1368* 1370* 1374* 1370* 1382 1366

ω14 + ω21 1445 1445 1445 1445* 1445* 1448 1461

2ω17 1510 1510 1519 1510 1518 1519 1525

ω16 + ω17 1695 1695 1700 1695* 1699* 1698 1699

ω13 + ω19 1703 1703 1710* 1697* 1710* 1705 1707

ω12 + ω20 1729 1729 1729* 1732* 1727* 1720 1720

ω12 + ω19 1753 1749* 1757 1758* 1757* 1739 1733

ω22 + ω23 1746 1746 1745 1746* 1745* 1750 1758

ω12 + ω18 1760 1760 1774 1757* 1773* 1753 1762

ω7 + ω11 2998 2998 2998 2999 2998 2984 2970

2ω6 3456 3456 3431 3481 3442 3470 3477

MAEg 13 13 13 14 12 12

MAE(all)h 11 11 11 12 11 12
aThe asterisks denote the modes explicitly considered in the variational treatment of Fermi resonances. See text. bRef 62: Anharmonic frequencies and
intensities at the B3LYP/6-31+G(d,p) level with Fermi resonances accounted for. c Fermi resonances identified through automatic procedure using
harmonic frequencies and anharmonic force constants computed at the DFT level. d Fermi resonances identified through automatic procedure using
harmonic frequencies computed at the CC level and anharmonic force constants computed at the DFT level. eAll Fermi resonances reported in Ten at
al.62 have been considered. fRefs 58�60. gMAE stands for Mean Absolute Error. See text. hMAE computed considering fundamentals, overtones, and
combination bands. See text.
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and our best estimated values is observed, further confirming the
good performance of B3LYP for this specific molecule.
Anharmonic Vibrational Frequencies. Going beyond the

harmonic approximation, as already mentioned in the Introduc-
tion, the GVPT2 model applied to anharmonic DFT force fields
(in particular with Becke-family hybrid functionals) with the
proper treatment of Fermi and Darling�Dennison resonances15

is known to provide accurate results for semirigid systems.35,61 As
the use of a hybrid CC/DFT scheme improves the accuracy, we
limit our discussion to the results obtained by means of the two
hybrid models described in the Methodology and Computa-
tional Details section, with anharmonic corrections computed at
the B3LYP/aug-N07D level. The anharmonic frequencies eval-
uated with the different models for taking into account reso-
nances are compared in Tables 2 and 3 for fundamental
transitions and for overtones and combinational bands, respec-
tively; for comparison purposes, the deperturbed values are also
given. In particular, as uracil is known to be a difficult case due to
the presence of strong Fermi resonances, such a comparison
provides us with additional insights into the performance of the
DVPT2 scheme with respect to GVPT2. For GVPT2 calcula-
tions, two cases have been actually considered: that where all of
the Fermi resonances included in the work by Ten et. al62 have
been considered (Fermi: INP) and that in which Fermi interac-
tions are taken into account through an automatic procedure
with the harmonic frequencies evaluated either at the DFT level
or from the composite scheme (Fermi: DFT and Fermi: CC,
respectively). We first note that all schemes provide very similar
results. In Tables 2 and 3, our results are also compared to the
available experimental58�60 and theoretical62 data. On average,
the hybrid CC/DFT approach leads to discrepancies, with
respect to experimental results, of about 10 cm�1 and 13 cm�1

(with the largest discrepancies being ∼38 cm�1 and 29 cm�1)
for fundamentals and for overtones and combination bands,
respectively. As concerns the results of ref 62, we note that the
B3LYP/6-31+G(d,p) level of theory with the proper account of
Fermi resonances shows good agreement with experimental
results but a worse one than that noted for our hybrid CC/
DFT approach. In fact, even though a MAE of ∼12 cm�1 is
observed, larger discrepancies (the maximum discrepancy is
56 cm�1) are evident. As the B3LYP/6-31+G(d,p) anharmonic
corrections can be considered as good as ours (B3LYP/
aug-N07D) and Ten et al.62 correctly accounted for all Fermi
interactions, the slight improvement obtained should be mainly
ascribed to the hybrid approach used, which includes accurate
estimates for harmonic frequencies. Anyway, it is worth noting
that the present system seems to be a fortunate case, as usually
the performance of DFT at the harmonic level with respect to
highly correlated methods is definitely worse.33,37,39,42,43

As we claim for our anharmonic frequencies an overall
accuracy of about 11 cm�1, we can consider ours state-of-the-
art results. For such a challenging case, systematic strategies to
further reduce MAE below 10 cm�1 are not yet available. Addi-
tionally, it should be noted that in many cases the accuracy of
experimental data (in particular for the lower intensity tran-
sitions) is not sufficient to justify the effort to reach a 1 cm�1

agreement between theory and experimental results. It is worth
noting that the largest discrepancies are found for the 1700�
1800 cm�1 frequency range, where several intense transitions
due to the Fermi interaction involving C�O stretching vibra-
tions are exhibited. In fact, both ours and Ten et al.’s investiga-
tions predict a number of vibrational transitions in this zone, a

few of themwith similar intensity.62 Therefore, the proper assign-
ment is cumbersome because of different possible interactions
(see modes involved in Fermi resonances). The direct compar-
ison between the computational simulated IR spectra and the
experimental counterpart would be more meaningful. For uracil,
such an attempt has been carried by Ten et al,62 but the analysis
was hampered by the lack of experimental data in the proper
numerical form as well as by the limited experimental resolution.
As the vibrational spectrum of uracil is dominated by a large

number of resonances, these deserve to be discussed in some
detail. As mentioned above, the automatic procedure used to
define possible Fermi interactions (Fermi: DFT; Fermi: CC) has
been compared to the results where all Fermi interactions
(Fermi: INP) postulated to be important62 have been consid-
ered. A total of 16 (DFT) or 13 (CC) Fermi-type interactions
have been pointed out by the automatic procedure, and the
corresponding vibrational energy levels have been included in the
variational treatment. As the ad hoc definition of additional
interactions (leading to a total of 33 and 41 resonances for
DFT andCC, respectively) does not improve the agreement with
experimental results, the present results confirm the reliability of
our “black-box” procedure, which takes into account both the
zero-order energy difference between two resonant states and the
strength of the coupling. Furthermore, we note that in the
present case, due to the overall good accuracy of B3LYP/aug-
N07D harmonic frequencies, similar results are obtained either
by the a posteriori approach or by including best estimates for
harmonic frequencies in the perturbative treatment. However,
this conclusion is not of general validity. As a matter of fact,
previous studies37,39 unambiguously showed that in difficult
cases, i.e., when the DFT harmonic frequencies present signifi-
cant discrepancies with respect to best estimates, proper inclu-
sion of accurate harmonic frequencies into the perturbative
expressions leads to significant improvements. In general, the
hybrid scheme (in particular Fermi: CC) has to be recommended
whenever feasible, since it guarantees reliable harmonic frequen-
cies as well as a proper definition of Fermi resonances. For the
latter problem, the development and validation of alternative,
more general VPT2 approaches that completely avoid resonant
terms is in progress.79

Harmonic Vibrational Intensities. As concerns IR intensities
computed within the double harmonic approximation, it has
been shown by Schaefer et al.85,86 that improvements in the
electron-correlation treatment lead to converged values and that
quantitative IR intensity predictions can be obtained at the
CCSD(T) level in conjunction with basis sets of at least aug-cc-
pVTZ quality.86 In the present work, the extent of various con-
tributions to IR intensities (within the harmonic approximation)
has been investigated by means of the composite scheme
introduced in the Methodology and Computational Details sec-
tion. The results, reported in Table 4, show a slow convergence
to the CBS limit, unlike what was observed for harmonic fre-
quencies. In fact, differences up to tens of kilometers per mole are
obtained by comparing the MP2/cc-pVTZ and MP2/cc-pVQZ
levels (see the sixth column). Even for this property, CV
corrections appear to be small, being negligible in most cases.
Even if not explicitly reported in Table 4, we note that the effects
of diffuse functions (pointed out by comparing MP2-cc-pVTZ
and MP2-aug-cc-pVTZ) are in most cases on the order of 10%,
which means for the most intense transitions intensity enhance-
ments of even 60�90 kcal/mol. The same conclusion is drawn
for higher-order correlation contributions, i.e.,ΔI((T)) corrections.
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Effects of diffuse functions and core correlation are not always in
the same direction. For example, they are both positive for
ν(C4dO), while they nearly cancel out for ν(C2dO). On
general grounds, it might be of some interest to note that the
vibrational modes that show the largest corrections are once
again the C�O stretchings. Furthermore, while they exhibit
comparable intensities when effects of triple excitations are
included, very different intensities are observed at the MP2 level.
On the whole, the present results confirm that the prediction of
IR intensities is more demanding than band positions.9 Since
they depend on dipole moment derivatives, reliable estimates
require an accurate description of the electronic charge density
and its variation along normal modes. In turn, these conditions
imply that IR intensities are sensitive to electron-correlation
effects and basis-set extension. In view of the large extent of some
contributions and the lack of literature on this topic, it is difficult
to estimate the accuracy of our best estimated values. For these
reasons, a benchmark investigation on IR intensities for small- to
medium-sized molecules is in progress.
By comparing the results obtained at different levels of theory,

it is worth noting that the MP2 level generally tends to over-
estimate IR intensities with respect to CCSD(T). DFT performs
quite well with respect to our best estimated values, with a MAE
of about 10 and 13 km/mol for the B3LYP/aug-N07D and

B3LYP/aug-cc-pVTZ levels, respectively. In Table 2, the avail-
able experimental data are reported. Even though our computed
harmonic intensities are able to reproduce on average the
experimental trend, a quantitative comparison is not possible at
the present stage. Work along this direction is in progress, and it
mainly concerns benchmark studies in view of verifying the
accuracy obtainable by QM computations as well as the inves-
tigation of resonance effects on anharmonic contributions.

’CONCLUSIONS

Vibrational frequencies and intensities have been investigated
within the harmonic approximation at a high level of theory.
Following our previous work,45 a composite scheme has been
exploited in order to account for basis-set effects and to include
core-correlation corrections. As the accuracy in vibrational
frequencies evaluation is mostly related to the harmonic force
field, the computational approach introduced paves the way
toward spectroscopic accuracy for molecules with a larger and
larger number of atoms. In particular, the approach presented is
expected to be accurate and reliable for all types of systems, also
when DFT fails in a proper description of the electronic
structure. The comparison to available experimental data points
out that the use of hybrid CC/DFT schemes with the proper

Table 4. Double Harmonic IR Intensities (km/mol) of Uracil

assignment B3LYP/aug-N07D B3LYP/aug-cc-pVTZ MP2/aug-cc-pVTZ ΔCV Δ(QZ-TZ) Δ(T) besta estimate

ν(N1�H) 105.55 102.37 122.44 1.16 3.24 �14.40 112.44

ν(N3�H) 68.51 65.58 77.11 1.01 3.89 �9.48 72.53

ν(C5�H) 1.19 1.19 2.58 0.19 0.54 �1.22 2.09

ν(C6�H) 2.50 2.31 2.08 �0.10 �0.46 0.28 1.80

ν(C2dO) 626.64 599.84 753.68 �0.09 28.12 �55.76 725.95

ν(C4dO) 770.74 774.96 568.37 6.84 56.71 88.39 720.31

ν(C5dC6) 60.30 66.95 19.00 �0.42 �2.15 17.68 34.12

δ(N1�H) 88.66 81.81 121.62 2.39 �5.10 �13.07 105.84

δ(C6�H) 92.71 86.84 66.33 3.20 5.62 27.71 102.86

δ(N3�H) 9.89 7.88 38.65 �4.72 �9.11 �20.23 4.59

δ(C5�H) 35.17 56.65 9.86 �0.48 0.10 2.68 12.17

ν(ring) 2.76 10.86 15.54 1.14 2.71 0.17 19.57

ν(ring) 106.52 104.44 108.11 �2.04 2.21 2.36 110.64

ν(ring) 5.59 4.75 5.43 0.28 �0.59 1.30 6.41

ν(ring) 7.17 7.35 8.05 0.02 0.44 �0.24 8.28

ν(ring) 0.04 0.10 0.48 �0.04 �0.10 0.15 0.49

ν(ring) 3.27 3.65 3.67 �0.01 0.26 0.16 4.08

δ(ring) 36.66 41.70 40.88 0.80 1.03 �2.55 40.16

δ(ring) 6.52 7.39 6.57 �0.00 0.27 �0.27 6.57

δ(ring) 21.29 21.64 18.35 0.11 0.62 1.47 20.55

δ(CdO) 20.97 20.74 20.68 0.13 0.40 1.32 22.53

γ(C6�H) 9.35 10.93 10.91 �0.14 0.41 �0.28 10.90

γ(C5�H) 61.73 60.69 49.90 0.74 �2.22 1.60 50.01

γ(C2dO) 30.98 34.35 30.31 0.64 0.98 �0.43 31.51

γ(C4dO) 17.79 15.48 9.61 0.55 1.47 0.59 12.22

γ(N3�H) 75.93 68.57 81.97 �1.20 �1.98 3.16 81.94

γ(N1�H) 4.64 4.53 3.00 0.03 0.15 0.38 3.56

γ(ring) 24.03 20.98 23.41 �0.36 �1.67 2.58 23.97

γ(ring) 0.24 0.08 0.35 �0.06 0.05 0.43 0.67

γ(ring) 1.57 1.93 0.93 0.11 0.19 �0.33 0.90
a From eq 2.
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account of Fermi interactions allows one to obtain state-of-the-
art anharmonic frequencies for a system as challenging as uracil.
Within pure DFT approaches, for both frequencies and inten-
sities, the present study confirms that the aug-N07D basis set is
able to provide results close to or even better than those obtained
with the larger aug-cc-pVTZ set. We also note that, in the present
case, the accuracy of DFT results is at least comparable to that of
MP2 computations employing extended basis sets, but with a
considerable savings of computational time and thus a much
better scaling with the dimensions of the system.

In conclusion, even if further developments are still required
and under consideration, in our opinion, the results of the
present investigation show the remarkable performance of com-
posite schemes as well as of integrated CC and DFT appro-
aches in the field of vibrational spectroscopy.
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Polarizable Force Fields and Polarizable Continuum Model: A
Fluctuating Charges/PCM Approach. 1. Theory and Implementation
Filippo Lipparini* and Vincenzo Barone

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

ABSTRACT: We present a combined fluctuating charges�polarizable continuum model approach to describe molecules in
solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended
lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic
boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively
discussed, with specific reference to the fluctuating charge model, from a numerical point of view bymeans of several examples, and a
rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions
and polar molecules in water.

1. INTRODUCTION

The astonishing development of computational resources
during recent decades has made possible studies of larger and
larger molecular systems together with the computation of
accurate and complex physical�chemical properties. Both clas-
sical and quantum mechanical (QM) approaches have enor-
mously increased either their range of application or their
accuracy or both, allowing the study of several processes ranging
from folding studies of huge biological systems to extremely
accurate computations of spectroscopic parameters for medium-
large molecules.

Complex systems, like nanostructured ones or solutions and,
more in general, what is usually referred to as “Soft Matter”
represent, nevertheless, an interesting challenge for theoretical
and computational chemistry. The huge dimensionality of such
systems, which can be considered microscopic but certainly not
molecular, is still far beyond the possibilities of modern compu-
tational infrastructures: a computational study of a complex
system by means of standard tools is nowadays still unfeasible
when a QM treatment of the whole system is required. This can
be both a curse and a blessing: the quantity of data arising from
the direct study of such a system would be difficult to analyze and
even more difficult to translate into chemically understandable
information when a local property tuned by the chemical
environment is the target of the study.

The unfeasibility of “brute force” approaches, on the other
hand, is not to be considered as an insuperable obstacle.
Chemical intuition is often the way to get a valuable answer at
a reasonable price and is the driving force in the definition of
focused models, where the target of a study is well-defined and
distinguished from the environment, as complex as it might be,
that surrounds it.

A prototypical focused model may use different levels of
theory, from a very sophisticated QM approach to describe the
core, to a cheaper one for its closest surroundings, to a classical
but still atomistic one for the distant surroundings, to a con-
tinuum to describe the boundaries. In this paper, we will focus on
the two latter shells and, in particular, on their interface. As the

continuum is concerned, the Polarizable Continuum Model
(PCM)1,2 is one of the most successful models, thanks to its
generality and its versatility. The PCM represents a solvent, or
other more complex matrices3 such as an anisotropic medium or
a weak ionic solution or even a metal nanoparticle, by means of a
polarizable, infinite, dielectric medium which surrounds a mo-
lecular cavity that accommodates the “solute”. However, when
dealing with solvents responsible for specific interactions like
hydrogen bonds, a continuous approach may not be sufficient to
achieve a correct description of the system: a mixed contin-
uous�atomistic treatment of the solvent, using molecular me-
chanics (MM) to describe the atomistic portion, can be greatly
beneficial.4�12 On the other hand, the mixed strategy is advanta-
geous with respect to a fully atomistic one as the PCM easily
takes into account the long-range interactions that would require
a huge number of solvent molecules, increasing significantly the
computational cost of the simulation, and implcitly includes the
statistical average of their configurations.

In this paper, we will present a combined PCM/MM descrip-
tion using a polarizable force field. The most popular approaches
used to include polarization effects in MM include the induced
point dipole method,13 the classical Drude oscillator model,14

and the fluctuating charges model.15�17

We find the FQ model particularly appealing in view of its
strong connection both with quantum mechanics and classical
electrostatics: the model is based on concepts, such as atomic
hardness and electronegativity, which can be rigorously defined
in the framework of density functional theory (DTF);18,19 on the
other, the electronic distribution is represented by effective
atomic charges which interact classicaly. There is a strong
connection with the formalism adopted by semiempirical meth-
ods, like the density functional tight binding20,21 approach, and
the FQmodel, for they both treat the electronic polarization with
some suitably defined—and QM derived—charges that are
made self-consistent; on the other hand, the same strong formal

Received: June 6, 2011



3712 dx.doi.org/10.1021/ct200376z |J. Chem. Theory Comput. 2011, 7, 3711–3724

Journal of Chemical Theory and Computation ARTICLE

analogy holds between the FQ model and Apparent Surface
Charge (ASC) methods like PCM, where the definition of the
polarizable charges is classical. We find the smoothness in
switching from a classical and continuous description to an
atomistic and quantum mechanical one aesthetically fascinat-
ing and promising in the perspective of a complete, multiscale
description of complex systems. Another advantadge of the FQ
model with respect to the point dipole method is that only the
electrostatic potential needs to be calculated: as the electric
field is discontinuous at the cavity surface, its use can be a
source of numerical instabilities which are avoided using only
the potential.

Two different possibilities are offered by the FQ model,
eventualy coupled with the PCM: It can be used to calculate
molecular properties by means of response theory or analytical
derivatives in a standard, static fashion or for molecular dynamics
simulations. We will refer to the first approach as “time inde-
pendent” and to the second as “time dependent”. In the first case,
the FQ model can be used to describe the solute and (or) a few
molecules of solvent in a QM/MM/PCM fashion: the standard
machinery of computational chemistry can hence be employed to
calculate structural and spectroscopic properties.5,8,12 On the
other hand, the PCM is an effective and physically suitable way to
enforce nonperiodic boundary conditions (nPBC) in molecular
dynamics (MD) simulations.22�27 While the use of PBC is
convenient to describe solids like crystals or metals or pure
liquids, this is not always the case when dealing with intrinsically
nonperiodic systems, like a molecule in solution: to avoid
spurious interactions between the molecule and its copy in a
neighboring cell, a large amount of molecules of solvent is to be
used. This is especially true with charged solutes, as the Coulomb
interaction decays very slowly with the distance.28�30 The PCM
can be successfully and efficiently used to impose boundary
conditions by defining a suitable volume (cavity), enclosed by a
regular surface like a sphere, a cylinder, or an ellipsoid, that
accommodates the solute and the number of molecules of
solvent needed to fill the volume. We would like to point out
that the PCM treatment of the electrostatics is, in principle, exact:
the electrostatic potential is hence well-defined in the whole
space, and no discontinuity arises because of the definition of a
cavity if this is regular enough.31 On the other hand, confinement
and nonelectrostatic interactions are a more delicate aspect.
Nevertheless, it has been shown in the literature12,26,32�35 that
a tailored confinement potential or a proper buffer can provide
accurate results also for the description of bulk liquids and avoid
compenetrations between the continuous and atomistic portions
of the solvent. This is of particular importance when dealing with
a polarizable force field, as the penetration of a polarizable
molecule in the polarizable dielectric could give rise to instabil-
ities. The aspects of confinement and nonelectrostatics are of
course closely related, as the repulsion interaction is responsible
for the impossibility for different molecules to compenetrate.
The PCM cavity can be kept fixed during the simulation so that
the computational cost per step due to the PCM reduces to the
calculation of the electrostatic potential at some representative
surface point and a matrix/vector multiplication, as will be
clarified in section 3. This constraint can be easily relaxed, but
while this is necessary in order to do geometry optimizations,
previous attempts22�24 show that a fixed cavity is enough to have
a satisfactory description of the solvent.

In this contribution, we will mainly focus on the time depen-
dent approach and hence on molecular dynamics simulations; for

the sake of completeness, the FQ contribution to analytical first
and second derivatives will be derived in the perspective of a
future development in the time independent field of applica-
tions. To the best of our knowledge, this is the first derivation of
analytical second derivatives for the FQ model.

This paper is organized as follows: In section 2, the FQ model
is discussed, and the FQ/PCM equations are derived. Section 3
focuses on analytical derivatives of the FQ/PCM contribution to
the energy and on the use of FQ/PCM in molecular dynamics
simulations. Finally, in section 4, some preliminary numerical
results are presented.

2. THEORY

The FQ model is based on the electronegativity equalization
principle18,36 (EEP), which states that, at equilibrium, the in-
stantaneous electronegativity χ~ of each atom has the same value.
Considering an isolated atom, it is possible to expand in Taylor
series its energy with respect to the net charge on the atom itself.
To the second order:

E ¼ E0 þ ∂E
∂Q

Q þ 1
2
∂
2E

∂Q 2
Q 2 ð1Þ

The parameters—i.e., the energy derivatives—that appear in
eq 1 hold a clear physical significance: the first derivative is in fact
a Mulliken electronegativity, while the second is a chemical
hardness.

∂E
∂Q

�����
Q ¼ 0

¼ χ,
∂
2E

∂Q 2

�����
Q ¼ 0

¼ 2η

It is possible to extend eq 1 to a molecular system by taking
into account the interaction between charges located on different
sites:

E ¼ E0 þ ∑
i
½χiqi þ ηiq

2
i þ ∑

j > i
Jijqiqj� ð2Þ

where the hardness kernel J represents, as stated, the interaction,
and the sum runs over the nuclei. The electronegativity of the ith
atom is hence defined as the derivative of the energy with respect
to the ith charge:

χ~i ¼
∂E
∂qi

¼ χi þ ∑
j
Jijqj ð3Þ

where we put Jii = 2ηi. The EEP states that the electronegativity
of each atom in the molecule has the same value. This can be
stated in an equivalent, but more advantageous, formulation
defining the atomic partial charges as the constrained minimum
of functional

Fðq, λÞ ¼ E0 þ ∑
i
½χiqi þ ηiq

2
i þ ∑

j > i
Jijqiqj�

þ λð∑
i
qi �QtotÞ

where the constraint, imposed bymeans of a Lagrange multiplier,
is meant to preserve the total charge.Whenmore than amolecule
is present, there are two possible different strategies to impose
the charge constraint:
1. The entire system is constrained to have charge Qtot, and

no constraint is imposed on each molecule. This allows
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intermolecular charge transfer and makes, at the equilib-
rium, the electronegativity of each atom the same.

2. Eachmolecule is constrained to assume a fixed, total charge
Qα (requiring of course these charges to sum to Qtot).
Following this second possibility, the electronegativity
of each atom in the same molecule will be the same but
will have in general different values among different
molecules.

It has been pointed out15 that the first choice allows for charge
transfer even when it is unphysical—i.e., when two molecules
are separated by a large distance. In the literature, some models
have been proposed37�42 to take into account in a correct way
charge transfer; however, we will not deal with such phenomena
here and adopt the second choice for constraints. Dropping the
constant term, the functional to be minimized reads thus

Fðq, λÞ ¼ ∑
α, i

qαiχαi þ
1
2∑α, i∑β, j

qαiJαi,βjqβj þ ∑
α
λα∑

i
ðqαi �QαÞ

¼ q†χ þ 1
2
q†Jq þ λ†q ð4Þ

where the Greek indexes run on molecules and the Latin ones on
atoms of each molecule.

The interaction kernel J describes the Coulomb repulsion
between two atoms and, from a quantum mechanical point of
view, can be conveniently described in terms of the Coulomb
interaction between two charge distributions represented by
spherical (s) Slater orbitals:

JijðrijÞ ¼
Z
R3

dr
Z
R3

dr0
jϕiðr� riÞj2jϕjðr0 � rjÞj2

jr� r0j ð5Þ

where

ϕiðrÞ ¼ N ir
ni � 1 e�ζir

N i is a normalization constant, ri is the position of the ith
nucleus, ni is the principal quantum number, and ζi is the Slater
exponent. This choice was the one proposed by Rapp�e and

co-workers in their pioneering work36 and is widely pursued in
the literature.15,40,43�46 As the integral in eq 5 goes to the bare
coulomb interaction when two sites are sufficiently distant, this
choice is usually reserved to the intramolecular terms, while the
intermolecular ones are described as classical Coulomb interac-
tions between point charges. This choice is particularly pursued
when rigid molecules are considered: the integrals are to be
computed only at the beginning of the simulation, and only the
intermolecular contributions need to be updated on the fly,
which can be done very efficiently using linear scaling techniques.
A different, but in principle similar, choice describes the interac-
tion by means of Gaussian orbitals,19,38,47,48 which allow an easy
and efficient computation of the interaction kernel, exploiting the
machinery of common quantum chemistry codes. The integrals
that need to be calculated are

JijðrijÞ ¼
Z
R3

dr
Z
R3

dr0
jjiðr� riÞj2jjjðr0 � rjÞj2

jr� r0j

¼ 1
rij

erf
rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
i þ R2

j

q
0
B@

1
CA ð6Þ

where

jðr� riÞ ¼ 1

ðR2
i πÞ3=2

e�r � ri=R2
i

and Ri is the width of the distribution. Some authors19,47

generalized the ansatz of s-type functions to s- and p-type
Gaussian type orbitals: this allows the model to accurately
reproduce out of plane contributions to polarizabilities for planar
molecules.

While the use of basis functions is general and elegant,
especially when the relation between FQ and the semiempirical
model is considered, the computation of the integrals at each step
of a molecular dynamics simulation with flexible molecules
would be overwhelmingly costly. A different strategy has been

Figure 1. Comparison between different expressions for the interaction kernel.
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proposed by several authors49�51 who approximate the Slater
integral bymeans of an empirical Coulombic interaction formula.
Let ηij be a parameter related to the interaction of the atoms i and
j—for instance, this might be the value of the Slater integral at
zero distance, but more in general it can be considered a
parameter. The approximate formula is

JijðrijÞ ¼ ηij

½1 þ ηnijr
n
ij�1=n

ð7Þ

In the literature, three different exponents (n = 1,49 n = 2,50 and
n = 351) have been proposed. We report in Figure 1 the
interaction kernel element between an oxygen and a hydrogen
atom JOH, as a function of the distance between the two centers,
calculated with both eq 5 and eq 7 with the three exponents
proposed, in comparison to the bare Coulomb interaction. All of
these expressions show the correct asymptotic behavior, and it is
possible to see that the approximate formula, eq 7, closely
resembles the Slater integral, especially with exponents n = 2
and n = 3. Throughout this work, we will always adopt the n = 2
choice.

The hardness parameters ηij lack a precise physical signifi-
cance when used to approximate eq 5 but make perfect mathe-
matical sense as the limit for small interatomic distances of the
aforementioned integral:

ηij ¼ lim
rij f 0

JijðrijÞ ð8Þ
As a consequence of their definition, in principle, one should

define as many hardness parameters as the number of couples of
different atoms. It has been proposed by some authors50,51 to
define the off-diagonal elements as the arithmetical or geome-
trical averages of the diagonal ones: this is, of course, an
approximation, but it reduces greatly the number of parameters
to be considered. We will examine the effects of this approxima-
tion in section 4 with a numerical example. The obvious
advantage of the use of an empirical formula is in terms of
computational effort: no integral needs to be evaluated, making
the FQ method suitable for flexible molecule MD simulations.
This definition of the interaction kernel is the one used in the FQ
CharMM force field52,53 and in the reactive ReaxFF force field.54

By taking the derivative of eq 4 with respect to the charges and
to the Lagrange multipliers, one obtains the constrained mini-
mum condition:

∑
β, j

Jαi, βjqβj þ λα ¼ � χαi

∑
i
qαi ¼ Qα

8>><
>>: ð9Þ

This equation can be recast in a more compact formalism
introducing the extended D matrix:

J 1λ
1†λ 0

 !

where 1λ is a rectangular matrix which accounts for the Lagrang-
ians. The linear system of equation reads now:

Dqλ ¼ � C ð10Þ
where C is a vector containing atomic electronegativities and
total charge constraints, whereas qλ is a vector containing charges
and Lagrange muiltipliers. It is important to notice that, although

J is positive definite, D is not, so that it is not possible to solve
eq 10 by means of standard minimization procedures.
2.1. Coupling the FQ Force Field with the Polarizable

Continuum Model. The PCM solves Poisson’s equation with
suitable boundary conditions in the presence of a dielectric
mediumwith a cavity, where the solute is accommodated. As we
are mainly interested in polar solvents involved in hydrogen
bond formation, we will restrict our discussion to the conduc-
tor-like model (C-PCM);55�58 a generalization to the IEF-
PCM59�61 model, which we are not concerned about at the
moment, is however straightforward. The coupling of a polar-
izable force field with the PCM requires one to take into
account the mutual polarization of the atomistic and contin-
uous part. This problem has recently been solved by Steindal
and co-workers9 in the framework of QM/MM calculation,
with the polarization of the force field described by means of
Thole’s point dipole method.13 The coupling between the
polarizable force field and the PCM is handled by defining
the proper extended matrix. We will follow here a slightly
different strategy. The recently introduced variational formal-
ism for the PCM62,63 (V-PCM) recasts the PCM problem in a
calculus of variations fashion: the energy of the solvated system
is defined as the (unconstrained)minimum of a suitable, strictly
convex functional. We report here its expression for the C-PCM
(see Appendix ; all of the details can be found in ref 62):

G ðσÞ ¼ 1
2f ðεÞ σ

†Sσ þ σ†V½F� ð11Þ

where σ is the vector containing the appearent surface charges
that represent the polarization of the dielectric, S is the coulomb
interaction matrix, V is the electrostatic potential produced by
the solute in vacuo, and ε is the solvent’s dielectric permittivity.
The scaling factor f(ε) = (ε � 1)/ε is used to adjust the results
of the conductor-like model to dielectrics.56 We point out that
an equivalent functional was originally proposed by Klamt and
Schuurmann,55 but it was not fully exploited in its variational
aspect.
As discussed in the Introduction, for molecular dynamics

related calculations, we will restrict ourselves to fixed cavities
surrounded by a regular surface, in particular a sphere, filled with
the solute and a suitable number of solvent molecules. This
means that the PCM responsematrix, which depends only on the
geometry of the cavity, can be computed and inverted once for
ever at the beginning of the calculation without the need of
performing costly linear algebra at each step. It is assumed that
the surface of the cavity is partitioned in a suitable mesh and the
surface elements are provided with some basis function. The
traditional choice2 is to use piecewise constant functions on the
surface elements, which corresponds to reproducing the polar-
ization surface density of charge by means of point charges σi.
Recently, a new discretization scheme was presented,64 where
the PCM apparent surface charge is expanded in terms of
Gaussian functions. This is very convenient when the molecular
cavity follows the motion of the solute, as it provides continuous
energy and gradients. As in MD simulations, we are only dealing
with fixed, regular cavities; we will not adopt the aforementioned
scheme both because we would not exploit its advantages and
because we are treating the FQ as point charges. A generalization
to the continuous surface charge (CSC) formalism of Scalmani
and Frisch64 is straightforward and consistent with the definition
of the interaction kernel in terms of the coulomb overlap of
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Gaussian orbitals. From the perspective of using the standard
PCM cavity to compute molecular properties in a time inde-
pendent fashion, that is by means of analytical derivatives, the
CSC will be necessary to avoid numerical instabilities and
discontinuities.
Exploiting the new variational formalism, it is possible to

define a (free) energy functional of both the FQ and the PCM
polarization charges. We point out that although the PCM free
energy functional is strictly convex, this is not the case for the FQ
one, as the electroneutrality constraint needs to be imposed;
nevertheless, the energy of the coupled system can be written as
the constrained minimum of the functional

Λðq, σ, λÞ ¼ q†χ þ 1
2
q†Jq þ ∑

NM

α¼ 1
λα ∑

NA

j¼ 1
ðqαj �Q α

totÞ

þ 1
2f ðεÞσ

†Sσ þ σ†ΦðqÞ ð12Þ

where Φ(q) is the electrostatic potential due to the FQ at the
PCM cavity’s surface elements. Let V be the potential due to the
PCM charges at the atoms. We can express those potentials in a
symmetric fashion as

Φi ¼ ∑
N

j¼ 1

qj
jrj � sij ¼

def ∑
N

j¼ 1
Ωijqj

Vi ¼ ∑
NTs

j¼ 1

σj

sj � ri
¼ ∑

NTs

j¼ 1
Ω†

ijσj

where N is the total number of atoms and NTs is the number of
PCM surface elements.
These equations define an interaction kernel between the

PCM charges and the FQΩ. Imposing the minimum condition,
one has to solve a coupled linear system

D Ω†

Ω S=f ðεÞ

 !
qλ
σ

 !
¼ �C

0

 !
ð13Þ

which is consistent with what found by Steindal and co-workers9

for point dipoles.
It is interesting to spend a few lines on eq 13. As was already

pointed out in the Introduction, the EEP leads to a mixed
classical/quantum model where the FQs arise from quantum
atomic theory but interact in a classical way. On the other
hand, PCM is a fully classical model, derived from electro-
statics: it describes the polarization response of a classical
dielectric medium due to a classical source. From a more
formal point of view, the main difference between these two
models is that while the fundamental equation of the PCM is
Poisson’s equation, which relates an electrostatic potential
with a classical source, the same does not hold for the FQ
model: it is in fact not possible to identify a “source”, in the
Maxwellian meaning of the term. The source of the FQ is
nested in the electronic structure of the system, represented in
an approximate fashion by the EEP. These considerations can
be extracted by the formal structure of eq 13: the right-hand
side of the equation shows a source term for the FQ, the
electronegativities, and no external source for the PCM part,
which arises from the classical density of charge produced by
the FQs themselves.

3. ANALYTICAL DERIVATIVES

The gradients of the energy functional are easily derived from
eq 4. Differentiating once and using the chain rule:

FðxiÞðq, λÞ ¼ dF
dxi

¼ ∂F
∂xi

þ ∂F
∂q

∂q
∂xi

þ ∂F
∂λ

∂λ
∂xi

Assuming that eq 10 has been solved, the last two terms vanish;
that is, the total derivative and the partial derivative of the
functional coincide. This can be seen as a classical equivalent to
the Hellman�Feynman theorem for variational methods.
Hence:

FðxiÞðq, λÞ ¼ ∂Fðq, λÞ
∂rij

∂rij
∂xi

¼ 1
2
q†

∂J
∂rij

q
xi
rij

ð14Þ

In a MMPol-PCM calculation, there is also a contribution
arising from the interaction between the FQ and the PCM
charges to be added. Following the same arguments, only the
partial derivative of eq 12 needs to be calculated:

ΛðxiÞðq, λ, σÞ ¼ 1
2
q†

∂J
∂rij

q þ σ†∂Ω

∂rij
q þ 1

2f ðεÞσ
† ∂S
∂rij

σ

" #
xi
rij

ð15Þ
where, when we work with a fixed cavity, the contribution
involving the derivatives of the S matrix vanishes.

The second derivatives of eq 4 can be obtained differentiating
once again eq 14. Using the chain rule and adopting a more
compact notation:

FðxyÞ ¼ d
dy

∂F
∂x

¼ ∂
2F

∂x∂y
þ ∂

2F
∂x∂q

∂q
∂y

þ ∂
2F

∂x∂λ
∂λ
∂y

ð16Þ

the last term of eq 16 vanishes, but it is necessary to compute the
derivative of the charges:

FðxyÞ ¼ 1
2
q†JðxyÞq þ q†JðxÞqðyÞ ð17Þ

Differentiating once eq 10:

ðDqλÞðyÞ ¼ DðyÞqλ þ DqðyÞλ ¼ 0

The derivatives of the charges can thus be obtained solving a
coupled-perturbed system of equations, which we will call
CPFQ in analogy to the coupled-perturbed Hartree�Fock
equations:

DqðyÞλ ¼ �DðyÞqλ ð18Þ
Once again, in a FQ/PCM calculation, the PCM contributions

need to be taken into account. A similar set of equations can be
obtained differentiating eq 15:

ΛðxyÞ ¼ 1
2
q†JðxyÞq þ 1

2f ðεÞσ
†SðxyÞσ þ σ†ΩðxyÞq ð19Þ

þ q†JðxÞqðyÞ þ σ†ΩðxÞqðyÞ þ q†Ω†ðxÞσðyÞ þ 1
f ðεÞσ

†SðxÞσðyÞ

ð20Þ
where the derivatives of both the FQ and the PCM charges are
obtained solving a set of coupled perturbed equations obtained
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differentiating eq 13:

D Ω†

Ω S=f ðεÞ

 !
qλ
σ

 !ðyÞ
¼ � D Ω†

Ω S=f ðεÞ

 !ðyÞ
qλ
σ

 !

ð21Þ
We point out that solving eq 18 or 21 and therefore calculating
the derivatives of the FQs gives access to several second order
properties, among which are the IR absorption intensities,
computed as the derivatives of the dipole moment with respect
to the normal modes. Explicit expressions of the first and second
derivatives of the interaction kernel are reported in Appendix.

To perform a molecular dynamics simulation, only the energy
and its first derivatives are required. Nevertheless, solving eq 10
or 13 at each propagation step would be computationally very
demanding; it is however possible to exploit the extended
Lagrangian method,65�68 considering the FQ as independent
degrees of freedom endowed with a suitable fictitious mass, like is
done in Car�Parrinello67 MD:

L ðR, _R, q, _qÞ ¼ 1
2
M _R2 þ 1

2
μ _q2 �UðRÞ � Fðq, λÞ ð22Þ

The force acting on the ith charge in the αth molecule is
obtained differentiating once eq 4 with respect to the charge:

μ€qαi ¼ ∂F
∂qαi

¼ � χ~αj � λα ð23Þ

The Lagrangian multipliers can be determined imposing the
conservation of the total charge for each molecule, that is:

∑
NA

i¼ 1
€qαi ¼ 0

where NA is the number of atoms in the molecule, and hence

λα ¼ � 1
NA ∑

NA

i¼ 1
χ~αi ð24Þ

Substituting eq 24 into eq 23, one gets

μ€qαi ¼ � 1
NA ∑

NA

j¼ 1
ðχ~αi � χ~αj Þ ð25Þ

Equation 25 shows that the dynamics of the charges are governed
by the electronegativity equalization principle: the forces that act
on the charges arise from differences in the local electronegativ-
ities and vanish when the EEP is satisfied.

If a FQ/PCM simulation is done, there is an additional term to
be added to the forces on the charge, that is

χ~¼ Jq þ χ þ V ¼ Jq þ χ þ Ωσ ð26Þ
This means that the PCM equations need to be solved to
calculate the forces on the charges (and on the nuclei). As we
work with a fixed cavity, this can be done easily inverting the
PCMmatrix separately at the first iteration: the PCM charges can
be calculated when necessary, calculating the interaction poten-
tialΦ =Ω†q with the FQ and then multiplying it with minus the
inverse of the scaled PCM matrix:

σ ¼ � f ðεÞS�1Ω†q

An extended Lagrangian approach for the PCM charges too has
been proposed62,69 and is currently under investigation.

4. NUMERICAL RESULTS

All of the calculations have been performed with a locally
modified development version of the Gaussian70 suite of pro-
grams. As a first numerical test, we report in Table 1 the
vibrational frequencies and intensities calculated with eq 17
and by numerical differentiation of the energy gradient for a
N-methyl acetamide (NMA) molecule. We employed the
AMBER71 force field endowed with FQs; the electrostatic
parameters used for NMA were taken from ref 52 and slightly
adjusted to better reproduce the molecule’s gas phase dipole
moment (see Table 2). We point out that we are not expecting to
obtain accurate spectroscopic data, but we are only testing our
second derivatives implementation. The discrepancies between
the results obtained analytically and numerically are always
negligible and reasonably due to the truncation error in numer-
ical differentiation, which is the result we expected. We will not
go any further on the time independent approach and focus on
the dynamics.

It has been pointed out in the literature15,42,52 that the time
evolution of the extended system defined by the Lagrangian in
eq 22 behaves differently whether the molecules are kept rigid or

Table 1. Comparison between Analytical and Numerical IR
Frequencies (cm�1) and Intensities (km/mol) of NMA

frequencies intensities

mode analytical numerical analytical numerical

1 88.2116 88.2158 0.0048 0.0049

2 163.5498 163.5521 0.9680 0.9680

3 202.5621 202.5628 0.3784 0.3784

4 303.7496 303.7498 1.4539 1.4539

5 443.8597 443.8598 0.2519 0.2519

6 591.8727 591.8729 2.2844 2.2844

7 635.4398 635.4399 7.8228 7.8230

8 805.8804 805.8805 0.1881 0.1881

9 824.2376 824.2395 86.4033 86.4029

10 965.8140 965.8141 1.5627 1.5627

11 1046.8707 1046.8711 2.0386 2.0386

12 1056.1803 1056.1807 0.3581 0.3581

13 1067.9730 1067.9732 1.9047 1.9047

14 1103.3990 1103.3992 27.8512 27.8511

15 1265.7315 1265.7320 2.5165 2.5165

16 1394.6985 1394.6990 0.0000 0.0000

17 1400.8901 1400.8899 0.2803 0.2803

18 1411.7677 1411.7682 6.6289 6.6289

19 1414.1528 1414.1527 1.7540 1.7540

20 1451.4045 1451.4048 5.7040 5.7040

21 1528.0293 1528.0294 7.6152 7.6152

22 1623.0639 1623.0640 4.3400 4.3400

23 1681.4400 1681.4401 0.0750 0.0750

24 2837.1613 2837.1610 21.5101 21.5101

25 2864.5112 2864.5108 15.3084 15.3084

26 2968.5008 2968.5004 0.1301 0.1301

27 2971.2358 2971.2355 2.5114 2.5114

28 2979.4347 2979.4343 2.6738 2.6738

29 2981.1227 2981.1224 1.3473 1.3473

30 3180.8164 3180.8157 33.2933 33.2934
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not. While in the first case little or no thermal coupling is
observed between the FQ’s dynamics and the atomic one, a
strong coupling is observed when intramolecular motions are
allowed to take place. To better understand the behavior of the
system, we have performed several short simulations with
different fictitious masses for the FQs. To avoid as much as
possible numerical errors due to the time propagation, we have
implemented two very accurate symplectic integrators that, while
being very expensive, are known for their long-term stability and
accuracy. The time evolution of a classical system can be
conveniently described using the Liouville formalism: if A(q,p)
is any property of the system that only depends implicitly on
time, one has

dAðq, pÞ
dt

¼ ∑
i

_qi
∂A
∂qi

þ _pi
∂A
∂pi

 !
¼ fH,Ag

where qi and pi are the coordinates and momenta of the particles,
H is its Hamiltonian, and { 3 , 3 } is a Poisson bracket. If one
introduces the Liouvillian operator as

iLA ¼ fH,Ag
it is possible to write the formal solution of the equations of
motion as

AðtÞ ¼ eiLtAð0Þ
Unfortunately, the exponential map cannot be computed ex-
plicitly; on the other hand, if we can write

iL ¼ iLT þ iLV

that is, if the Hamiltonian is separable into a kinetic and a
potential contribution, we have two maps that we know how to
explicitly compute. Symplectic integrators approximate the exact
time evolution with

expðiðLT þ LV ÞδtÞ =
Yk
j¼ 1

expðicjLTδtÞ expðidjLVδtÞ

þOðδtk þ 1Þ ð27Þ
The order k of the expansion determines the order of the
integrator. The first order integrator is also known as the
symplectic Euler method, while the second order corresponds
to the Verlet method. Following the work of Yoshida,72 we also
implemented a fourth order and a sixth order symplectic

integrator, which require respectively three and eight force
evaluations per step and are respectively O(δt5) and O(δt7)
accurate. We report the coefficients ci and di obtained by Yoshida
in his paper in Table 3.

In Figure 2, we report the total energy and the temperature of
the charges during the propagation for the first picosecond of a
simulation. The propagation was obtained using the fourth order
symplectic integrator with a 0.1 fs time step. The test system used
is a cluster of 171 water molecules, described with the AMBER-
(TIP3P)71,73 (flexible) force field endowed with fluctuating
charges. The parameters used to define the FQ part of the force
field are ηO = 367.0 kcal/mol2, ηH = 392.2 kcal/mol2, and χOH =
130.0 kcal/mol. The first two parameters are those given in ref
15, while the electronegativity difference between oxygen and
hydrogen has been adjusted to reproduce the dipole moment of
liquid water. An extensive and thorough work of parametrization
will be the object of a future communication.

We notice that, as the fictitious mass of the FQ is increased, a
more intense thermal coupling between the nuclear and FQ
dynamics occurs: while with a very small mass (below 50 atomic
units) there is almost no coupling and the FQ temperature
remains stable around a few degrees Kelvin, it increases rapidly,
reaching values near 300�400 K when a bigger mass is used. The
same simulation was also carried out without the PCM embed-
ding; we do not report the results, as no significant difference is
seen. The behavior of the energy conservation and of tempera-
ture fluctuations stabilize and remain mostly unchanged after the
first picosecond of simulation.

To be sure that the thermal coupling is not (at least, not only)
due to numerical errors during the integration of the equations of
motion, we repeated these tests also with the sixth order
symplectic integrator: the results are reported in Figure 3

We notice that, in any simulation, the energy drifts are always
very small (below 0.1 kcal/mol) and almost not noticeable
(below 3 � 10�5 kcal/mol) when using the sixth order inte-
grator; nevertheless, the thermal coupling is always strong when
the FQ fictitious mass is above 50 atomic units.

These results seem to suggest that a small mass has to be used
in order to avoid an excessive energy transfer from the nuclei to
the charges; on the other hand, a small mass limits the propaga-
tion to a very small time step. We report in Figure 4 the energy
conservation for a fictitious mass of 25 au and 150 au for different

Table 3. Coefficients for the Symplectic Integrator

order ci di

2 1/2 1

1/2 0

4 1/(2(2 � 21/3)) 1/(2 � 21/3)

(1 � 21/3)/(2(2 � 21/3)) 21/3/(2 � 21/3)

c2 d1
c1 0

6 0.78451361047756 0.39225680523978

0.23557321335936 0.51004341191846

�1.1776799841789 �0.47105338540976

1.31518632038390 0.068753168252520

c3 d4
c2 d3
c1 d2
0 d1

Table 2. Parameters Used for the NMA/Water Simulations

atoms χ η

C 379.83 240.34

H 367.20 501.42

H 367.20 501.42

H 370.10 501.42

C 379.55 214.44

O 430.09 230.06

N 390.88 260.00

H 313.34 517.26

C 380.09 240.34

H 373.02 501.42

H 363.53 501.42

H 373.02 501.42
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time steps. With the smaller mass, the propagation could not be
carried out with a time step longer than 0.25 fs, while it remained
reasonably stable even with a 0.4�0.5 fs time step when using the
heavier mass.

To overcome this difficulty,15,52 the thermal coupling can be
removed by thermostatting separately the nuclei and the charges
at two different temperatures. This allows one to propagate the
system using a large fictitious mass for the charges and hence a
reasonable time step. Nevertheless, the time step chosen to
propagate the charges cannot be too small if molecules are not
kept rigid, as the polarization energy should be considered a
“fast”motion: the order of magnitude of its variation with respect
to the molecular geometry is comparable to that of the bonding
energy terms in a force field. This is shown in Figure 5, where the
O�H stretching energy is compared with the electrostatic
energy as a function of the O�H distance.

This behavior can be rationalized by considering themotion of
the FQs at a fixed geometry. Following the elegant analysis of
Olano and Rick,46 it is possible to calculate a frequency of
oscillation for some suitably defined linear combination of the
charges, considered dynamical variables. Following Olano and

Rick, let us consider an isolated molecule of water at its
equilibrium geometry (C2v symmetry). Imposing explicitly the
constraint on the total charge, i.e.

qO ¼ � 2qH

where the hydrogens carry the same charge for symmetry
reasons, the electrostatic energy reads:

UðqHÞ ¼ 1
2

qH1
qH2

 !†
α β

β α

 !
qH1
qH2

 !
þ Δχ†q ð28Þ

where

Δχi ¼ χi � χO,α ¼ JHHð0Þ þ JOOð0Þ � 2JOHðrOHÞ,
β ¼ JHHðrHHÞ þ JOOð0Þ � 2JOHðrOHÞ

The eigenvalues of this matrix correspond, when divided by the
charge fictitious mass, to the oscillation frequency of the charge
“normal modes”. With our values, the eigenvalues are λ1 = 0.4298
au, corresponding to a “symmetric” oscillation, and 0.31378 au,
corresponding to an asymmetric one. In Figure 6, we report the

Figure 2. Energy conservation and temperature of the FQ with different fictitious masses for the FQ�fourth order integrator.

Figure 3. Energy conservation and temperature of the FQ with different fictitious masses for the FQ�sixth order integrator.
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frequency as a function of the fictitious mass for the lowest
eigenvalue. We see that, while no value of the fictitious mass
makes the frequency close to a typical vibrational frequency
(which could cause a resonance and, hence, a numerical cat-
astrophe), with large values of the fictitious mass, the separation
becomes smaller. On the other hand, small masses correspond to
very high characteristic frequencies, hence the necessity of using
a very small time step. If we consider a system of interacting
molecules, the analysis becomes trickier. Without performing a
detailed and accurate treatment of the problem in terms of
normal modes, it is possible to estimate the frequency of the
lowest energy vibration by the lowest eigenvalue of the J matrix.
We report in the same Figure 6 the results for the cluster
containing 171 molecules that we used for the tests reported at
the beginning of this section. Although the numbers are not
quantitatively accurate, they certainly provide a qualitatively
correct picture of the dynamics of the charges. When the biggest
mass is used, the oscillation frequency of the lowest energy
normal mode is relatively close to an O�H stretching: this
explains the strong thermal coupling between the polarization
and atomic degrees of freedom.

To test our implementation, we tried to reproduce the first
peak of the pair correlation function for water. A 100 ps
simulation was performed at 298 K and unitary density, using
the velocity Verlet integrator, with a 0.25 fs time step. The system
was composed of 457 molecules of water in a spherical box of
radius rc = 14.5 Å. The starting configuration was obtained with a
standard (N,V,T) simulation at 298 K.

When enforcing nPBCs, spurious boundary effects can occur,
which should be cured employing either effective potentials or
proper buffer regions.12,26,32�35 In the present study, we have
employed a simple radial potential Vc, which is sufficient for the
description of local effects far from the boundaries. More reliable
effective potentials will be implemented after the optimization of
polarizable flexible solvent force fields. In particular, we adopt for
the Vc potential a sixth-degree polynomial expression:

VcðrÞ ¼ 0 r e rc
kðr � rcÞ6 r > rc

(

The temperature was kept constant using a stochastic Andersen

Figure 5. Stretching and electrostatic energy with respect to O�H
distance.

Figure 6. Oscillation frequency for the lowest energy charge normal
mode as a function of the fictitious mass for a single molecule of water
and for a cluster of water molecules.

Figure 4. Energy conservation with different FQ fictitious masses and time steps.
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thermostat65 for the nuclei and rescaling the velocities for the
charges so that their temperature remained fixed to 4 K. We used
the AMBER/TIP3P71,73 force field for the nonelectrostatic part
of the potential energy. The system was surrounded by a PCM
spherical cavity of radius 15.5 Å. We used a larger radius for the
PCM cavity to avoid contact between the FQ and the PCM
apparent surface charge and, hence, the potential polarization
catastrophe. The simple potential adopted was able to enforce
the confinement, allowing a very small penetration of the r > rc
region. The size of the PCM cavity with respect to the confine-
ment radius will be the object of further study.

In Figure 7, we report the radial distribution function we
obtained with a FQ/PCM simulation and a nonpolarizable
TIP3P simulation in comparison to the experimental one of
Soper and Phillips.74 A simulation carried out with 1116 mol-
ecules of water confined in a 20.5 Å sphere surrounded by a PCM
spherical cavity of radius 21.5 Å produced comparable results.
The agreement is only qualitatively acceptable; on the other
hand, since a thorough parametrization was not carried out, as
regards either the force field or the confinement potential, we did

not expect to perfectly reproduce the properties of the bulk
liquid.

On the other hand, we felt that the agreement was satisfactory
enough to try to reproduce the solvation properties of a cation
like lanthanum. It was shown byDuvail and co-workers75,76 that a
polarizable force field is necessary to correctly describe the
coordination of lanthanides in water. We hence tried to repro-
duce their results, adopting the same Buckingham-6 potential
they propose to describe the nonelectrostatic interaction of the
cation with the solvent and our FQ force field. A 100 ps
simulation was carried out on in a 12.5 Å spherical box, obtained
cutting the cluster used for the water simulation, and creating a
hollow, 3 Å in radius cavity in the middle that accommodates a
lanthanum ion, surrounded by 241 water molecules. A 0.25 fs
time step and the velocity Verlet integrator were employed. The
system was thermostatted at 298 K (4 K for the FQ as before),
and data were collected after a 2 ps of equilibration, as suggested
by Duvail and co-workers.75 Confinement was kept as before
with a sixth degree polynomial potential, and the system was
surrounded with a 13.5 Å spherical PCM cavity. The La�O radial

Figure 7. O�O and O�H (intermolecular) radial distribution function for water.

Figure 8. First peak of the La�O radial distribution function and its integral (coordination number).
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distribution function was calculated and the coordination num-
ber determined as the area of the first peak. We report in Figure 8
the first peak of the gLa�O(r) function and its integral obtained
with the FQ polarizable force field and PCM embedding in
comparison to the ones obtained with the TIP3P force field. The
FQ/PCM calculation gives a coordination number for the La3+

ion of slightly less than 9 (8.78), which is in good agreement with
both the result obtained by Duvail et al. and the experimental
data they report. On the other hand, the unpolarizable force field
gives a coordination number slightly bigger than 10 (10.1), again
in agreement with what Duvail and co-worker observed.

As a last pilot application of the method implemented, we
studied the solvation of a N-methyl acetamide (NMA) molecule
in water. The starting configuration was obtained as for the
lanthanum ion, cutting a 12.5 Å sphere of water molecules from
the cluster used for the pure water simulation and creating a 3 Å
cavity to accommodate the NMA molecule. The system was
equilibrated for 2 ps, and a 100 ps simulation was run with a 0.25 fs
time step, using the velocity Verlet integrator. We employed the
AMBER71,73 force field (TIP3P for water) endowed with fluc-
tuating charges. The FQ parameters were take from ref 52; we
slightly adjusted the electronegativities to better reproduce the
NMA’s gas phase dipole moment (see Table 2). Confinement

was maintained with the same sextic potential, and a 13.5 Å PCM
cavity surrounded the system. We report in Figure 9 the dipole
moment of the NMA molecule along the simulation and in
Figure 10 the radial distribution function between the NMA
carbonyl oxygen and water and between the NMA amide
hydrogen and water, respectively. The results obtained are
consistent with those of Patel and co-workers,52 which was to
be expected, as we used a only slightly modified version of their
parameters. The radial distribution functions show the presence
of a strong hydrogen bond between NMA and water. As Patel
and co-workers have already pointed out, the dipole moment of
the NMA molecule in water is higher (the average is slightly
lower than 8 D) than the one obtained by ab initio computation,
with implicit or explicit solvation (5.18 to 5.33 D). In our case,
this overpolarization effect can be attributed to two different
facts. As we have already pointed out, this work was not
concerned with the parametrization of a FQ polarizable force
field: we used parameters taken from the literature, eventually
making some adjustment, but without a thorough effort to
produce a general and reliable set of parameters. On the other
hand, we think that one of the assumptions made is probably a
considerable source of error. The definition of the off-diagonal
elements of the hardness matrix in eq 8 is an approximation, and

Figure 9. Istantaneous dipole moment (Debye) of the NMA molecule
in solution during the simulation.

Figure 10. Radial distribution functions for NMA’s hydrogen bond donors/acceptors and water’s atoms.

Figure 11. Istantaneous dipolemoment (Debye) of theNMAmolecule
in solution during the simulation—original vs modified parameters.
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we feel it to be a little too simplistic, especially when strong,
specific interactions are involved. As a matter of fact, the whole
model does not consider covalent or “quantum” interactions at
all: when dealing with hydrogen bonds, it is probably necessary to
add some degrees of freedom in the parametrization. To show
this, we run a simulation changing the off diagonal hardness
elements for the atoms involved in hydrogen bond formation,
i.e., the amide hydrogen with the water oxygen and the carbonyl
oxygen with the water hydrogen.We lowered the values obtained
as the arithmetical mean of the atomic ones from ηHNMA

Owat =
311.14 kcal/mol to ηHNMA

Owat = 300.00 kcal/mol and from
ηHNMA

Owat = 442.20 kcal/mol to ηHNMA
Owat = 420.00 kcal/mol.

We reiterate that this is only a conceptual experiment and that an
accurate determination of the optimal parameters has not yet
been done. The results are reported in Figures 11 and 12. We see
that with the modified parameters, the instantaneous dipole
moment oscillates around a value (slightly larger than 6.0 D)
which is much closer to the one obtained by ab initio calculations;
on the other hand, the simulation provides a much weaker forma-
tion of hydrogen bonds, as shown by the heights of the peaks in
Figure 12. A small extension of the manifold of parameters hence
seems definitely worth the effort.

5. CONCLUSIONS AND PERSPECTIVES

We have implemented a polarizable force field using the
fluctuating charges model, and we have combined it with the
polarizable continuum model as a tool to perform mole-
cular dynamics simulations with nonperiodic boundary condi-
tions in NVE/NVT ensembles. Extensive numerical testing
has been performed to better understand the behavior of the
MD simulations when the charges are propagated in a Car�
Parrinello-like fashion, and a rationalization has been proposed
on the basis of the analysis of the frequencies of oscillation that
characterize the charge dynamics. Several prototypical applica-
tions have been shown: calculation of IR frequencies and
intensities and simulation of pure water and of charged and
uncharged atomic and molecular solutes have been performed
and discussed. We notice that the lack of an accurate parame-
trization of the whole force field is probably the first problem
that needs to be addressed. From the NMA simulations, we
found that the manifold of parameters that need to be taken into

account for the electrostatics can have a crucial effect on the
quality of the results: its extension with parameters chosen to
describe specific intermolecular interactions might introduce
major improvements. As pointed out by Verstraelen and co-
workers41 in their excellent work, parametrization is a complex
matter, and the literature presents sets of parameters widely
varying in one respect to another, all because the cost functions
used for calibration present flat and elongated minima. Another
important extension of the model that we have not considered
yet is charge transfer.15,40,43�46 It has been shown that this
phenomenon can be of great importance in determining the
properties of liquid water, in which, as we aim to model aqueous
solutions, we are very interested. Concerning more specifically
molecular dynamics, other ensembles, especially the NPT
one,77 need to be considered, and a more exhaustive study on
the effect of different thermostats is under investigation. In
particular, the use of the Andersen barostat combined with
Nos�e�Hoover�Poincar�e thermostats may be convenient, as it
allows the propagation of the trajectory with an arbitrary order
symplectic integrator. The perspectives of a FQ/PCM imple-
mentation are many. The FQ model provides the electrostatic
interactions to the ReaxFF reactive force field:54 reactivity in
solution by means of classical MD simulations is an interesting
development. On the other hand, an interface with the QM
world seems the most promising target to pursue, especially
considering that our implementation is rooted in a very QM-
oriented computational package. From this point of view, the FQ
polarizable force field is the missing term in the GLOB22�26

model, where the core and the continuum are polarizable but the
atomistic layer of the solvent is not. A fully polarizable QM/MM/
PCM layeredmethod, suitable both for accurately reproducing the
solvent effect on molecular properties and for mixed classical/
ab initio molecular dynamics, is, after the aforementioned develop-
ments are complete, an important target we wish to pursue.

APPENDIX A. THE C-PCM AS A VARIATIONAL
PROBLEM

The conductor-like PCM describes the solvent as a conduct-
ing medium which occupies all the space but a hollow cavity that
accommodates the solute. Let C be such cavity, which we will
assume to be a bounded, simply connected open subset of R3

Figure 12. Radial distribution functions for NMA’s hydrogen bond donors/acceptors and water’s atoms with modified parameters.
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with regular enough boundary Γ = ∂C, and let F be the molecular
density of charge, which we will assume to be supported inside C.
As we are assuming that the cavity is surrounded by a conductur,
the potential at the boundary must vanish, and hence we need to
solve the Poisson equation

∇2ϕ ¼ � 4πF, ϕ ¼ 0 " r ˇ C ð29Þ
Linearity allows us to write the potential as a sum of a molecular
term Φ and a reaction term Vr, due to the polarization of the
surroundings:

ϕ ¼ Φ þ Vr

The molecular term is the potential produced by the density F in
vacuo, while the reaction term can be modeled as the potential
produced by an apparent surface charge σ, which represents the
polarization of the medium:

ΦðrÞ ¼
Z
C

Fðr0Þ
jr� r0j dr

0,VrðrÞ ¼
Z
Γ

σðsÞ
jr� sj ds

As the total potential must vanish at the boundary, the C-PCM
integral equation will read:

VrðsÞ ¼
Z
Γ

σðs0Þ
js� s0j ds

0 ¼defðS σÞðsÞ ¼ �ΦðsÞ ð30Þ

where we have introduced the integral operator S . It is known31

that if Γ is regular enough, S is a self-adjoint, positive definite,
coercive operator in a suitable Hilbert space V: this means that
the (unique) minimum of the functional

JðσÞ ¼ 1
2
Æσ, S σæV þ Æσ,ΦjΓæV ð31Þ

(we denote with Æ 3 , 3 æV the scalar product in V) is also the
solution of the integral equation.78 Adding the C-PCM scaling
factor 1/( f(ε)) and discretizing, eq 11 is recovered.

APPENDIX B. DERIVATIVES OF THE FQ CONTRIBUTION
TO THE ENERGY: EXPLICIT CONTRIBUTIONS

During the calculation of the gradients and of the Hessian of
the FQ contribution to the energy, both first and second partial
derivatives of the interaction kernel eq 7 are to be computed. We
report here their expressions.

∂Jij
∂rμk

¼ ð1� δijÞ
∂Jij
∂rij

rμi � rμj
rij

ðδik � δjkÞ ð32Þ

where rk
μ is the μth Cartesian coordinate of the position vector of

the kth particle and

r2ij ¼ ∑
3

μ¼ 1
ðrμi � rμj Þ2 ¼ ∑

3

μ¼ 1
ðrμij Þ2

We will need to calculate

∂Jij
∂rij

¼ ∂

∂rij

ηij

ð1 þ rnijη
n
ijÞ1=n

¼ � ηn þ 1
ij rn � 1

ij

ð1 þ ηnijr
n
ijÞ1=n þ 1

ð33Þ

In particular, if we choose n = 2, eq 32 becomes

∂Jij
∂rμi

¼ � η3ijr
μ
ij

ð1 þ η2ijr
2
ijÞ3=2

ð34Þ

The partial second derivative has a rather cumbersome expres-
sion:

∂
2Jij

∂rμk ∂r
ν
l

¼ ∂
2Jij
∂r2ij

∂rij
∂rμk

∂rij
∂rνl

þ ∂Jij
∂rij

∂
2rij

∂rμk ∂r
ν
l

ð35Þ

The second derivative of the interaction kernel with respect to
the interatomic distance is

∂
2Jij

∂rμi ∂rνj
¼ ηn þ 1

ij rn � 2
ij ð2rnijηnij � n þ 1Þ

ð1 þ ηnijr
n
ijÞ1=n þ 2

With our n = 2 choice, eq 35 becomes

∂
2Jij

∂rμk ∂r
ν
l

¼ ð1� δijÞ
3η5ijr

μ
ij r

ν
ij

ð1 þ η2ijr
2
ijÞ5=2

� δμν
η3ij

ð1 þ η2ijr
2
ijÞ3=2

8<
:

9=
;

½δklðδik þ δjkÞ � ð1� δklÞðδikδjl þ δilδjkÞ� ð36Þ
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ABSTRACT: A detailed description of the local solvation structure and mobility of hydroxyl radicals (OH*) in aqueous solution
near ambient conditions is provided byCar�Parrinellomolecular dynamics simulations. Here, we demonstrate that forHCTH/120
and BLYP functionals, smaller systems (i.e., 31 3H2O�OH*) are contaminated by system size effects, being biased for the presence
of a three-electron two-centered hemibond structure between the oxygen atoms of a water molecule and the radical. Radial and
spatial distribution functions of relatively large 63 3H2O�OH* systems reveal the existence of a 4-fold coordinated “inactive”OH*
structure with three H-bond donating neighbors and a strongly coordinated H-bond accepting neighbor. The local hydration
structure around the radical exhibits more H-bond ordering than has been predicted by recent simulations employing classical force
fields. Local structural fluctuations can end with spontaneous H-transfer reactions from the nearest H-bond donor water molecule,
facilitated by the formation of an “active” OH* state, resembling the proton transfer mechanism of hydrated OH� (i.e., slight
polarization of the (H3O2)* complex). A comparison of the free energy barriers for the H-transfer reaction obtained by both DFT
functionals and for both system sizes is also provided, demonstrating that this can be a very rapid process in water.

1. INTRODUCTION

The hydroxyl radical (OH*) has posed significant challenges
to theoretical and experimental studies due to its high reactivity
and very short lifetime.1 However, it is still the target molecule of
numerous investigations owing, in part, to its biological and
atmospheric significance as well as its crucial role in industrial
applications.2,3 Described as the atmospheric “vacuum cleaner”,
this radical is responsible for many of the reactions that remove
volatile organic compounds from the air.4,5 It oxidizes approxi-
mately 83% of annual methane emissions, making OH* the most
important processor of greenhouse gases.4,5 Serious ailments
such as cancer and Parkinson’s disease have also been related to
OH*,6 and it is recognized as the most reactive of the so-called
reactive oxygen species (ROS). The only means to protect impor-
tant cellular structures from its action is the use of antioxidants
because, contrary to other oxidants, OH* cannot be eliminated
by an enzymatic reaction. Thismakes it a very dangerous compound
to an organism, but interestingly, OH* is also essential to the
body’s natural defense mechanisms.6

Water apparently has a crucial role in OH* chemistry. Recent
studies have pointed out its effect on modulating OH* reactivity,
providing a clear stabilization of transition states and higher
reactivity via hydrogen bonding.7,8 High level ab initio calcula-
tions of gas phase OH*(H2O)n clusters9�28 have also been
conducted. Their focus has been on the possible existence of a
H2O�OH* complex which is speculated to influence strongly
the diffusion and oxidative capacity of the radical. Only a few
studies have considered the solvation of OH* in liquid water,29�34

aimed at demonstrating an expected OH* ability to diffuse in
water via hydrogen exchange analogous to the proton-exchange
reaction in the case of OH�.30,35 Prior to our work,36 this key
reaction had not been directly detected by either experimental or
theoretical studies due to the large challenges posed by OH*
to both fields. In addition, a recent spectroscopic observation37

made during the irradiation of OH� in aqueous solutions has
been attributed to ultrafast H-transfer reactions from neighbor-
ing water molecules to OH*. These authors37 had attempted to
compare their proposed mechanism with previous Car�Parrinello
MD simulations31 in which a three-electron two-center hemi-
bond structure between the oxygen atom of the radical and the
oxygen atom of one water molecule was found to be a particularly
stable structure.30,31 In the presence of the hemibond, the
supposed diffusion mechanism of OH* in liquid water via a
hydrogen exchange reaction is effectively impeded.30 Afterward,
Vandevondele et al.33 claimed that BLYP and all GGA func-
tionals overestimate the hemibond structure and, using self-
interaction corrected methods, reported that OH* acts as a good
hydrogen bond donor but accepts fewer than two hydrogen
bonds on average. However, the previous apparent inability of
Car�Parrinello MD to determine a OH* H-transfer reaction29�34

seems inconsistent with the low reaction barrier (around
4.2 kcal/mol)27,38 predicted for the hydrogen transfer reaction in
the gas phase, which is in good agreement with the available
experimentally derived data.11

As we have shown in a very recent paper,36 Car�Parrinello
molecular dynamics simulations of a larger (63 3H2O�OH*)
system provide a different picture with respect to previous
simulations using the smaller system (31 3H2O�OH*).29�34

Here, we present a comparison between these two systems,
providing a detailed description of the solvation and electronic
behavior of OH* in aqueous solution and demonstrating that
smaller systems are contaminated by system size effects. Both the
HCTH/120 and BLYP density functionals are employed. Im-
portant insights into the features of the H-transfer reaction
(OH* + H2OT H2O + OH*) are also provided.

Received: June 18, 2011
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2. SIMULATION DETAILS

2.1. Car�Parrinello Molecular Dynamics Simulations. The
standard Car�Parrinello39 DFT-based ab initioMDmethod was
used with the CPMD40 code to study 31 3H2O�OH* and
63 3H2O�OH* systems within periodic boundary conditions.
The cubic simulation cells have lengths of 9.85 Å and 12.56 Å,
respectively. The resulting density of 1 g/cm3 corresponds to the
density of water under ambient conditions. The local spin density
approximation (LSDA) was employed to account for the un-
paired electron at the hydroxyl radical. Two different density
functionals were utilized and compared, the gradient-corrected
exchange-correlation energy functionals of Becke, Lee, Yang, and
Parr41,42(BLYP) and the HCTH/120.43 The HCTH/12043

functional was employed because it has been reported to describe
accurately the properties of liquid water.43�45 This particular
functional is a highly parametrized GGA functional which was fit
to a large set of empirical molecular properties. For our simula-
tions, we applied the HCTH/120 functional and the Troullier�
Martins norm-conserving pseudopotential,46 where the valence
electronic wave function is described with a plane wave basis with
an energy cutoff of 90 Ry, which provides a reasonable basis set
convergence for this particular system. In addition, we compare
the results obtained from the HCTH/120 functional with those
obtained with the BLYP functional with the Goedecker47 norm-
conserving pseudopotential and a valence electronic wave func-
tion described with a plane wave basis with a 75 Ry energy
cutoff since this scheme was previously applied in the study of
systems with 31 H2O molecules and a hydroxyl radical.29�31

We use this scheme with the BLYP functional for both small
(31 3H2O�OH*) and large (63 3H2O�OH*) systems for

consistency in our exploration of finite size effects. Tests with the
BLYP functional in combination with either pseudopotential
gave the same results. The simulations were carried out with a
fictitious mass of 600 au and a simulation temperature of 310 K,
whereas previous calculations employed 600 au and 800 au.31

The supporting information of ref 36 explores the possible
impact of the selected fictitious electronic mass for this system.
We have performed a benchmarking exercise for the current
methodology against non-DFT and all-electron DFT methods
demonstrating that the electronic approach used in the present
simulations is reasonable for our purposes. The fictitious electron
kinetic energy and the dynamics of the atoms were controlled by
a chain of three Nose�Hoover thermostats48 operating at
characteristic frequencies of 6000 cm�1 and 2000 cm�1, respec-
tively. The average fictitious kinetic energy was maintained at
levels of 0.035 Ha for the 31 3H2O�OH* system and 0.06 Ha for
the 63 3H2O�OH*system, both remaining stable during the
whole simulation. The spin distribution function of two other
systems, 23 3H2O�OH* and 95 3H2O�OH*, with dimensions
of 8.4 and 14.4 Å, respectively, was calculated after geometry
optimization. The input structures for the CPMD simulations
were taken from a large liquid water system previously equili-
brated by classical MD simulations. For these systems, a hydro-
gen atom was removed from the water molecule that was closest
to the center of mass of the system. The first 2 ps of CPMD
dynamics following the proper equilibration of the energies were
also considered as equilibration and discarded. The total simula-
tion times were 160 ps for the 31 3H2O�OH* systems and 50 ps
for the 63 3H2O�OH* systems. The time step was set to 0.1 fs.
Bin sizes of 0.05 Å and 5� were used for the radial and angular
distribution functions, respectively. Taking into account the

Figure 1. Radial distribution functions obtained with the HCTH/120 (left column) and BLYP (right column) functionals for total simulation times of
160 ps of 31 3H2O�OH* systems at a temperature of 310 K. (a, b) Oxygen�hydrogen RDFs in which O*H is represented by a blue solid line, O*H* by a
magenta solid line, OH by a red solid line, and OH* by a green solid line. (c, d) Oxygen�oxygen RDFs in which O*O is represented by a blue solid line
and OO by a magenta solid line. (e, f) Hydrogen�hydrogen RDFs in which H*�H is represented by blue solid line and H�H by a magenta solid line. A
representative structure for the O*O hemibond interaction is shown in c and d.
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importance of obtaining measures of average spatial structures49

for this kind of study, a custom code was used for calculating the
probability distributions of oxygen and hydrogen atoms around
the O* (or H*) over all system trajectories. Spherical polar
coordinates were used for averaging. VMD50 was utilized for
visualization of configurations as well as for displaying isosur-
faces. Henceforth, hydrogen and oxygen atoms from water
molecules are denoted as H and O, while those from the radical
are denoted as H* and O*, respectively.
2.2. Constrained MD. The free energy of the hydrogen

transfer reaction between the hydroxyl radical and the water
molecules was performed using constrained molecular dynamics
simulations.51 The difference between the O*H and OH dis-
tances was chosen as the constraint variable R, where H is the
hydrogen atom being transferred from a neighboring water
molecule to the radical. For each increment (∼ 0.15 Å for the
63 3H2O�OH* systems and ∼0.05 Å for the 31 3H2O�OH*
systems), the average constraint force was measured over a 3 ps
trajectory. From such simulations, the free energy profile may be
obtained from a straightforward thermodynamic integration over
the coordinate R, and the symmetry in the results was numeri-
cally imposed for the 63 3H2O�OH* system.

3. RESULTS AND DISCUSSION

3.1. Solvation Structure of the OH* in Aqueous Solution.
Significant differences can be observed in the radial, angular,
and spatial distribution functions for the two studied system
sizes (small, 31 3H2O�OH* and large, 63 3H2O�OH*). The
absence of a three-electron two-center hemibonded structure
(between the oxygen atom of the radical and the oxygen atom

of one water molecule) in the 63 3H2O�OH* system is im-
mediately apparent from an analysis of the radial distribution

Figure 2. Radial distribution functions obtained with the HCTH/120 (left column) and BLYP (right column) functionals for total simulation times of
50 ps of 63 3H2O�OH* systems at a temperature of 310 K. (a, b) Oxygen�hydrogen RDFs in which O*H is represented by a blue solid line, O*H* by a
magenta solid line, OH by a red solid line, and OH* by a green solid line. (c, d) Oxygen�oxygen RDFs in which O*O is represented by a blue solid line
and OO by a magenta solid line. (e, f) Hydrogen�hydrogen RDFs in which H*H is represented by a blue solid line and HH by a magenta solid line.

Table 1. Coordination Numbers, n(r), for the Hydroxyl
Radical in Which the Coordination of Hydrogen and Oxygen
Atoms around the Radical Oxygen Has Been Measured
(O*H and O*O, respectively) As Well As the Coordination
of Oxygen Atoms around the Radical Hydrogen (H*O)a

31 H2O�OH* 63 H2O�OH*

r (Å) BLYP HCTH/120 BLYP HCTH/120

O*H 1.2 0.8 1

peak 1 (r) 2.4 (2.45) 2.1 (2.55) 3.1 (2.75) 3.2 (2.71)

peak 2 (r) 4.4 (2.90) 4.2 (3.05)

4.5 25.2 24.4 24.5 24.2

O�H 1.2 1.9 1.9 1.9 1.9

2.5 3.9 3.9 3.9 3.9

4.5 24.9 25.2 24.8 24.9

O*O 2.6 0.99 1.07 0.1 0.2

3.4 4.92 4.24 4.5 4.5

4.5 12.2 12.9 11.3 11.5

O�O 3.4 4.2 4.1 4.4 4.2

4.5 12.21 12.2 11.3 11.5

H*O 2.2 0.9 0.7 1.6 1.5

2.7 1.7 1.1 2.1 2.1

3.6 5.8 6.1 6.5 6.9

4.5 12.9 11 12.3 12.5
aThe coordination numbers of hydrogen and oxygen atoms around the
water oxygen are also provided as OH and OO, respectively.
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functions (RDF) shown in Figures 1 and 2. An unusual peak in the
gO*O(r) function at around 2.4 Å confirms the existence of this
kind of interaction from both the HCTH/120 (Figure 1c) and
BLYP (Figure 1d) functionals for the small 31 3H2O�OH*
system; the peak does not appear with the increased size of the
periodic simulation box for the 63 3H2O�OH* system
(Figure 2c and d). Comparing Figures 1 and 2, we can see that
the presence of the hemibond in the same system significantly
alters the local structure around the radical.
The similarity of the BLYP andHCTHRDFs for both systems

(Figures 1 and 2) is important to note. In the case of the
31 3H2O�OH* system, our results for the first 80 ps utilizing
the BLYP functional reproduced the RDFs reported by Khalack
and Lyubartsev;31 however, the RDFs reported in Figure 1
averaged over a 160 ps trajectory show a more defined gO*O(r)
hemibond peak (Figure 1d) relative to the shoulder apparent in
ref 31, with a consequent distortion of the gO*H(r) in Figure 1.
This confirms the persistence (i.e., stability) of the hemibond
structure in 31 3H2O�OH* systems. The integration of the RDF
peaks (Table 1) for this smaller system further supports the
existence of a local structure very similar to those reported by
Vassilev et al.30,33 and Khalack and Lyubartsev,31 with two
H-bond donating neighbors, a H-bond accepting neighbor, and
a fourth water molecule forming a hemibond. Such a structure is

visualized in Figure 3, in which spatial distribution functions for
the most probable locations of the nearest neighbors of the OH*
(averaged over the full 160 ps trajectories) are shown along with
a representative configuration. The persistence of the hemibond
appears to be rather unfavorable for the H-transfer process since
no spontaneous H-transfers were observed in either of the 160 ps
small system simulations.
A different local hydration structure of the radical is evident for

the 63 3H2O�OH* system. It is noteworthy that in Figure 2 the
OH*�water distribution functions are generally similar to the
corresponding water�water RDFs, and there is no evidence of
the hemibond in the gO*O(r) peaks (Figure 2c and d). Again, the
BLYP and HCTH/120 DFT functionals yield very similar RDFs.
From the integration of the RDF peaks (Table 1), it is apparent
that the OH* accepts three H bonds and donates one with water
molecules in its first hydration shell. The formation of an almost
tetrahedral configuration around the radical is suggested by the
angular distribution functions presented in Figure 4. This
structure, identified as an “inactive” OH* state in our recent
report,36 can be visualized with spatial distribution functions of
the most probable locations of the nearest neighbors of the OH*
(Figure 5a and b). As we shall detail below, local structural
fluctuations of this “inactive” OH*(H2O)4 can end with sponta-
neous H-transfer reactions in these larger systems. We note that
in Figure 5a, the hydrogen atom transferred to the OH* appears
as one of the most probable locations. A representative config-
uration for the transfer process is shown in Figure 5c. These
larger system results clearly impact our understanding of the
mobility and solvation of OH* in aqueous solution.
In addition to previous Car�Parrinello MD results, three

classical MD studies have been published52�54 looking to
provide a description of the behavior of OH* in aqueous solution.
Classical potential models were employed and so were unable to
capture the formation of the (H3O2)* complex and the H-trans-
fer reaction. Unfortunately, the potential models used apparently
were not able to provide an adequate description of the specific
features observed in the interaction of OH* with water mol-
ecules. Consequently, Campo and Grigera52 obtained a rather
different local hydration structure for OH*with only oneH-bond
water donor (53% of the time) and one H-bond water acceptor

Figure 3. (a) Spatial distributions of hydrogen (white isosurfaces,
threshold 2.1) and oxygen (red isosurfaces, threshold 3.4) atoms around
the OH* for the 31 3H2O�OH* system obtained with the HCTH/120
functional from 160 ps trajectories. We remark that the results obtained
with the BLYP functional appear very similar. A 4-fold coordination of
OH* is evident in which two water neighbors donate H bonds to the
radical, one water interacts through the O�O* hemibond, and another
water accepts a H bond from OH*. (b) Spatial distributions of oxygen
atoms around the OH* for the 31 3H2O�OH* system with respect to
different O*�O separations. Color legend: cyan (2.3( 0.25 Å), purple
(2.8( 0.35 Å), orange (4.05( 0.8 Å). The cyan isosurfaces (threshold
2.8) demonstrate that the hemibond structure is not always formed with
the samewater molecule, the purple isosurfaces (threshold 3.2) show the
4-fold coordination of H-bonding oxygen atoms, and the orange
isosurfaces (threshold 2.4) show the spatial structure of oxygen atoms
in the second solvation shell. (c) A representative snapshot configura-
tion exhibits a typical spatial arrangement of water molecules around the
radical for this smaller system.

Figure 4. Distribution of the angles H*O*O (blue solid line), H*O*H
(red solid line), andOH*O* (green solid line) for the first solvation shell
molecules of the 63 3H2O�OH* and the HCTH/120 DFT functional
averaged for 50 ps of simulation. The BLYP functional yields similar
results. The blue and red lines represent the angular distribution of
H-bond donating neighbors of OH*, and the green line represents the
angular distribution of the H-bond accepting neighbor of OH*.
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(88% of the time). Svishchev and Plugatyr53 reported that OH*
occupies “holes” in the tetrahedral arrangement of water mol-
ecules, with no indication of H-bond-like arrangements. Pabis
et al.54 developed a flexible potential for OH* (derived from
ab initio gas phase OH*�water dimer energies) and observed
that the radical tends to occupy cavities in the hydrogen-bonded
network of the water molecules with hydration shells of 13�14
water molecules. These striking differences from the present
results again point to the importance of an adequate description
of the interactions of OH* in a water environment.
A particular RDF feature worthy of comment is the flatness of

the first peak of the gOO(r), particularly for the HCTH/120
functional (Figure 2c). A previous comparison of the oxygen�
oxygen RDF obtained from ab initio MD (CPMD) for the
HCTH/120, BLYP, and BPZ functionals with experimental
results has been reported by Boese et al.43 These authors found
the position and depth of the first minimum more shallow and
shifted to a slightly smaller distance with respect to experimental
data. Comparing their RDF with Figure 2c, it can be seen that the
distribution function obtained here is somewhat flatter and less
pronounced than that for pure liquid water. Apparently, the
presence of the OH* has perturbed the water structure somewhat.
3.2. Size Effects and Electronic Features of OH* in Aqu-

eous Solution. The marked differences observed between the
RDF and SDF results for the small and large systems indicate that
those from the former are contaminated by system size effects.
An examination of the electronic features for both systems yields
further interesting results. Different from calculations in the gas

phase, periodic boundary conditions in MD simulations can
affect certain systems, which is a possible explanation for this
effect. In a 31 3H2O�OH* system, the OH* must share its
second hydration shell with its image in the periodic simulation
box (being 9.84 Å in width). The highly reactive OH* can
potentially “sense” its image, allowing electronic artifacts and
“undesirable” structures for the hydrated OH* to arise during the
simulation. We note that at the end of the geometry optimization
step there is a spin delocalization in smaller systems (23 3 and
31 3H2O�OH*), while for the 63 3 and 95 3H2O�OH* systems,
the spin density is primarily concentrated on the OH*. Changes
to the plane wave cutoff (90 Ry, 100 Ry, 120 Ry) do not alter
this behavior, supporting the conjecture of a system size effect as
the origins for this artifact. In our case, the selection of the
63 3H2O�OH* system implies a necessary compromise between
accuracy and computational expense.
Thefinite size effects inMDsimulations of the smaller 31 3H2O�

OH* system are manifested as a persistent hemibonded struc-
ture, which is apparently a rather unfavorable structure for H
abstraction. Further to the description of the electronic features
during the H-transfer reaction we provided very recently,36 here
we focus on a comparison of the electronic properties of the
63 3H2O�OH* system with those of the 31 3H2O�OH* system
(Figure 6). The spin density isosurface obtained for the smaller
system evidences that the singly occupied pπMO of the OH* is
tied down in this hemibond; both the water and the OH* share
negative and positive spin density, consistent with a stabilizing
resonance in which the electron pair is on the water oxygen atom

Figure 6. Electronic features of the three-electron two-center hemi-
bond structure obtained with the 31 3H2O�OH* system and the
spontaneous H-transfer reaction obtained with the 63 3H2O�OH*
system36 from the HCTH/120 functional. The BLYP functional yields
similar results. Row A represents the spin density distribution with
yellow (value of +0.0004) and green (value of�0.03) isosurfaces. RowB
shows the evolution of the HOMO where red and blue isosurfaces have
values of �0.03 and +0.04, respectively. For the smaller system, the
negative HOMO isosurface points toward the hemibond oxygen. For
the larger system, theHOMO is localized on theOH* before the transfer
and is perpendicular to the H bond with the nearest neighboring water
molecule. In the pre-transition state, both the HOMO and HOMO�1
orbitals are shown due to the existence of α and β degenerated states
centered on the water and OH* oxygens. Row C presents the ELF-α as
cyan isosurfaces (thereshold 0.85) and the ELF-β as pink isosurfaces
(threshold 0.85).

Figure 5. Spatial distributions of hydrogen (white isosurfaces, thresh-
old 2.1) and oxygen (red isosurfaces, threshold 3.4) atoms around the
OH* for the 63 3H2O�OH* system obtained with the HCTH/120
functional from 50 ps trajectories. We remark that the results obtained
with the BLYP functional appear very similar. (a) The isosurfaces
corresponding to H-bond donating neighbors of OH* are shown. We
note that at shorter O*H distances, the hydrogen atom position for H
transfer is evident. (b) The isosurfaces for the H-bond accepting
neighbor of OH* are shown. (c) A representative snapshot configuration
shows a typical spatial arrangement of water molecules around the
radical during a H transfer.
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while the unpaired electron is on the OH* oxygen, or vice versa.
In the case of the larger system, the spin density is primarily
located on the OH* prior to the H-transfer reaction. During the
initial part of the reaction, a small portion of positive spin density
is shared with the water molecule involved in the reaction
(Figure 6). As we described in ref 36, a (H3O2)* complex appears
prior to the transition state (Pre-TS, Figure 6) in which positive
and negative spin density is shared across both oxygen atoms.
The highest occupied molecular orbital (HOMO) provides an

alternate description of the H-transfer reaction mechanism. The
early movement of the electron was suggested36 by the existence
of essentially degenerated HOMO and HOMO�1, located on
the OH* oxygen and the water oxygen, respectively, in the pre-
transition state. In the case of the smaller system, the existence of
the hemibond seems not to relate with the location of the
HOMO: Although the spin density shows that the unpaired
electron is shared between the OH* and the water molecule, the
HOMO and HOMO�1 are both located only on the OH*
oxygen (see Figure 6). The electronic localization functions
(ELF) presented in Figure 6 for the smaller system appear very
similar to those of the larger system. These functions appear to
remain localized on the OH* and water molecule, further support-
ing the claim that resonance structures stabilize the hemibond
rather than a chemical bonding. The β function (ELF_BETA)
for the 31 3H2O�OH* systems (Figure 6) exhibits a continuous
ring around OH* very similar to that for the 63 3H2O�OH*

system before the transfer, and very similar to the picture
obtained for the hydroxyl anion.35 A p-like function for the
unpaired electron appears in the ELF_ALPHA for the OH* for
both small and larger systems, which becomes somewhat mod-
ified in the pre-transition state for the 63 3H2O�OH* system.
We have suggested36 that the H-transfer reaction has char-

acteristics of a hybrid mechanism apparently involving aspects
of a hydrogen-atom transfer (HAT) and an electron�proton
transfer (EPT). As the proton and the electron come from the
same bond in this reaction, a HATmechanism is expected. How-
ever, the evolution of theHOMO, ELF, and spin density suggests
that an early electronmovement occurs in the pre-transition state
when the hydrogen atom (or proton) is still closer to the water
oxygen. A schematic representation of the local structure of the
OH* during different states of this reaction is presented in
Figure 7, along with the bond orders for the OH* and the water
molecule involved in the transfer. The three spontaneous events
observed during the two simulations of the larger system all
exhibited the same basic structural pattern. Figure 7a shows the
“inactive” OH*(H2O)4 state already introduced in Figure 5a. A
key point in this reaction appears to be related with a change of
the OH* hydration structure from the “inactive” to the “active”
OH*(H2O)3 form (see Figure 7b). In the “active” state, the
H-bond of the accepting neighbor to the OH* becomes sig-
nificantly weakened.36 Interestingly, a slight polarization of the
(H3O2)* complex is evident at this point, while the hydrogen

Figure 7. Schematic molecular configurations for different states during the spontaneous H-transfer reaction for the 63 3H2O�OH* system. (a) The
initial state; (b) the pre-transition state, where the polarization of the structure is represented in the inset; (c) the transition state, a (H3O2)* complex;
and (d) the post-transfer state. The whole reaction (conversion from a�d) occurs in approximately 0.7 ps. The red numbers are the bond orders for the
radical and the water molecule involved in the reaction.
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atom (or proton) is still not fully shared between the two oxygens
(see schematic representation in Figure 7c). Consequently, the
“active” states of both OH* and OH� are similar, where the
H-transfer mechanism for OH* has key elements that resemble
the proton transfer mechanism of hydrated OH�. Yet, from an
analysis of constrained MD trajectories with the smaller systems
for either of the functionals used (see details below), it is evident
that this polarization of the (H3O2)* complex is not present;
neither is the weakening of theH bond to the accepting neighbor.
Again, the presence of the hemibond is significantly altering the
observed behavior during the (imposed) H transfer.
3.3. System Size Effects in the Free Energy Barrier for H

Transfer. As already stated, the H-transfer reaction is crucial to
understanding the mobility and reactivity of the OH* in aqueous
solution. Figure 8a shows the free energy profiles obtained after
averaging the values of the mean forces for the forward and
reverse processes in both 31 3H2O�OH* and 63 3H2O�OH*
systems for both DFT functionals. A small free energy barrier is
predicted in all cases, where a value of about 4 kcal/mol was
obtained for the 63 3H2O�OH* systems in good agreement with
experimentally derived values11 and high-level ab initio calcula-
tions in the gas phase (4.2 kcal/mol).27,38 We note that tests
using a larger step in the thermodynamic integration (i.e.,
∼ 0.15 Å for the 31 3H2O�OH* system) do not yield substantial
differences in the resulting barrier height. For the small system
modeled with the BLYP functional, the free energy barrier for the
reaction is somewhat higher than those obtained for the larger
systems. After examining the structural features of this smaller system
during the imposed H transfer, it is possible to see (Figure 8b)

that the hemibond structure between the oxygen atoms of the
radical and water molecules persists to the transition state. As
shown in Figure 8c, the spin density is shared across the radical,
the hemibonded water, and the water involved in the imposed H
transfer. The hemibond predicted by HCTH/120 for the small
systems seems to be less stable (c.f. the “shoulder” in the gOO(r)
of Figure 1c with the more defined peak in Figure 1d). With the
HCTH/120 functional, the hemibond is sufficiently weak that it
does not appear to survive during the imposed H transfer, thereby
allowing the smaller system to exhibit a free energy barrier similar to
those obtained for the larger system. Metadynamics results pre-
viously reported36 confirm that the barrier for this reaction is indeed
small, having an upper bound of 6 kcal/mol.

’CONCLUSIONS

Car�Parrinello molecular dynamics simulations of OH* in
liquid water, utilizing different system sizes with 31 and 63 water
molecules, reveal significant insight into the hydration and
mobility of OH* in solution. Analysis of radial and spatial distri-
bution functions demonstrates the existence of system size effects
with consequent electronic implications within MD results when
using smaller systems (i.e., 31 3H2O�OH*). Smaller systems
(i.e., 31 3H2O�OH*) show the presence of a three-electron two-
centered hemibond structure between the oxygen atoms of a
water molecule and the radical. Simulations with 63 3H2O�OH*
systems show two main states in the OH* solvation, a 4-fold
coordination OH*(H2O)4 as an “inactive” state in which OH* is
donating one H bond and accepting other three H bonds from

Figure 8. Results of constrained molecular dynamic simulation for the H-transfer reaction between OH* and a neighboring water molecule. (a) Free
energy profiles using the BLYP density functional for the 31 3H2O�OH* system (blue line) and the 63 3H2O�OH* (magenta line)36 and the HCTH/
120 density functional for the 31 3H2O�OH* (green line) and 63 3H2O�OH* (red line)36 utilizing R as the displacement coordinate. The estimated
error is in the range of 0.1�0.2 kcal/mol, obtaining by comparing forward and reverse reaction pathways as well as considering the symmetry of these
functions. (b) The transition state structure obtained with BLYP (31 3H2O�OH*) shows that the hemibond structure persists even with the use of
structural constraints and apparently contributes to the higher value of the energy barrier for this small system. (c) The spin density corresponding to the
transition state in b is shown as yellow (value of +0.0004) and green (value of�0.03) isosurfaces and attests to its delocalization among the radical, the
hemibonded water, and the water involved in the H transfer.
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water molecules and an “active” state with three H-bond donating
neighbors and a weakly coordinated H-bond accepting neighbor.
Previously studied classical models seem to underestimate the
interaction of water molecules with the radical. The H-transfer
reaction is apparently a very rapid process in water with a relatively
small free energy barrier which can contribute significantly to OH*
mobility in aqueous solution. Further spectroscopic characterization
of this reaction, critical in various scientific fields, bymodern ultrafast
experimental techniques is clearly warranted.
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ABSTRACT:We combine quantum and classical mechanics in a fragment-based many-body interaction model to predict organic
molecular crystal lattice energies. Individual molecules in the central unit cell and their short-range pairwise interactions aremodeled
quantum mechanically, while long-range pairwise and many-body interactions are approximated classically. The classical
contributions are evaluated using an accurate ab initio force field that is constructed on-the-fly from quantum mechanical
calculations on the individual molecules in the unit cell. The force field parameters include ab initio distributed multipole moments,
distributed polarizabilities, and isotropic two- and three-body atomic dispersion coefficients. This QM/MM fragment model
reproduces full periodic MP2 lattice energies to within a couple kJ/mol at substantially reduced cost. When high-level electronic
structure methods are coupled with the ab initio force field, molecular crystal lattice energies are predicted to within 2 kJ/mol of their
experimental values for six of the seven crystals examined here. Finally, Axilrod�Teller�Muto three-body dispersion energy plays a
nontrivial role in several of the molecular crystals studied here.

1. INTRODUCTION

Organic molecular crystals play a fundamental role in pharma-
ceuticals, agrochemicals, pigments, dyestuffs, foods, explosives,
and organic electronic materials. Molecular crystal properties are
strongly affected by the crystal packing. Multiple crystal packing
arrangements, or polymorphs, are often thermodynamically acces-
sible in real crystals and can have major real-world consequences.1

For example, a change in the crystal packing of rubrene, a
promising organic semiconductor material, utterly destroys its
high charge-carrier mobility.2 Or consider that the appearance of
a low-solubility polymorph of ritonavir, an anti-HIV drug, forced
its temporary removal from the market. This prevented patients
from receiving treatment and cost its maker an estimated $250
million in lost sales.3 Clearly, substantial scientific and financial
interest lies in knowing the structures and the properties of stable
crystal polymorphs.

Over the past decade, substantial progress has been made
toward the dream of predicting molecular crystal structures start-
ing from only a single molecule, as evidenced by recent major im-
provements in the results of the blind crystal structure prediction
tests.4,5 Two advances instrumental to this progress are the devel-
opment of robust, anisotropic force fields that include distributed
multipolar expansions of themolecular charge distribution, induc-
tion, and dispersion6,7 and the application of quantummechanical
models to crystal structure prediction, either to help determine
intramolecular conformations or for fully periodic density func-
tional theory (DFT) calculations.6,8�16

Unfortunately, traditional density functionals suffer from well-
known difficulties in describing van der Waals dispersion inter-
actions,17,18 which are critical to modeling intermolecular inter-
actions in molecular crystals. A number of strategies to correct
this deficiency have been adopted, ranging from empirical corre-
ctions to the development of nonlocal density functions.19�23

These techniques often work extremely well for molecular cry-
stals, but counter-examples also exist.24,25

Moreover, the energy spacing between crystal polymorphs can
be as little as 1 kJ/mol or less.24,26 Differences among the lattice
energy predictions from various density functionals often exceed
this threshold. The absence of a clear strategy for systematically
improving DFT calculations makes robust predictions difficult.
Recent developments in periodic Møller�Plesset perturba-
tion theory (MP2) are also very promising for crystal structure
modeling,27�32 but those calculations remain relatively compu-
tationally expensive.

The past few years have seen considerable interest in strategies
that model molecular crystals through a hierarchical33,34 or
fragment-based scheme. The advantage of fragment-based models
is that one can systematically improve the quality of the electronic
structure method used to describe the fragments and their inter-
actions. Many of these models, such as the fragment molecular
orbital method,35 are based on the many-body interaction expan-
sion. The key distinguishing features between suchmethods lie in
how they handle the long-range two-body (interactions between
a pair of molecules) and the many-body (involving three mole-
cules or more) contributions.

Themost straightforward approach would be to simply neglect
these terms, but they contribute too much to ignore. Long-range
and many-body contributions typically account for ∼5�10% of
the lattice energy, but they can contribute asmuch as∼25%!One
can do better if three-body terms are included explicitly, as has
been demonstrated with highly accurate symmetry-adapted per-
turbation theory (SAPT) calculations, for example.36,37 Unfortu-
nately, the steep computational scaling ofmost electronic structure
methods makes the explicit inclusion of three-body terms costly.

Received: August 2, 2011
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The fragment molecular orbital method and related appro-
aches incorporate many-body electrostatic induction effects via
the use of an embedding potential in the one- and two-body
terms.38�42 However, this embedding potential complicates the
evaluation of the nuclear derivatives required for structure opti-
mization.39,43 Alternatively, one can approximate the long-range/
many-body terms in some fashion. A number of groups have used
Hartree�Fock (HF) or DFT to capture these effects.44�48 Both
methods capture the many-body induction effectively, but they
become computationally expensive for large unit cells. Both of
these approaches have traditionally omitted many-body disper-
sion effects, which are sometimes important.

In our approach, quantum mechanics (QM) is used to treat
the short-range interactions, while a polarizable force field (MM)
is used to approximate the long-range two- and many-body inter-
actions.25,49,50 This hybrid QM/MM many-body interaction
(HMBI) model differs from conventional QM/MM models in
that it partitions different classes of interactions as eitherQMorMM
based on their importance in the many-body interaction expansion,
rather than by defining specific QM and MM regions of space.

We have recently demonstrated that this hybrid model enables
the prediction of several small-molecule crystal lattice energies to
within 4�5 kJ/mol, so-called chemical accuracy.25 However,
chemical accuracy is probably insufficient to discriminate among
crystal polymorphs separated by only a kJ/mol or less. That
earlier work used the Amoeba polarizable force field for the MM
portion of the model. In this paper, we demonstrate that even
better results are obtained when we replace the Amoeba force-
field with a high-quality ab initio force field whose parameters are
calculated “on-the-fly” via separate electronic structure calcula-
tions performed for each molecule in the crystal unit cell.

Like our earlier work on molecular clusters,50 this force field
includes electrostatic and induction effects based on distributed
multipole moments and polarizabilities. Here, we augment those
terms with atomic dispersion coefficients to describe long-range
two-body dispersion and Axilrod�Teller�Muto three-body
dispersion. We also implement an Ewald summation-based treat-
ment of multipolar electrostatics and induction for the periodic
crystals (see also Supporting Information).

This force field model is analogous to those used in high-
quality MM crystal modeling (e.g., refs 5, 7, and 51), with the

force field parameters recalculated for each molecule/geometry
to capture the variations in the properties (particularly multipole
moments5,50,51) with geometry. No rigidmonomer approximation
is needed. Similar long-range terms are included in the “syste-
matic fragmentation”model,34 though the model described here
differs in many details, including its use of a multipolar Ewald
sum for long-range electrostatics, distributed polarizabilities, and
the inclusion of three-body dispersion.

We demonstrate that this hybrid QM/MM approach repro-
duces periodic, fully quantummechanical calculations to within a
couple kJ/mol. More importantly, combining this ab initio force
field with high-level electronic structure calculations reproduces
experimental crystal lattice energies to within 2 kJ/mol for
most of the crystals examined here. In other words, these pre-
dictions lie within the typical experimental error bars for molecular
crystal lattice energies. Finally, we observe that the three-body
Axilrod�Teller�Muto dispersion contribution is surprisingly
important, even in some crystals where many-body induction
would normally be expected to dominate.

2. THEORY

2.1. Periodic Hybrid Many-Body Interaction Model. The
details of our hybrid QM/MM fragment approach for both
clusters49,50 and periodic systems25 have been given previously,
so we provide only a brief summary here. This fragment method
decomposes a system into interacting molecules using a many-
body interaction expansion. The intramolecular interactions and
the most important intermolecular interactions are modeled
quantum mechanically, while weaker intermolecular interactions
are approximated classically. Specifically, for an infinite periodic
molecular crystal, individual molecules in the central unit cell and
shorter-range pairwise interactions are modeled quantum me-
chanically, while longer-range two-body interactions and all
many-body interactions are treated using a polarizable force field
(see Figure 1):

EHMBI
PBC ¼ EMM

PBC þ ∑
i
ðEQMi � EMM

i Þ

þ ∑
ij
dsmoothij ðΔ2EQMij �Δ2EMM

ij Þ

þ 1
2 ∑i ∑

images

~k

dsmooth
i~k

ðΔ2EQM
i~k

�Δ2EMM
i~k

Þ ð1Þ

Here, i and j run over molecules in the central unit cell, while ~k
runs over all periodic image molecules within some cutoff
distance of molecule i, Ei corresponds to the energy of monomer
i, and Δ2Eij is the interaction energy between monomers i and j.
Both can be calculated either quantummechanically (QM) or with
a force field (MM).EPBC

MM refers to the force field energy of the entire
periodic crystal. To ensure smooth and continuous potential energy
surfaces, the transition from short-range quantum to long-range
classical treatments is spread over a finite region using a smoothing
function dij

smooth that decays from 1 at radius r1 to 0 at radius r0:
52

dsmoothij ðRÞ ¼
1 if x e r1

1

1 þ e2jr1 � r0j=ðr1 � RÞ � jr1 � r0j=ðR � r0Þ if r1 < x < r0

0 if x g r0

8>>><
>>>:

ð2Þ

Figure 1. Pictorial representation for the treatment of two-body terms
in periodic HMBI. Short-range dimers interactions are modeled quan-
tummechanically, while long-range ones are treated classically (MM). A
linear combination of QM and MM is used in the blue region to transi-
tion smoothly between the two regimes.
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where R is the shortest intermolecular distance between any two
atoms in the pair of molecules i and j. For any dimer where the
shortest intermolecular separation is less than or equal to r1, the
two-body interaction is treated quantummechanically (dsmooth = 1).
If the shortest intermolecular distance is greater than or equal to r0,
it is approximated classically (dsmooth = 0). For dimers whose
shortest intermolecular separation lies within the damping region
between r1 and r0, the dimer interaction energy is a linear com-
bination of quantum and classical interactions (0 < dsmooth < 1).
2.2. Nature of the Ab Initio Force Field (AIFF) in Periodic

Systems. The success of this fragment QM/MM approach
depends critically on the quality of the force field used to
approximate the long-range two- and the many-body intermole-
cular interactions. The force field used here includes long-range
two-body electrostatics, induction (both many-body and long-
range two-body), long-range two-body dispersion, and three-
body dispersion:

EMM ¼ Ees þ Eind þ E2�body disp þ E3�body disp ð3Þ
Note that the addition of dispersion terms and the incorporation
of periodic boundary conditions distinguish this force field from
an earlier version.50

The force field is parametrized with atom-centered distributed
multipole moments, distributed static polarizabilities, and isotro-
pic atomic dispersion coefficients. The isotropic dispersion co-
efficients are computed from the isotropic frequency-dependent
polarizabilities. The multipole moments and polarizabilities are
represented in a spherical tensor formalism and can be computed
for each monomer in the unit cell.53 The computational time
required to determine these parameters is typically small com-
pared to the time required to evaluate the QM interactions in the
system.
The force field also requires short-range induction and dis-

persion damping function parameters which are unfortunately
more difficult to obtain from first principles. As described below,
the damping parameters are obtained empirically. The following
sections describe each of the force-field terms in greater detail.
The following notation is used below: The letters A, B, and C

refer to molecules, while a, b, and c refer to atoms in those
molecules. The letters t and u refer to spherical tensor compo-
nents of the multipole moments/polarizabilities.
2.2.1. Long-Range Two-Body Electrostatics. The force fields

adopts a distributed multipole representation of the interacting
molecular charge densities.54�56 Heavy atom densities are rep-
resented with a rank 4 expansion (up to hexadecapole moments),
while hydrogen atoms include up to rank2 (quadrupolemoments).
As described in ref 53, the interaction between two molecules A
and B is given by

EABes ¼ ∑
a ∈ A

∑
b ∈ B

∑
tu

Q a
t T

ab
tu Q

b
u ð4Þ

where Qt
a represents the t-th multipole moment component on

atom a, and Ttu
ab contains the distance and orientation depen-

dence of the interaction (the multipole moments are generally
anisotropic and are typically represented in a local molecular
coordinate system). Using real spherical tensors, t and u run over
the 25 rank 4 components: charge (t = 00), dipole (t = 10, 11c,
11s), quadrupole (t = 20, 21c, 21s, 22c, 22s), octopole (t = 30, 31c,
31s, 32c, 32s, 33c, 33s), and hexadecapole (t = 40, 41c, 41s, 42c,
42s, 43c, 43s, 44c, 44s) moments. Electrostatic interactions up to
R�5 are included in eq 4.

Calculating the electrostatics for an infinite crystal formally
requires a lattice summation between each of the central unit cell
molecules A and all other molecules B, including an infinite num-
ber of periodic images:

Elatticees ¼ ∑
A
∑
B 6¼A

EABes ð5Þ

We evaluate this expression via multipolar Ewald summation,
drawing heavily from ref 57. The resulting total two-body lattice
interaction energy is given by

Elatticees ¼ ∑
A
∑
B 6¼A

∑
N
∑
ab
∑
tu

Q a
t ðT ab

tu þ ~T ab
tu ÞQb

u

� γffiffiffi
π

p ∑
A
∑
a
ðQa

00Þ2 � ∑
A
∑
a
∑
a0 6¼a

∑
tu

Q a
t T

aa0
tu Q a0

u

þ ∑
A
∑
B 6¼A

∑
ab

∑
t þ u¼ 2

Qa
tT

ab
tu Q

b
u ð6Þ

where N refers to the image cell index in the Ewald summation.
In the first term of this equation, the ~T tu

ab andT tu
ab are the inter-

action functions in direct and reciprocal space, respectively.T tu
ab

and ~T tu
ab are analogous to the Ttu

ab terms in eq 4 but with extra
components arising from the Ewald summation. They include
the orientation dependence between site�site vectors and lattice
vectors in direct and reciprocal space, the site�site distance depen-
dence, and the coefficient that controls the length scales in the direct
and reciprocal space portions Ewald summation. Explicit expres-
sions for ~T tu

ab and ~T tu
ab are given in the Supporting Information.

The first term in eq 6 gives the basic Ewald summation in
direct and reciprocal space. However, the Ewald method intro-
duces a self-interaction energy (i.e., the interaction of an atomic
site with itself, A = B and a = b), which is explicitly subtracted
out by the second term in eq 6. Only the charge�charge self-
interaction term needs to be corrected for in a spherical harmonic
formulation.57 The Ewald sum here also includes terms corre-
sponding to interactions between pairs of atoms within a single
molecule. These unwanted intramolecular electrostatic terms are
eliminated by the third term. Finally, the fourth term corresponds
to a boundary condition term for interactions with total multipole
moment of two (dipole�dipole and charge�quadrupole inter-
actions). Boundary condition terms with total multipolemoment
less than two, which correspond to a crystal shape-dependent
surface contribution in polar/ionic crystals, are omitted in this
formulation (i.e., tinfoil boundary conditions are adopted). See
ref 57 and references cited therein for details. In practice, we
perform the Ewald sumon the totalmultipolemoments (permanent
plus induced), as described below.
2.2.2. Induction. Many-body induction can also be important

in determining molecular crystal structures and energetics, espe-
cially when the crystals contain polar molecules and/or hydrogen
bonds.58 For this reason, the force field includes self-consistent
induction for both long-range two-body interactions (relatively
unimportant) and many-body interactions (important).
Multipole moments on nearby molecules B induce multipole

moments ΔQt
a on atom a in molecule A:

ΔQa
t ¼ � ∑

B 6¼A
∑
b
∑
a0
∑
t0u

αaa0
tt0 fnðR, βÞTa0b

t0u ðQb
u þ ΔQb

uÞ

ð7Þ
where αtt0

aa0 is the polarizability of atom a and fn(R,β) is a short-
range electrostatic damping function. We typically compute
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atom-centered distributed polarizabilities up to rank 2 (quadrupole�
quadrupole) on heavy atoms and up to rank 1 (dipole�dipole)
on hydrogen atoms.59,60 The distributed polarizabilities are com-
puted according to theWilliams�Stone�Misquitta procedure.61,62

Of course, the multipole moments on molecule A also induce
multipole momentsΔQu

b on the atoms in molecule B. Thus, eq 7
must be iterated to self-consistency on all atoms. We iterate
the induced multipole moments until the energy converges to
10�5 kJ/mol. The final induction energy, which includes many-
body induction, is given by

Eind ¼ 1
2 ∑A ∑

B 6¼A

ΔQa
t fnðR, βÞTa0b

t0u Q
b
u ð8Þ

We apply the Tang�Toennies damping function fn(R,β):

fnðR, βÞ ¼ 1� ∑
n

k¼ 0

ðβRÞk
k!

 !
e�βR ð9Þ

The subscript n in fn(R,β) refers to the order of the electrostatic
interaction R�n in Tt0u

a0b. The constant β is determined empirically
for each type of molecule, as described previously.50

Generalizing this treatment of many-body induction to infinite
periodic systems with high-order multipoles is complicated by
two key issues. First, we need to determine the self-consistent
inducedmoments in the context of an infinite lattice. In principle,
the iteration of the inducedmoments to self-consistency could be
coupled with the Ewald summation for the permanent electro-
statics. Although that is conceptually straightforward, the com-
plexity of the multipolar Ewald summation makes it messy in
practice. Furthermore, it is unnecessary: distant molecules do not
contribute significantly to the induced multipole moments in the
central unit cell. They will, however, induce multipole moments
on other molecules which are closer to the central unit cell and
therefore interact in a many-body fashion.
Therefore, we evaluate the induced multipole moments in

a finite cluster that is large enough to capture these effects. In
practice, we find that including all molecules within 25 Å of the
central unit cell molecules converges the induced multipole
moments to within 0.001 au. At each iteration, we evaluate only
the induced moments on the molecules in the central unit cell.
Induction effects between groups of molecules outside the central
unit cell are not included. Rather, the induced moments on the
periodic image molecules are then set equal to those of the reference
central cell molecules, mimicking the infinite crystal. This process is
repeated until the induced moments reach self-consistency.
The use of a finite cluster introduces slight asymmetries in

the induced moments on symmetry-equivalent atoms, with the
induced multipole moments typically varying by a few percent
or less. The larger the finite cluster, the smaller the errors. In
principle, these errors could be eliminated entirely through a proper
treatment of space group symmetry, though we do not do so here.
Second, the induction interactions must be damped at short-

range to avoid the “polarization catastrophe,” particularly when
evaluating the many-body induction terms. Damping is trivial
to apply when determining the multipole moments in a finite
cluster, but again it complicates the Ewald summation equations.
Here, we include it by recognizing that damping is important
only within short ranges (<10 Å). We perform the Ewald sum
using undamped interaction energies and then correct the result-
ing induction energy with the difference between the damped
and undamped interactions in the finite cluster used above to

determine the induced multipole moments. As long as the finite
cluster is larger than the length scale on which the damping func-
tion operates, this approach introduces no additional errors.
To summarize, this approach for computing the induction

energy in infinite periodic systems has four steps that can be
implemented easily:
1. Determine the self-consistent induced multipole moments

on all atoms in the central unit cell by interacting themwith
a finite number of periodic image molecules (a “cluster”).
Short-range damping is applied while iterating to self-
consistency. Compute the damped induction energy for
the central unit-cell molecules interacting with this finite
cluster, Eind

cluster(damped).
2. Use the converged induced multipole moments from step

1 to compute the induction energy without short-range
damping, Eind

cluster(undamped) (i.e., eq 8 with fn = 1). Com-
pute the correction due to short-range damping δEdamp

cluster =
Eind
cluster(damped) � Eind

cluster(undamped).
3. Replace the permanent multipole moments in eq 6 with

the total multipole moments (permanent plus induced)
and evaluate the total lattice energy, Ees+ind

lattice (undamped).
4. Correct the total lattice energy for short-range induction

damping:

Elatticees þ indðdampedÞ ¼ Elatticees þ indðundampedÞ þ δEclusterdamp

ð10Þ
Our strategy differs moderately from the one in ref 7, but the

two approaches probably give similar results. The computational
cost of this approach is small compared to the cost of the quan-
tum mechanical calculations in the hybrid fragment model.
2.2.3. Long-Range Two-Body Dispersion. Two-body van der

Waals dispersion makes an important contribution to molecular
crystals, but the bulk of this interaction is typically captured in the
QM portion of the fragment model. Nevertheless, we include
two-body dispersion in the force-field to capture the long-range
contributions that are missed in the short-range QM treatment.
Two-body dispersion is included in the force-field using

isotropic atomic C6 and C8 dispersion coefficients:

E2-body disp ¼ � ∑
A
∑
B 6¼A

∑
a
∑
b

f6
Cab
6

R6
ab

þ f8
Cab
8

R8
ab

þ 3 3 3

 !

ð11Þ

where the fn are again Tang�Toennies damping functions
(eq 9). The damping parameter β in fn(R,β) is determined
empirically from atomic van der Waals radii.63 In this case, the
damping function is fairly unimportant, since the force field is
used only to describe long-range dispersion. The lattice sum is
evaluated explicitly with a large cutoff (e.g., 15 or 20 Å).
The dispersion coefficients Cn

ab for atoms a and b (in atomic
units) are determined via Casimir�Polder integration over the
isotropic frequency-dependent polarizabilities:53

Cab
6 ¼ 3

π

Z ∞

0
αa
11ðiυÞαb

11ðiυÞdυ ð12Þ

Cab
8 ¼ 15

2π
ð
Z ∞

0
αa
11ðiυÞαb

22ðiυÞdυ þ
Z ∞

0
αa
22ðiυÞαb

11ðiυÞdυÞ
ð13Þ
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whereα11 andα22 are the isotropic dipole�dipole andquadrupole�
quadrupole frequency-dependent polarizabilities, respectively.
Note that for a given geometry, the frequency-dependent polar-
izabilities need only be determined once for each atom in the unit
cell. The dispersion coefficients and interaction energy between
any pair of atoms can then be computed quickly by performing
the one-dimensional integral over imaginary frequency.
The Casimir�Polder integral is evaluated via 10-point Gauss�

Legendre quadrature after performing a change of variables that
maps υ to t according to υ = υ0(1 + t)/(1 � t), with υ0 = 0.5.64

This transformation converts the semi-infinite integral to one
between �1 and 1.
2.2.4. Three-Body Dispersion.Many-body dispersion is usually

expected to be small compared to other intermolecular interac-
tions, and it is often neglected in molecular crystal calculations.
However, the leading many-body contribution, three-body
Axilrod�Teller�Muto dispersion, makes a significant contribu-
tion in crystals containing nonpolarmolecules, such as in benzene65

or rare gases.66 As we demonstrate below, it can also contribute
nontrivially to the lattice energy of even some polar, hydrogen-
bonded molecular crystals. The magnitude of the three-body
dispersion contribution depends strongly on the orientation of
the interacting bodies,65 and it can be important for discriminat-
ing between putative crystal polymorphs.63

The AIFF incorporates theAxilrod�Teller�Muto triple-dipole
three-body intermolecular dispersion term.67,68 For a given set of
three molecules ABC, this is given by

EABC3-body disp ¼ ∑
a ∈ A

∑
b ∈ B

∑
c ∈ C

f9C
abc
9
ð1 þ 3 cos â cos b̂ cos ĉÞ

R3
abR

3
bcR

3
ac

ð14Þ

where C9
abc is the dispersion coefficient for atom triplet abc, Rij is

the distance between atoms i and j, and â, b̂, and ĉ are the angles of
the triangle formed by the three atoms. The damping function f9
is written as a product of three two-body Tang�Toennies damp-
ing functions.63,69,70

A similar atom�atom triple-dipole dispersion formulation
for molecules has been used, for example, by von Lilienfeld
and Tkatchenko.63 They demonstrated that it reproduces SAPT
three-body dispersion energies fairly well. Our implementation
differs from theirs primarily in how theC9 coefficients are obtained.
Three-body dispersion corrections based on coupled Kohn�
Sham theory, such as the approach used here, are known to pre-
dict the asymptotic dispersion contributions accurately.37,69,71

The total three-body dispersion contribution of the lattice is
given by summing eq 14 over all possible triplets of molecules.
Only one of these molecules needs lie in the central unit cell. The
other two may either reside in the unit cell or be periodic image
molecules. We perform the lattice sum explicitly up to a user-
defined cutoff (e.g., 10 Å). In practice, most of the contribution
comes from cases with onemolecule in the unit cell and the other
two outside it. Of course, the details vary with the number and
the chemical nature of the molecules in the unit cell.
In the formulation used here, the three atoms a, b, and c lie

on different molecules. This means that only the intermolecular
three-body dispersion contribution is included. Important intera-
tomic three-body dispersion contributions involving only one
or two molecules need to be captured by the QM portion of
the model.

The C9 coefficient can be calculated using Casimir�Polder
integration:

Cabc
9 ¼ 3

π

Z ∞

0
αa
11ðiυÞαb

11ðiυÞαc
11ðiυÞdυ ð15Þ

or it can be estimated from two-body C6:

Cabc
9 ≈

2SaSbScðSa þ Sb þ ScÞ
ðSa þ SbÞðSb þ ScÞðSc þ SaÞ ð16Þ

where Sa = C6
aa((α11

b (0)α11
c (0))/(α11

a (0))) and α11(0) is static
dipole�dipole polarizabilities. We tested both approaches on a
handful of systems and found that the C9 coefficients estimated
via eq 16 are typically ∼5% larger than those computed from
eq 15. Since we already have the frequency-dependent polariz-
abilities, we adopt eq 15.
This formalism assumes that any important interatomic three-

body dispersion terms involving only one or two monomers
(between two atoms on one monomer and one on another, for
example) are handled in the quantummechanical two-body inter-
action terms. Of course, three-body dispersion terms are not cap-
tured at the MP2 level,72 in which case one might consider
including additional terms.
2.2.5. Terms Not Included in the Force Field. Before discussing

the results, it is worth considering some of the terms that are not
included in the force field. First, in the two-body case, the force
field does not include exchange/repulsion, penetration, and charge-
transfer effects. These effects are primarily short-range in nature,
so they are handled in the quantum mechanical portion of the
model. The absence of these terms from the force-field is there-
fore expected to be unimportant.
At the many-body level, we only explicitly include some of the

most important terms. Many-body induction is performed self-
consistently, but many-body dispersion is only approximated via
the leading Axilrod�Teller�Muto term. The use of distributed
multipolar expansions and asymptotic dispersion interaction
formulations is potentially problematic at short ranges, which
is where these terms are most important. As described above,
empirical damping factors are needed to compensate at short-
range. Furthermore, various other many-body terms (exchange,
exchange�induction, induction�dispersion, etc.) are not in-
cluded explicitly.
Despite these issues, the model performs very well, as we

demonstrate below.We attribute this success to a combination of
fortuitous error cancellation and to the use of empirical damping
factors. In particular, the induction damping parameter for each
type of intermolecular interaction is determined by fitting the
AIFF induction contribution to the MP2 many-body contribu-
tion in a small test set of trimers (none of which are taken from
the crystal). So it really includes some effect of the other three-
body contributions present in MP2.
Finally, we note that one might circumvent some of these

issues by using a hybrid of explicit three-body QM calculations
(using supermolecular or SAPT approaches) theory at short
ranges and the asymptotic expressions at longer ranges.37 Of
course, including any quantum mechanical treatment of trimers
would substantially increase the computational cost of themodel,
especially for larger molecules.

3. COMPUTATIONAL DETAILS

We perform lattice energy calculations for seven different
molecular crystals (ice, formamide, acetamide, imidazole, benzene,
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ammonia, and carbon dioxide) using a procedure that is analo-
gous to the one used in ref 25. For the first five crystals, the
geometries are identical to those used in ref 25. They were
optimized under the constraint of frozen experimental lattice
parameters with theHMBImethod using RI-MP2/aug-cc-pVDZ
and the Amoeba force field. The geometries for ammonia and
carbon dioxide come from ref 30.

The quantum mechanical calculations were performed using
counterpoise-corrected dual basis RI-MP273 and the Dunning
aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets74 for
the QM part. Energies at the complete basis set limit were
estimated by separately extrapolating the HF and MP2 correla-
tion triple and quadruple-ζ basis results.75,76 Then, a post-MP2
correction was computed using CCSD(T) and a smaller, prac-
tical basis set (typically aug-cc-pVDZ, except aug-cc-pVTZ for ice
and 6-31+G*77,78 for acetamide and benzene). All quantum cal-
culations were performed using a development version of
Q-Chem 3.1,79 except for the CCSD(T) ones, which were
performed with PSI3.80

For the AIFF, the distributed multipole moments and polar-
izabilities (both isotropic and anisotropic) were calculated with
CamCASP81 using asymptotically corrected PBE and the Sadlej
basis set.82,83 A single induction damping factor was determined
empirically for each unique molecule type by optimizing the
many-body induction against MP2 many-body induction in a set
of 10 trimers at various configurations, none of which were taken
from the crystal structure. The induction damping factors used
here are: 1.45 (ice and carbon dioxide), 1.40 (formamide and
benzene), and 1.35 (acetamide, ammonia, and imidazole) bohr�1.
Further details of this procedure can be found in ref 50.

As in our previous work,25 the smoothing region that transi-
tions fromQM toMM is conservatively set at 9�10 Å, except for
water, for which 6�7Å can be used. Shorter cutoffsmay be feasible
with the improved force field, but we have not investigated that.

Because each fragment is defined as a single molecule, speci-
fication of the crystal for the calculation is straightforward with
our software. The geometries are specified in Cartesian coordi-
nates, with atoms grouped by molecule. Separate sections of the
input file define the lattice parameters, the QM job parameters,
the AIFF property calculation parameters, and the various AIFF
force field cutoffs, etc. Our software then automatically creates
input files for each job (e.g., Q-Chem and CamCASP), distri-
butes and runs the jobs across a user-defined number of parallel
processors, collects the results, evaluates the AIFF contributions,
and finally computes the HMBI energy according to eq 1.

Finally, for four of the crystals, we estimated the effect of
relaxing the experimental lattice parameters, using the same tech-
nique we adopted previously.25 In particular, we generated a one-
dimensional potential energy scan by isotropically scaling the
lattice parameters a, b, and c in increments of 1%. For each set of
lattice parameters, the atoms in the unit cell were optimized with
planewave DFT, as described previously. HMBI single-point
energies were computed with dual-basis RI-MP2/aug-cc-pVTZ
and the AIFF at each point, and a cubic spline was used to esti-
mate the optimal lattice parameters and the change in the lattice
energy. This ΔElattice

relax contribution is added to the calculated
lattice energy to obtain our best estimate. As noted previously,
DFT cost and convergence issues prevented us from applying
this procedure to acetamide. For ammonia and carbon dioxide, a
similar procedure was already used to determine the geometries,
so we did not repeat it here.30 Implementation of analytic HMBI

lattice gradients is in progress, so we hope to fully optimize the
structures in the future.

4. RESULTS AND DISCUSSION

The performance of the HMBI model for molecular crystals
will be evaluated in two ways: First, to gauge the quality of the
AIFF approximation, we examine how faithfully the QM/MM
approach used here reproduces fully QM results. Specifically, we
compare with benchmark periodic local MP2 lattice energy
predictions for the ammonia and carbon dioxide crystals. Second,
we determine how accurately molecular crystal lattice energies
can be predicted compared to experiment for seven different
molecular crystals. Finally, we decompose the different force field
contributions to identify the important interactions. We find that
three-body dispersion interactions are surprisingly important in a
number of cases, even in some hydrogen-bonded molecular
crystals where induction would be expected to dominate.
4.1. Comparisonwith Local PeriodicMP2 Lattice Energies.

As mentioned in the Introduction Section, periodic local MP2
calculations on small-molecule organic crystals are now feasible.
Those calculations enable the benchmarking of the HMBI
approach with a fully QM treatment. We examine two molecular
crystals for which large-basis periodic MP2 results exist: ammo-
nia and carbon dioxide.30

To match the results of ref 30 as closely as possible, we
performed HMBI calculations using local TRIM-MP284 with the
identical cc-pVTZ basis set and crystal structure. Their periodic
MP2 calculations use a different (Saebø�Pulay style)85 local
MP2 approximation, but both models should perform similarly
for individual intermolecular interactions. For the purposes of
this comparison, we also omit the AIFF three-body dispersion
terms, which are not present inMP2 (they first appear inMP3).72

As shown in Figure 2, the HMBI model reproduces the full
MP2 results well: The predicted lattice energies for NH3 and
CO2 differ by only 1.8 and 1.3 kJ/mol, respectively from the
periodic MP2 results. The error introduced into the predicted
lattice energies by these two crystals by the HMBI fragment
approach is similar to or smaller than the difference between
canonical and local MP2 in the QM portion of our model!

Figure 2. Comparison of HMBI with fully QM periodic MP2 on
ammonia and carbon dioxide crystals. Results are presented for both
models in the cc-pVTZ basis. We also present our best prediction
(complete-basis MP2 + ΔCCSD(T)) and the largest basis MP2 results
from ref 30.
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We can also compare our predicted HF lattice energy in the
same basis with the fully periodic HF value. In this case, we omit
all dispersion terms from the AIFF and reoptimized the AIFF
induction damping factor using a set of trimer many-body ene-
rgies at the HF level instead of the MP2 level. The latter step is
unimportant for carbon dioxide, which exhibits minimal many-
body induction, but the smaller parameter of β = 1.20 bohr�1

improves the HF prediction by almost 1 kJ/mol.
Compared with periodic HF, HMBI overestimates the ammo-

nia lattice energy by 1.7 kJ/mol, while the carbon dioxide lattice
energies are identical.30 The fact that the AIFF induction damp-
ing factor differs between HF and MP2 supports the idea
mentioned in Section 2.2.5 that the empirical damping factor
incorporates some of the missing many-body effects into the
AIFF induction term.
The good agreement between HMBI and the periodic models

can also be partially attributed to the fact that the force field
contributions to these crystal energies are rather small:�3.6 and
�0.5 kJ/mol for NH3 and CO2, respectively, when three-body
dispersion is neglected. In both cases, repulsive three-body
dispersion would add roughly +1 kJ/mol to the total energy. In
any case, the force field captures the long-range and many-body
interactions fairly accurately. Furthermore, the HMBI fragment
approach is much less computationally expensive than periodic
MP2. On the other hand, the fragment approach used here assu-
mes that the crystal can be partitioned into separate molecular
fragments, which is not always true (e.g., polynitrogen crystals).86

4.2. Comparisonwith Experimental Lattice Energies.Having
demonstrated that the HMBI fragment model nearly reproduces
fully quantum mechanical results, the next step is to determine
how accurately such predictions reproduce experimental lattice
energies. We have already demonstrated that HMBI with the
Amoeba force field reproduces lattice energies to within 4�
5 kJ/mol on 5 molecular crystals: ice, formamide, acetamide,
imidazole, and benzene.25 Here, we revisit those crystals with the
improved force field, and we also add ammonia and carbon
dioxide to the test set. These seven crystals include a representa-
tive range of intermolecular interactions, ranging from hydrogen
bonding (ice, formamide, acetamide, and ammonia) to disper-
sion (benzene, carbon dioxide) or both (imidazole). For carbon
dioxide, we use the experimental lattice energy quoted in ref 30.
For ammonia, we use a revised version of the lattice energy cited
in ref 30 in which we have made an improved estimate of the

zero-point energy contribution. See the Supporting Information
for details. For the other five, we use our earlier estimates for the
experimental lattice energy.25

The calculated lattice energies are listed in Table 1 and plotted
as errors relative to experiment in Figure 3. Bear in mind that the
experimental lattice energies themselves are probably in error by
a couple kJ/mol or more.25,87,88 Increasing the quality of the
wave function used for the QM calculations systematically con-
verges the predicted HMBI lattice energies toward the experi-
mental values. Post-MP2 correlation, ΔCCSD(T), is particu-
larly important for benzene and imidazole.25 The estimated
lattice parameter relaxation effects, ΔElattice

relax , are small, with the
largest shift of 2.8 kJ/mol coming from benzene. The estimated
change in the lattice parameters is also mostly small. The largest
change occurs for benzene, where the parameters shrink by an
estimated 3.4%. Overall, in six of the seven cases, our best HMBI
lattice energy prediction lies within 2 kJ/mol of the experimental
value, which is on par with typical experimental errors!
These lattice energy predictions compare favorably with the

other calculations found in the literature that have been sum-
marized in ref 25. For example, periodic density functional theory
predictions with empirical dispersion corrections often predict

Table 1. HMBI-Predicted Crystal Lattice Energies (kJ/mol)

QM level ice formamide acetamide imidazole benzene NH3 CO2

DB-RI-MP2/aug-cc-pVDZ 52.8 70.1 72.2 96.4 60.7 33.4 22.1

DB-RI-MP2/aug-cc-pVTZ 56.7 74.9 76.6 100.2 60.6 37.2 26.1

DB-RI-MP2/aug-cc-pVQZ 58.3 76.7 78.4 100.8 62.8 38.4 27.9

DB-RI-MP2/CBS 59.9 78.6 79.8 102.8 61.6 39.3 29.1

ΔCCSD(T)a 0.4 1.8 �0.1 �14.2 �10.4 0.9 0.3

DB-RI-MP2/CBS + ΔCCSD(T) 60.2 80.4 79.7 88.6 51.2 40.2 29.5

est. lattice param. relax., ΔElattice
relax 0.2 0.0 2.2 2.8

est. change in lattice parameters �0.9% �0.3% �2.6% �3.4%

best estimateb 60.4 80.4 79.7 90.8 54.0 40.2 29.5

experiment 59 82 ( 0.3c 86 ( 2c 91 ( 4c 52 ( 3c 39d 31e

a Post-MP2 correction, ΔCCSD(T) = Elattice
CCSD(T) � Elattice

MP2 , using the basis sets described in the text. bBest estimate = EDB�RI�MP2/CBS + ΔCCSD(T) +
ΔElattice

relax . cReported errors are the standard deviation among the set of extrapolated 0 K lattice energies. Actual experimental errors may be larger. See ref
25. d See Supporting Information. e From ref 30.

Figure 3. Convergence of the predicted lattice energies toward the
experimental values. The yellow band highlights an error of(2 kJ/mol.
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lattice energies with errors ranging from a couple kJ/mol
to several times larger than that. For NH3 and CO2, the
1�2 kJ/mol errors in our best predictions are comparable to
or better than the best periodic MP2 predictions.
For additional perspective, consider that relative energy differ-

ences between closely spaced molecular crystal polymorphs are
often on the order of∼1 kJ/mol. One anticipates some degree of
error cancellation between the “absolute” lattice energies when
comparing relative polymorph energies. Thus, the ability to
predict lattice energies to ∼2 kJ/mol bodes well for the possi-
bility of reliably distinguishing between crystal polymorphs.
For all of the cases for which Amoeba is parametrized, except

acetamide, the AIFF reduces the error in the predicted lattice
energy, as shown in Figure 4. On the other hand, the 6 kJ/mol
error for the best acetamide prediction is much worse than those
for the other crystals. In fact, the use of the AIFF increases the
error in the predicted lattice energy slightly compared to the
Amoeba force field. The reasons for this behavior are unclear, but
the predictions underestimate the experimental lattice energy for
acetamide. Relaxing the experimental lattice parameters would
increase the calculated lattice energy and potentially improve the
prediction. Implementation of analytical derivatives of the AIFF
and crystal lattice derivatives is in progress, so we hope to inves-
tigate this possibility in the near future. Alternatively, perhaps
larger-basis ΔCCSD(T) correlation corrections are needed. The
large size of the acetamide unit cell (18 monomers, 162 atoms,
and 1008 significant dimers without symmetry) limited the
CCSD(T) calculations to the small 6-31+G* basis. Finally, another
source of error might be the moderately small aug-cc-pVDZ basis
used in optimizing the crystal structure. The degree of pyrami-
dalization in NH2 groups can be quite sensitive to the electronic
structure treatment, for example.
4.3. Analysis of the Ab Initio Force Field Contributions.

Finally, we examine the AIFF contributions in more detail. As
shown in Figure 4 the AIFF significantly improves upon Amoeba
for capturing the long-range and many-body contributions. To pro-
vide further insight into this behavior, Figure 5 decomposes the
AIFF energy into its individual contributions: long-range two-body
electrostatic, induction (both long-range two- and three-body),
long-range two-body dispersion, and three-body dispersion.

The electrostatics and induction terms provide a major con-
tribution to the force field energy, particularly for hydrogen-
bonded crystals like ice or ammonia. The importance of induction
to describing hydrogen-bond cooperativity and organic crystals
is well-known.58,89

On the other hand, the long-range two-body dispersion terms in
the force field contribute very little in all cases. This does not mean
that total two-body dispersion is unimportant. Rather, the impor-
tant two-body dispersion contributions occur at shorter ranges and
are captured in the QM part of the model. The fact that the force
field dispersion terms only describe long-range contributions
means that the C6 term (R�6 decay) is much more important than
the C8 term (R�8 decay). In the cases examined here, C6 provides
97�99% of the total long-range dispersion, while theC8 coefficient
contributes the remaining 1�3%. The C10 contributions are yet
another order of magniture smaller, so they are not included.
The contribution of three-body Axilrod�Teller�Muto dis-

persion is particularly interesting. Conventional wisdom would
argue that many-body dispersion is only significant in nonpolar/
aromatic species, where induction is unimportant. For this reason,
its contribution is often ignored in systems containing polar or
hydrogen-bonded molecules.
As expected, three-body dispersion contributes significantly

for benzene, imidazole, and carbon dioxide, while its contribution
is negligiable for ice. For the benzene crystal structure used here,
for example, the repulsive three-body dispersion term contri-
butes 4.6 kJ/mol. This is fairly similar to the SAPT(DFT) result
of 6.5 kJ/mol for the benzene crystal at the experimental
geometry.37

Contrary to conventional wisdom, however, we observe that
even for the hydrogen-bonded formamide and acetamide crys-
tals, three-body dispersion contributes several kJ/mol to the
overall lattice energy. More importantly, it is similar to or larger
in magnitude than the induction contribution! Combining these
results with the evidence that three-body dispersion can be
important in ranking different crystal polymorphs63 suggests that
the many-body dispersion may be more important than has often
been thought. Further study is clearly needed.

Figure 4. Comparison of the percent errors in the best estimate HMBI
lattice energy predictions for the Amoeba and AIFF force fields.

Figure 5. Ab initio force field contributions per molecule to the total
crystal energy of the seven crystals considered. The numbers in
parentheses indicate the fraction of the net force field contribution
relative to the total lattice energy. Note that attractive (negative)
contributions increase the lattice energy, while repulsive (positive) ones
decrease it.
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Together, the inclusion of three-body dispersion and the im-
proved treatment of induction account for most of the differences
between the results with the Amoeba and ab initio force fields. The
long-range two-body electrostatics and dispersion contributions in
the two force fields typically differ by much less than 1 kJ/mol.
The need to determine the AIFF parameters on-the-fly

obviously makes the AIFF much more computationally expen-
sive than Amoeba or other conventional force fields. On the
other hand, the force field parameters are evaluated separately for
each monomer in the central unit cell, so the number of para-
meters that need to be computed grows only linearly with the
number of molecules in the unit cell. Trivial parallelization of
the computational effort can be achieved easily by calculating the
AIFF parameters for eachmonomer on a separate processor. The
computational cost of evaluating these monomer properties is
small compared to the cost of the calculating many high-level
QMdimer interaction energies. Overall, these AIFF-based crystal
calculations are not significantlymore expensive than the Amoeba-
based ones for which timings have been reported previously.25

5. CONCLUSIONS

In summary, the HMBI fragment QM/MM model used here
provides an accurate and computationally affordable means of
predicting molecular crystal lattice energies. In particular, we
have demonstrated that a polarizable force field based on dis-
tributed multipoles, distributed polarizabilities, and atomic dis-
persion coefficients which are calculated on-the-fly from DFT
provides an accurate treatment of long-range two-body and
many-body interactions.

For two different crystals, the model reproduces periodic MP2
results to within a couple kJ/mol. It also predicts six of the seven
crystal lattice energies examined to within experimental error. The
ability to systematically improve the predictions along with the
standard hierarchy of conventional electronic structure methods
and basis sets is critical to achieving these high accuracies.

The favorable computational scaling inherent to fragmentmethods
makes it feasibly to apply such high-level electronic structure
methods to molecular crystals. In particular, the approximation
of long-range and many-body intermolecular interactions using a
polarizable force field makes the model described here linear
scaling for all unit-cell sizes. Furthermore, fragment methods are
naturally suited for massively parallel computing, and very high
efficiencies can be obtained with hundreds or more processors.

All of these features make this approach very promising for
molecular crystal structure prediction. Future work will focus on
implementing nuclear gradients of this improved force field that
will enable full crystal structure optimization. Other computa-
tional speed-ups could be obtained by exploiting crystal space
group symmetry and by new developments in accurate, low-cost
electronic structure methods.
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ABSTRACT: The adsorption of Ag, Au, and Pd atoms on benzene, coronene, and graphene has been studied using post
Hartree�Fock wave function theory (CCSD(T), MP2) and density functional theory (M06-2X, DFT-D3, PBE, vdW-DF)
methods. The CCSD(T) benchmark binding energies for benzene�M (M= Pd, Au, Ag) complexes are 19.7, 4.2, and 2.3 kcal/mol,
respectively. We found that the nature of binding of the three metals is different: While silver binds predominantly through
dispersion interactions, the binding of palladium has a covalent character, and the binding of gold involves a subtle combination of
charge transfer and dispersion interactions as well as relativistic effects. We demonstrate that the CCSD(T) benchmark binding
energies for benzene�M complexes can be reproduced in plane-wave density functional theory calculations by including a fraction
of the exact exchange and a nonempirical van derWaals correction (EE+vdW). Applying the EE+vdWmethod, we obtained binding
energies for the graphene�M (M = Pd, Au, Ag) complexes of 17.4, 5.6, and 4.3 kcal/mol, respectively. The trends in binding
energies found for the benzene�M complexes correspond to those in coronene and graphene complexes. DFT methods that use
empirical corrections to account for the effects of vdW interactions significantly overestimate binding energies in some of the studied
systems.

1. INTRODUCTION

Metals are used as interfaces between graphene and conven-
tional electronics; consequently, it is important to understand the
nature of the interactions between metals and graphene if
nanoelectronics and nanodevices are to reach their full potential.1

In addition, nanoparticles of gold and palladium on graphene
have found an increasing number of applications as biosensors,
highly active catalysts, and energy storage devices.2�8 Unfortu-
nately, the theoretical description of the interactions between a
graphene surface and transition metals is complicated by the
large (infinite) number of carbon atoms in the graphene sheet
and by the complex electronic structure of the transition metals,
which is influenced by relativistic effects and both static and
dynamic electron correlation. The size of the systems necessi-
tates the use of periodic boundary conditions (i.e., the descrip-
tion of the electronic structure with a plane-wave basis set).
Consequently, studies on the interactions between graphene and
transition metals have relied heavily on various plane-wave
density functional theory (DFT) methods. Surprisingly, the
simple local density approximation (LDA) method still finds
widespread use,9,10 reflecting the fact that this method frequently
provides better results (due to cancelation of errors) than
fundamentally more accurate generalized gradient approxima-
tion (GGA) methods.11�14 For example, the LDA reproduces
the available experimental results for the adsorption of Au on
graphite surface better than the other GGA, which underpredicts

the strength of binding to Au.15 However, even the early
experiments conducted in the 1970s16 indicated that the binding
of gold on carbon surfaces is heavily dependent on van der Waals
(vdW) interactions. This is problematic because neither the LDA
nor the various common DFT approaches can describe nonlocal
correlation effects, such as vdW interactions. It is worth noting
that the physical and chemical nomenclature is not unified; in the
physical literature and in this paper, the term “vdW interaction”
refers specifically to the London dispersion interaction, which is a
weak noncovalent force arising from nonlocal electron correla-
tion. Thus, while the LDA provides a fairly good estimate of the
binding energy of gold,15 it does so for the wrong reason. It is
likely that this will have influenced the results obtained in other
studies on the adsorption of gold on carbon surfaces,10,17�19 the
adsorption of various metal atoms (including Au, Pd, Fe, and Ti)
on graphene,13 and the adsorption of hydrogen on Pd-decorated
graphene.20All of these studieswere performedusingDFTmethods
that do not account for the contributions of dispersion. It is possible
that the adsorption of metals other than gold on carbon surfaces is
not governed by the dispersion energy. However, it is impossible to
calculate the energy changes involved in the binding of metal atoms
to carbon surfaces with thermochemical accuracy (i.e., with errors
below1 kcal/mol) usingmethods that do not account for dispersion

Received: September 7, 2011
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energy. Moreover, it is well-known that dispersion energy is an
important component of the overall stabilization energy in various
types of noncovalent complexes such as those held together by
hydrogen bonding, π-stacking, halogen bonding, and other non-
covalent interactions.21 In general, the use of DFT techniques that
do not account for dispersion energy causes binding energies to be
underestimated.21

The aim of the study reported herein was to investigate the
interaction of graphene with three different transition metals:
gold, silver, and palladium. Since the number of quantum
chemical methods that can be used to study infinite graphene
sheets is rather limited, we initially studied two smaller systems as
models of the graphene surface: benzene and coronene. Because
the benzene�M (M = Pd, Au, Ag) complexes are comparatively
small, they can be studied using even very accurate and compu-
tationally expensive wave function theory (WFT)methods based
on the coupled cluster technique with iterative evaluation of the
contributions of single and double electron excitations and
perturbative evaluation of the contributions of triple excitations
(CCSD(T)).22�24 When used in conjunction with an extended
basis set, this method provides stabilization energies for various
types of noncovalent complexes with chemical or even higher
accuracy ((1 or (0.1 kcal/mol)21 and is therefore used to
‘benchmark’ the performance of less computationally expensive
WFT and DFT techniques that account for dispersion interac-
tions in some way. Our first aim was to identify a computational
method that is less computationally demanding than CCSD(T)
and uses a local basis set but yields good agreement with the
CCSD(T) benchmark data. We then planned to use this method
to study binding in coronene�M complexes; accurate calcula-
tions on these two groups of complexes would provide insights
into the nature of the binding of the three different adatoms to
carbon surfaces. Specifically, we sought to investigate the per-
formance of the second-order Møller�Plesset (MP2),25 DFT-
D3,26 and M06-2X27�29 methods. The DFT-D3 method models
the effects of dispersion forces using an additional empirical term
that is proportional to R�6, while theM06-2X functional achieves
the same objective by incorporating modified parameters into its
exchange�correlation functional. Our second aim was to com-
pare the performance of DFT methods utilizing a plane-wave
basis set to that of CCSD(T) in the benzene�Mmodel systems.
This comparison was performed to identify a DFT method that
can be used to accurately model the interactions of transition-
metal atoms with graphene. It was anticipated that the results
obtained wouldmake it possible to develop general guidelines for
the efficient and accurate modeling of extended systems invol-
ving vdW interaction.

2. SYSTEMS INVESTIGATED

Benzene�M, coronene�M, and graphene�M (M = Pd, Au,
Ag) complexes were investigated. The metal atoms were mod-
eled as being adsorbed at one of three different positions: (t) a
‘top’ site directly above a C atom, (b) a ‘bridge’ site above
the midpoint of a C�C bond, and (h) the ‘hollow’ site above the
center of the aromatic ring. In the case of coronene, the
analogous positions above the central benzenoid ring were
considered (Figure 1).

3. CALCULATIONS

Benchmarking calculations on the benzene�M complexes
were carried out at the spin-adapted CCSD(T) level with a

restricted closed-/open-shell Hartree�Fock (HF) reference
function.22�24,30 Because of the high computational demands
of CCSD(T), the MP2 method25 was also used. The (n � 1)p6

(n � 1)d10 shells of palladium and (n � 1)p6 (n � 1)d10 ns1

shells of silver and gold were correlated. With the exception of
the 1s2 electrons of the carbon atoms, all of the electrons in
benzene and coronene were correlated.

Relativistic effects, which are important in heavy transi-
tion metals (especially gold) and their complexes,31 were mod-
eled using the scalar one-component Douglas�Kroll�Hess
approximation32,33 in all wave function methods. All relativistic
MP2 and CCSD(T) calculations were performed with ANO-
RCC basis sets.34,35 These basis sets contain diffuse and polar-
ization functions, which are important when studying noncova-
lent interactions. Another advantage of these basis sets is that
they are available with various degrees of contraction. All bench-
mark CCSD(T) calculations on the benzene�M complexes
were performed with the VTZP contraction. MP2 calculations
were performed using the VDZP and VTZP contractions as
well as with a combination denoted VDZP/VTZP (VDZP for
benzene and VTZP for the metal). To compare the relativistic
and nonrelativistic CCSD(T) binding energies, calculations were
also performed using the relativistic Pol-DK36 basis sets and the
otherwise-equivalent nonrelativistic Pol basis sets,37 both of
which are suitable for calculating molecular electronic properties
and the interaction energies of noncovalent complexes.38 This
was done because comparisons of the relativistic and nonrelati-
vistic stabilization energies can provide helpful insights into the
nature of the bonding between an aromatic system and a metal
atom.39�41 Throughout this paper, the interaction energy is
defined as the difference between the energy of a complex and
the sum of the energies of its components; it is negative when the
components are attracted to one another. The binding energy is
defined as the absolute value of the interaction energy and is

Figure 1. Coronene molecule, showing the three potential sites for the
adsorption of metal atoms. Figure also shows the charge distribution in
the bonds of the free coronene molecule (black), the coronene�Pd
complex (blue), the coronene�Ag complex (green), and the coronene�
Au complex (red), as calculated using the M06-2X method. Geometries of
the complexes were optimized at the M06-2X level, starting from geome-
tries in which the metal was adsorbed at the (t) position. All final optimized
geometries have been bonded on the coronene in (t) position.
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therefore always positive. All calculated WFT interaction en-
ergies were corrected for the basis set superposition error (BSSE)
using the counterpoise correction.42 RHF/ROHF, MP2, and
CCSD(T) energies were calculated using the MOLCAS 7.2
program package.43

The DFT-D3/TPSS/def2-QZVP26 and M06-2X/lanl2dz27�29

methods were also used to evaluate the interaction energies of the
studied complexes. The DFT-D3 method uses an empirical
correction term to describe the dispersion energy, while the
M06-2X method accounts for dispersion using a reparameterized
exchange�correlation functional. Both of the DFT techniques are
substantially less computationally demanding than CCSD(T),
making them applicable to large molecular systems.

The structures of benzene and coronene were optimized at the
MP2/cc-pVTZ level, and their geometries were assumed to be
frozen in all subsequent WFT and DFT calculations, with the
exception of the M06-2X calculations on the coronene�M
complexes, for which the change in the geometry of the coronene
induced by adatom adsorption was studied by full reoptimization
of the complex. The DFT-D3 calculations were performed using
Turbomole 6.0,44 and the M06-2X calculations were performed
using Gaussian 09.45

Plane-wave DFT calculations for an infinite graphene surface
were performed using the Vienna Ab initio Simulation Package
(VASP) which makes use of the projector augmented wave
(PAW) construction for the pseudopotential.46,47 The GGA of
Perdew�Burke�Ernzerhof (PBE)48 was used to parametrize
the exchange�correlation functional. All calculations were car-
ried out using scalar relativistic approximation, i.e., without
spin�orbit coupling (except one test calculation for benzene�
Au complex, which is discussed later in the text). The struc-
tural parameters of benzene and graphene were relaxed by
minimizing the forces acting on the atoms using a conjugate
gradient algorithm. The energy cutoff for the plane-wave expan-
sion of the eigenfunctions was set to 500 eV. The periodically
repeating benzene molecules were separated by at least 8 Å of
vacuum in the plane containing the benzene ring and 18 Å of
vacuum in the perpendicular direction. The graphene sheet was
modeled using a 4� 4 supercell, i.e. each supercell contained 32
carbon atoms, using the calculated C�C bond length of 1.44 Å.
The repeated sheets were separated from each other by 18 Å of
vacuum, and the shortest distance between metal atoms was
10 Å. This construction minimizes electrostatic interactions
between repeated images. A Γ-centered 5� 5� 1 k-point mesh
was found to provide converged total energies and was conse-
quently used for Brillouin zone integration. Spin polarization
was taken into account in all calculations. Long range vdW
(dispersion) interactions, which are absent in standard DFT,
were included by means of the vdW density functional (vdW-
DF)49 for PBE-optimized geometries. The core of the vdW-DF
method is a fully nonlocal expression for the correlation energy
Ec
nl, which takes the following form:

Enlc ¼
Z

dr3dr03nðrÞΦðr, r0Þnðr0Þ ð1Þ

Here, n(r) is the electron density obtained from a standard DFT
calculation and the kernelΦ(r, r0) is a function that depends on
r� r0 and the magnitudes and gradients of the electron densities
at the points r and r0. We used the JuNoLo program to evaluate
the vdW term, with PBE electron densities serving as inputs.50

The vdW-DF method uses standard semilocal GGA functionals

to describe the exchange energy. We chose to use the PBE
exchange functional, since it was the functional used to calculate
the input electron densities. The total energy was then calculated
using the expression:

Enltot ¼ EDFTtot � EPBEc � EPBEx þ ðEPBEx þ ELDAc � Enlc Þ ð2Þ

We refer to this method as PBE+vdW. The Ex
PBE terms are

written out explicitly to emphasize the point that the PBE
exchange energy inside the parentheses could in principle be
replaced by that calculated using some other semilocal formula-
tion; the revised Perdew�Burke�Ernzerhof (revPBE) was
suggested in the original formulation of the vdW-DF method
by Dion et al.,49 and other exchange functionals have also been
considered.51,63 In this paper, we propose a different approach; in
the spirit of the hybrid screened exchange functionals, we
replaced one-quarter of Ex

PBE with the exact Hartree�Fock
exchange, Ex

HF, which was evaluated in VASP using one-electron
Kohn�Sham orbitals. The resulting total energy is denoted as
EE+vdW. Notice that Ex

HF does not match the local density
exchange in the constant density limit and so one should not
simply exchange Ex

PBE for Ex
HF. A rationale for mixing one-quarter

of Ex
HF with the approximate local density exchange was provided

by Perdew et al.,48 who showed that this hybrid matches the LDA
in value, slope, and second derivative and is therefore readily
embedded into the DFT scheme.

4. RESULTS AND DISCUSSION

4.1.WFT andDFT Calculations on Benzene(Coronene)�M
Complexes. 4.1.1. Isolated Systems. The DK relativistic and
nonrelativistic CCSD(T) and MP2 one-electron properties of
all three metal atoms are presented in Table 1. Benzene and
coronene are electron donors, while the metal atoms are electron
acceptors. Because of its electron affinity, Au is a much stronger
electron acceptor than Ag and Pd. Relativistic effects significantly
increase the electron affinity and the ionization potential of the
gold atom and decrease its dipole polarizability; these effects are
much smaller in the other metals considered. Consequently, it
was expected that charge-transfer stabilization would be most
important in the gold complexes. Ag has the greatest polariz-
ability, followed by Au and Pd. Consequently, it was expected
that the dispersion interaction would be strongest in the

Table 1. DK Relativistic and Nonrelativistic Values of the IP,
EA, and Dipole Polarizability (α) for Metal Atomsa

IP (eV) EA (eV) α

DK rel. nonrel. DK rel. nonrel. DK rel.

Pd (MP2) 8.781 0.248 24.581

Pd (CCSD(T)) 8.372 0.521

Pd (expt) 8.336956 0.562157

Ag (MP2) 7.615 7.013 1.109 0.880

Ag (CCSD(T)) 7.553 6.990 1.279 1.064 52.4658

Ag (expt) 7.5762359 1.30448160

Au (MP2) 9.342 7.108 2.248 1.043

Au (CCSD(T)) 9.137 7.072 2.250 1.191 36.0658

Au (expt) 9.2255361 2.30866462

aThese calculations were been performed using the aug-cc-pVTZ and
aug-cc-pVTZ-DK basis sets.54,55
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benzene(coronene)�Ag complexes and would become progres-
sively smaller in the corresponding Au and Pd species.
4.1.2. Benzene�M Complexes. Figures 2�10 and Table 2

show the characteristics of all complexes investigated in this
work. The benzene�Au complex with the Au atom positioned
over a carbon atom (t) was energetically similar but slightly more
stable than that in which the metal atom was positioned over a
C�C bond (b); both were more stable than that in which the
gold atom occupied the ‘hollow’ site (h) above the center of the
ring. The same relative order was given by all methods investi-
gated. The benchmark (DK rel. CCSD(T)/ANO-RCC-VTZP)
binding energies for the (t), (b), and (h) positions were 4.2,
4.1, and 3.2 kcal/mol, respectively. The DK-MP2/ANO-RCC-
VDZP method yielded similar binding energies to CCSD(T) for
all positions, but MP2 calculations using the larger VTDZP and
VTZP basis sets (cf. Figures 5�7) overestimated the binding
energies. M06-2X and DFT-D3 systematically overestimated the
binding energies by 40�100%. For the (t) and (b) positions, the
DFT-D3 energies were in worse agreement with the benchmark
data than those obtained with M06-2X, but M06-2X strongly

overestimates the stabilization for the (h) position. The M06-2X
results were also qualitatively inconsistent with the CCSD(T)
benchmarks in that they predict the complex with the gold atom
in the (h) site to be the most stable.
The situation changes somewhat on switching from Au to Ag.

Specifically, the calculated CCSD(T) energies for all three Ag
adsorption positions were similar; the species generated by
adsorption above the ‘hollow’ (h) was the most favorable but
was only 25% more stable than the least favorable, which was
generated by adsorption over a carbon atom (t). Similar trends
were observed with all of the computational methods examined.
The benchmark binding energies for the (h), (b) and (t)
positions (2.3, 2.0, and 1.9 kcal/mol, respectively) are smaller
than the corresponding values for the benzene�Au complexes by
about 30% for (h) and 50% for the (t) and (b) positions.
Additionally, the equilibrium distances between the metal atom
and the ring were more than 0.5 Å larger in the Ag species than in
their Au counterparts for the (b) and (t) positions. As was the
case with the Au species, DK-MP2/ANO-RCC-VDZP provided
binding energies that mirrored the benchmark results fairly

Figure 2. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) andDFT (DFT-D3 andM06-2X) potential energy curves for
the benzene�Ag complex with the metal adsorbed at the (t) position.

Figure 3. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves for
the benzene�Ag complex with the metal adsorbed at the (b) position.

Figure 4. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) andDFT (DFT-D3 andM06-2X) potential energy curves for
the benzene�Ag complex with the metal adsorbed at the (h) position.

Figure 5. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) andDFT (DFT-D3 andM06-2X) potential energy curves for
the benzene�Au complex with the metal adsorbed at the (t) position.
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closely, while MP2 with triple-ζ basis set overestimated the
binding energies (cf. Figures 2�4). Neither of the DFTmethods
examined provided reliable binding energies; both DFT-D3 and
M06-2X strongly overestimated the stabilization for all three
positions.
The low binding energies for Au and Ag are indicative of

noncovalent binding. The binding energies for Pd were an order
of magnitude higher, suggesting that in this case, the interaction
between themetal and the arene is partially covalent. The (b) and
(t) positions, which are similar in energy, are preferred to (h),
and all methods examined yielded the same order of energies.
The benchmark binding energies for the (b), (t), and (h)
positions were 19.7, 18.8, and 12.8 kcal/mol, respectively. These
higher binding energies were associated with considerably short-
er internuclear distances between the Pd and C atoms than was
the case in the Au and Ag complexes; adsorption of Pd in the (t)
position resulted in an internuclear distance of only 2.1 Å, which
is similar to the length of covalent C�Pd bonds. As in both of the
preceding cases, DK-MP2/ANO-RCC-VDZP was the method

whose energies were in best agreement with the benchmark
values, with the other MP2 methods once again significantly
overestimating the binding energies for all three positions (cf.
Figures 8�10). DFT-D3 also significantly overestimates the
binding energies (by 35% or more), but M06-2X provides
binding energies that agree quite well with the benchmark values,
although the (t) and (b) sites are slightly underbound.
These results clearly demonstrate that the interactions of Pd

atoms with benzene differ significantly from those of Au and Ag
atoms. The binding energies of Pd are much higher than those of
Au and Ag, and the corresponding internuclear distances are
much shorter. The Au and Ag binding energies are in the range
typically associated with noncovalent interactions, whereas the
Pd binding energies encroach on ranges more commonly
associated with covalent bonds. All three binding sites yield
broadly similar binding energies for the adsorption of Au and Ag,
but the (b) and (t) positions are clearly favored over the (h) site
in the case of Pd adsorption. Of the computational meth-
ods tested, DK-MP2/ANO-RCC-VDZP provided the best

Figure 6. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves
for the benzene�Au complex with the metal adsorbed at the (b)
position.

Figure 7. Relativistic WFT (BSSE corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves
for the benzene�Au complex with the metal adsorbed at the (h)
position.

Figure 8. Relativistic WFT (BSSE-corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves
for the benzene�Pd complex with the metal adsorbed at the (t)
position.

Figure 9. Relativistic WFT (BSSE-corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves
for the benzene�Pd complex with the metal adsorbed at the (b)
position.
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agreement with the benchmark CCSD(T) energies and can thus
reasonably be expected to provide accurate results when applied
to larger model systems. It should be noted that better agreement
for double-ζ basis set (than for triple-ζ basis set) arises from
compensation of errors. However, while the MP2 method is less
expensive than CCSD(T), it is still rather computationally
demanding. Of the faster DFT techniques, M06-2X is preferable
to DFT-D3, since it gave absolute binding energies that better
matched the benchmark values. However, when considering the
relative magnitudes of the binding energies for the three ele-
ments, a different picture emerges. The CCSD(T) benchmark
calculations indicate that the binding energy of Pd to benzene is
nine times greater than that of Ag and that of Au is two times
greater, giving a benchmark Pd:Au:Ag ratio of 9:2:1. The MP2
(10:2:1) and DFT-D3 ratios (7:2:1) matched the benchmark
values fairly closely, but the M06-2X results (3:1:1) strongly
disfavor Pd. Thus, for comparing the binding energies of different
metals, MP2 and DFT-D3 appear to be superior to M06-2X.
Our results strongly contradict the findings of previous studies

in which DFT methods were used. For example, DFT/BPW91/
TZP calculations52 on benzene�M (M = Ag and Au) complexes
provided binding energies for the (h), (b) and (t) positions of
5.7, 5.3, and 5.3 kcal/mol, respectively, for Ag, and 5.3, 5.1, and
3.9 kcal/mol, respectively, for Au. These findings are clearly
incompatible with the benchmark data reported herein, since
they suggest that the binding energies for Au are smaller than
those for Ag. This is probably due to the neglect of relativistic
effects at the DFT/BPW91/TZP level of theory; relativistic
effects change the nature of binding in the benzene�Au com-
plexes, as discussed below.
4.1.3. Nature of the Bonding in Benzene�M Complexes. The

nature of the metal�arene binding in all three complexes differs,
as indicated by the differences in the binding energies calculated
using different levels of theory. The omission of the correlation
energy causes the binding energies to be strongly underesti-
mated. Figures 2�10 show that the HF energy curves for all
atoms and all adsorption positions are universally repulsive, i.e.,
no binding occurs. This indicates that the stabilization of all
benzene�M complexes originates from correlation effects.
However, while correlation effects are important in the binding
of all three of the investigated metals, relativistic effects are only
important in the Au complexes. This conclusion is supported by

the calculated one-electron properties shown in Table 1. The
calculated ionization potential and electron affinity of Au change
dramatically when relativistic effects are included; these in turn
affect the benzene�Au binding energies, which are significantly
reduced by the omission of relativistic effects. The relativistic
CCSD(T)/Pol-DK binding energies are 3.7, 3.7, and 3.1 kcal/
mol for the (t), (b), and (h) positions, respectively; the corre-
sponding nonrelativistic binding energies are significantly
smaller (2.0, 2.1, and 2.5 kcal/mol, respectively). For the sake
of comparison, we also determined the relativistic vs nonrelati-
vistic binding energies for the (t), (b), and (h) positions of the
benzene�Ag complex, which were 2.1, 2.2, and 2.6 vs 1.9, 2.0,
and 2.4 kcal/mol, respectively.
One of the most reliable ways of obtaining information on the

nature of the bonding is to compare the electronic structure of
the bound species to that of the isolated atom. In the case of Ag,
such comparisons indicate that the stabilization of the benzene�
Ag complex is almost entirely due to the London dispersion
energy. This is consistent with the high polarizability of Ag and
the relatively large distance between the Ag nucleus and the
benzene ring, which means that there is very little overlap of the
orbitals of the metal and the arene. Indeed, the orbitals of the
complex are almost identical to those of its separated constituents.
Analysis of the charge transfer in the Ag complexes (Mulliken
charges, determined using the MP2/ANO-RCC-VDZP method)
revealed that Ag carries a negative charge of �0.05 e in all of the
structures examined, i.e., it acts as an electron acceptor, while
benzene is an electron donor. Because of the low electron affinity
of Ag and the large separation of themetal atom and the arene, there
is relatively little charge transfer from benzene to the Ag atom.
Compared to Ag, Au is significantly less polarizable and has a

higher electron affinity (Table 1). The lower polarizability of Au
implies that dispersion interactions will be less important in its
complexes, and the higher electron affinity is likely to increase the
importance of charge-transfer interactions. Mulliken population
analyses indicated that themagnitude of the charge transfer in the
benzene�Au complexes was approximately twice that in the
benzene�Ag complexes, with the Au atom carrying negative
charges of �0.11 and �0.12 e for the (t) and (b) positions,
respectively. This enhanced charge transfer is attributable to
relativistic effects because their omission halves the electron
affinity of the gold atom (Table 1). The stabilization of the
benzene�Au complex by charge-transfer interactions is demon-
strated by the fact that their binding energies are more than twice
as large as those for the corresponding benzene�Ag complexes
and by the considerably shorter (by more than 0.5 Å) distances
between the benzene ring and the metal atom in the gold
complexes. These shorter distances reflect a greater overlap
between the orbitals of the two systems. Specifically, the forma-
tion of new bonding and antibonding orbitals from the doubly
occupied 5d0 orbital of Au and the benzene pz orbitals was
observed. This interaction model, which highlights the impor-
tance of charge transfer, has been presented in previousworks.39�41

The dramatic increase in stability for complexes of Au is due to
relativistic effects, which increase the metal’s electron affinity and
thus favor the transfer of charge from the ligand to themetal. While
charge transfer plays a key role for gold atoms in the (b) and (t)
positions, it is less pronounced in the (h) position; here, the
dispersion energy provides a larger contribution to the binding
energy. It is worth noting that for Au+ and Ag+ ion�arene
complexes, the bonding becomes mainly electrostatic, and binding
energies are almost an order of magnitude higher.64�66

Figure 10. Relativistic WFT (BSSE-corrected RHF/ROHF, MP2, and
CCSD(T)) and DFT (DFT-D3 and M06-2X) potential energy curves for
the benzene�Pd complex with the metal adsorbed at the (h) position.
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The metal�ligand bonding in the benzene�Pd complexes
differs significantly from that in the Ag and Au complexes due to
the different electronic structure of Pd. In the ground state, the
valence d-orbitals of palladium are fully occupied, and the first
virtual orbital is the 5s. In all of the benzene�Pd complexes
examined in this work, the Pd atom carried a small positive
charge, indicating that it was acting as an electron donor. Detailed
analyses indicated a significant loss of electron density from the
Pd valence d-orbitals (relative to the situation in the free atom)
and a simultaneous significant increase in electron density in the
virtual 5s orbital. This is consistent with the formation of a so-
called dative bond, in which charge is transferred from Pd to
benzene, leading to an increase in the electron density of the
benzene ring and a decrease in that of the Pd atom. This polar
complex is then stabilized by back donation of charge from the
carbon atom to the valence 5s orbital of Pd. A dative bond of this

kind would account for the high binding energies observed for
the benzene�Pd complex.
4.1.4. Coronene�X Complexes. Coronene is a more complex

model of graphene than benzene. The central aromatic ring of
coronene (Figure 1) is surrounded only by other aromatic rings,
and all its carbon atoms bind exclusively to other carbon atoms.
We investigated the binding of Ag, Au, and Pd atoms to coronene
using the MP2/ANO-RCC-VDZP, DFT-D3/def2-QZVP, and
M06-2X/lanl2dz methods, as discussed in the preceding section.
The size of the coronene complexes meant that it would have
been impractical to perform CCSD(T) calculations on them to
obtain benchmark binding energies. Therefore, binding energies
calculated using the MP2 method were used as reference values
for the coronene complex, since this level of theory provided
absolute and relative binding energies that were reasonably close
to the benchmark CCSD(T) values for all of the benzene�metal

Table 2. Extrapolated Interaction Energies ΔE [kcal/mol] and Optimal Bond Lengths R (in terms of the shortest distance
between the metal atom and the benzene plane) [Å] for Benzene�M (M = Ag, Au, Pd) Complexes Calculated at the Various DFT
with Dispersion Correction and DK Relativistic and Nonrelativistic WFT Levels

benzene�Pd benzene�Ag benzene�Au

(t) (b) (h) (t) (b) (h) (t) (b) (h)

DFT-D3/TPSS/def2-QZVP

ΔE �28.3 �29.4 �22.1 �3.7 �3.7 �4.0 �7.5 �7.2 �4.6

R 2.10 2.07 1.97 3.07 3.10 3.28 2.51 2.56 3.17

M06-2X/lanl2dz

ΔE �15.1 �15.2 �12.3 �4.3 �4.6 �5.5 �5.8 �5.9 �6.3

R 2.36 2.37 2.45 3.09 3.10 3.12 2.97 2.99 3.10

DK rel. MP2/ANO-RCC-VDZP

ΔE �18.5 �19.6 �12.3 �1.5 �1.6 �1.9 �4.2 �4.2 �3.6

R 2.11 2.08 1.97 3.34 3.33 3.34 2.66 2.69 3.07

DK rel. MP2/ANO-RCC-VTZP

ΔE �28.0 �30.2 �27.5 �2.7 �2.9 �3.3 �8.1 �8.3 �6.1

R 2.05 2.01 1.83 3.01 3.01 3.11 2.41 2.39 2.83

DK rel. CCSD(T)/ANO-RCC-VTZP

ΔE �18.8 �19.7 �12.8 �1.9 �2.0 �2.3 �4.2 �4.1 �3.2

R 2.13 2.11 2.04 3.18 3.18 3.24 2.63 2.67 3.09

DK rel. CCSD(T)/Pol-DK

ΔE � � � �2.1 �2.2 �2.6 �3.7 �3.7 �3.1

R � � � 3.19 3.19 3.24 2.73 2.79 3.17

nonrel. CCSD(T)/Pol

ΔE � � � �1.9 �2.0 �2.4 �2.0 �2.1 �2.5

R � � � 3.29 3.29 3.29 3.36 3.37 3.39

GGA PBE

ΔE �26.3 �27.3 �19.0 �1.3 �1.2 �1.0 �6.1 �5.6 �1.63

R 2.10 2.07 2.01 3.05 3.10 3.39 2.44 2.46 3.09

PBE+vdW

ΔE �21.5 �21.8 �13.3 �2.7 �2.7 �2.6 �5.9 �5.5 �3.6

R 2.17 2.18 2.16 3.17 3.23 3.41 2.70 2.79 3.21

EE+vdW

ΔE �17.2 �18.7 �10.6 �2.4 �2.3 �2.5 �5.1a �4.8 �3.4

R 2.18 2.15 2.16 3.22 3.32 3.41 2.64 2.74 3.22
a EE + vdW + spin�orbit coupling (soc) �5.7 kcal/mol.
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complexes discussed in the preceding section. The M06-2X
method was used to optimize the geometries of the coronene�M
complexes and to estimate the changes in the electronic structure
of the coronene following adatom adsorption.
The MP2, DFT-D3, and M06-2X binding energies and

equilibrium distances for all of the coronene complexes consid-
ered are summarized in Table 3. It is apparent that the binding
energies for the coronene complexes differ from their benzene
counterparts. At the MP2 level, it was found that the binding
energies for Au and Ag increased on going from benzene to
coronene, by around 50% in the case of Au and around 100% in
the case of Ag. Conversely, going from benzene to coronene
reduced the binding energy of Pd by around 10%, although
binding in the (h) position was slightly stronger in the coronene
complex than in the corresponding benzene species. However,
the relative strength of binding to Pd, Au, and Ag remained as it
had been in the case of benzene, as did the relative binding
energies for adsorption at different positions around the ring. For
the Au complexes, the internuclear distances between the metal
and the plane containing the arene increased on going from
benzene to coronene; for the Ag complexes, the corresponding
internuclear distances decreased. However, in both cases, the
differences between the distances in the benzene and coronene
complexes were small. No significant difference in distance was
observed in the Pd complexes. It appears that the nature of the
metal�arene bond in the coronene�Pd complexes is very
similar to that in the benzene�Pd complexes; a “covalent” bond
is formed between the carbon atoms and Pd by the overlap of the
d-orbitals of Pd with the π orbitals of the coronene. Silver atoms
bind exclusively via dispersion forces; while the polarizability of
coronene is greater than that of benzene, this is outweighed by
the fact that the coronene complexes have a greater number of
carbon atoms and therefore experience more exchange repulsion
than their benzene counterparts. This is the cause of the greater
carbon�Ag distances in coronene complexes of silver. The
situation with the gold complexes is more complicated, because
both the dispersion energy and the charge transfer are important
in their stabilization. As with the Ag complexes, the exchange
repulsion is greater in the coronene complexes of Au than in the
benzene species, and so the distances between the Au atom and
the plane containing the arene are somewhat greater in the

coronene complexes, although the difference is relatively modest.
As with the benzene complexes, it is possible to obtain insights
into the bonding and charge transfer in coronene�metal com-
plexes by analyzing the Mulliken charges on the adatoms. Both
gold and silver atoms in the coronene complexes carry partial
negative charges, indicating that both function as electron acceptors.
TheMP2 charges, which were used as reference values, were greater
than the M06-2X charges and can be compared to those calculated
for the benzene complexes.While the extent of charge transfer in the
silver complexes of benzene and coronene was very similar, the
magnitude of the charge transfer in the coronene�Au complexes
was approximately 40% smaller than that in the corresponding
benzene complexes.
Both the DFT-D3 and M06-2X calculations exhibited trends

similar to those observed in the MP2 data, and the relative
stabilities of all of the coronene�metal complexes considered
were well reproduced. The DFT-D3 interaction energies for the
gold complexes were very similar close to those obtained at the
MP2 level. However, the DFT-D3 binding energies for the Ag
and Pd complexes exceeded theMP2 values by 50% ormore. The
M06-2X binding energies for the Pd and Au complexes agreed
well with the MP2 values, but those for the Ag complex were
overestimated by about 60%.
All three methods considered (i.e., MP2, DFT-D3, and M06-

2X) indicate that the adsorption of Pd is significantly more
favorable than that of Au or Ag, but the extent to which this is the
case depends on the method used (MP2, 4:2:1; DFT-D3, 4:1:1;
M06-2X, 2:1:1). In all cases, however, the difference between the
binding energies for Pd and Ag was smaller than that observed
with the corresponding benzene complexes.
Figure 1 shows the (t), (b), and (h) positions for adsorption

on coronene and also the M06-2X overlap populations in the
C�C bonds that are affected by adsorption. In the case of
adsorption of an Ag adatom, there is no significant change in the
overlap populations relative to those in the isolated coronene,
and the total overlap between Ag and the nearest C is also
negligible (�0.001). This is not the case in the corresponding Au
complexes, in which all the C�C bonds in coronene are
weakened relative to those in the isolated molecule (having
electron populations of 0.325, 0.325, and 0.370), but the overlap
population of the Au�C bond remains negative (�0.014).

Table 3. DK rel. MP2, DFT-D3, and M06-2X Extrapolated Interaction EnergiesΔE [kcal/mol] and Metal Atom Charges [e] for
Coronene�M (M = Ag, Au, Pd) Complexes with an Optimized Bond Length R [Å]

coronene�Pd coronene�Ag coronene�Au

(t) (b) (h) (t) (b) (h) (t) (b) (h)

MP2

ΔE �17.7 �17. 9 �13.7 �3.9 �4.0 �4.1 �6.9 �7.0 �6.7

R 2.11 2.09 1.99 ∼3.17 ∼3.13 ∼3.19 2.83 2.82 2.92

charge 0.051 0.045 0.032 �0.052 �0.052 �0.051 �0.068 �0.067 �0.063

DFT-D3

ΔE �26.3 �26.9 �24.6 �5.7 �5.8 �6.0 �7.3 �7.3 �6.7

R 2.12 2.08 1.99 3.16 3.14 3.21 2.80 2.84 3.09

M06-2X

ΔE �14.0 �14.1 �12.8 �6.3 �6.3 �6.0 �7.2 �7.2 �7.0

R 2.46 2.45 2.47 3.12 3.12 3.12 3.06 3.06 3.09

charge 0.073 0.075 0.067 �0.010 �0.009 �0.007 �0.028 �0.027 �0.027
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TheC�Cbonds in coronene are weakened due to their relatively
strong interaction with the Au adatom. Even more dramatic
changes occur upon the adsorption of Pd. The Pd�C bond is
significantly populated (0.154), and the overlap populations of
the C�C bonds are significantly reduced (0.214, 0.214 and
0.243) relative to those in the free coronene. These numbers
clearly show that the binding ofAg to coronene (and to some extent,
also that of Au) is noncovalent, occurring primarily via dispersion
forces, whereas Pd binds covalently. The overlap populations
between the Pd and C atoms are comparable to those between
carbon atoms in the vicinity of the adsorption site, demonstrating
that the adsorption of Pd significantly weakens the covalent C�C
bonds in the vicinity of the site of adsorption and results in the
formation of a partly covalent bond between the Pd and C atoms.
4.2. Periodic Plane-WaveDFT Calculations. 4.2.1. Benzene�M

Complexes. Figures 11�13 and Table 2 show the binding energies
calculated using the plane-wave approach. The main differences
between the investigated elements can be seen even in the
results of the simple PBE/GGA calculations, although this
method is rather unsatisfactory in quantitative terms. Com-
pared to the CCSD(T) benchmark results, the benzene�Pd

and �Au complexes are significantly overbound, whereas
the benzene�Ag complex is underbound. On examining the
PBE+vdW energy curves, it is apparent that this disagreement is
primarily due to the neglect of dispersion forces. The inclusion of
dispersion forces affords greatly improved agreement with the
benchmark values, as discussed in more detail below. It should be
noted that the LDA approximation, which is also used in studies of
adsorption on graphene, overestimates the binding energy by
more than 100% in all cases examined (data not shown) and yields
unreasonably short bond distances as well.
The benzene�Au complex has a total spin moment of 1 μB

due to the single valence electron of the Au atom. The spin
moment does not change substantially as a function of the
distance between the Au atom and the benzene ring, indicating
that there is negligible charge transfer between the Au atom and
the C atoms of the benzene ring. As suggested by the WFT
methods, the (t) position is preferred to the (b) position,
although the binding energies for these two spots are very similar
and are both significantly greater than that for the hollow (h)
position. The relative order of energies is the same for all
methods investigated, but the calculated energetic differences
are reduced when the nonlocal vdW term is incorporated into the
calculations. Inspection of the interaction energy curves in
Figure 12 indicates that the vdW term is actually repulsive, i.e.,
the PBE+vdW equilibrium energies and distances are higher than
those given by the PBE calculation. The inclusion of one-quarter
of exact exchange in the calculation further reduces the binding
energies and yields the best agreement with the benchmark
CCSD(T) calculations. The EE+vdW binding energies for the
(t), (b), and (h) positions are 5.1, 4.8, and 3.4 kcal/mol,
respectively. This means that both the values of binding energies
and the differences between the binding energies for the (t), (b),
and (h) positions are within 1 kcal of the benchmark CCSD(T)
values. As gold is known to display significant relativistic effects,
we tested the influence of spin�orbit coupling (soc) on the
interaction energy for the (t) position. It was found that soc has a
slight effect on the total PBE energy but has little impact on the
charge density distribution within the complex, which deter-
mines the nonlocal vdW contribution (see eq 1). The binding
energy for Au in the (t) position as calculated using the EE+
vdW+soc method is 5.7 kcal/mol.

Figure 12. Periodic plane-wave DFT/PBE, DFT/PBE+vdW, and
DFT/EE+vdW potential curves for the benzene�Au complex with
the metal adsorbed at the (t), (b), and (h) positions.

Figure 13. Periodic plane-wave DFT/PBE, DFT/PBE+vdW, and
DFT/EE+vdW potential curves for the benzene�Pd complex with
the metal adsorbed at the (t), (b), and (h) positions.

Figure 11. Periodic plane-wave DFT/PBE, DFT/PBE+vdW, and
DFT/EE + vdW potential curves for the benzene�Ag complex with
the metal adsorbed at the (t), (b), and (h) positions.
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The potential curves for the benzene�Ag complex are shown
in Figure 11 and clearly illustrate the importance of the vdW
dispersion term. Using PBE alone, the calculated binding en-
ergies for the (t), (b), and (h) positions were 1.3, 1.2, and
1.0 kcal/mol, respectively. Obviously, these values are unrealistically
low, especially for the hollow position, which was found to be the
preferred site in the CCSD(T) calculations. By including the
vdW term, identical binding energies of 2.7 kcal/mol were
obtained for the (t) and (b) positions, while the binding energy
of 2.6 kcal/mol for the hollow position (h) was slightly lower.
While these values are already in very good agreement with the
benchmark values, they were further improved upon by adding a
fraction of the exact exchange; this made the hollow (h) position
the preferred site for adsorption, as predicted by CCSD(T). The
EE+vdW binding energies for the (t), (b) and (h) positions were
2.4, 2.3, and 2.5 kcal/mol, respectively. As was the case for the
benzene�Au complex, these binding energies are slightly greater
than the benchmark values. The spin moment remains constant
at 1 μB for all internuclear distances, which is consistent with a
negligible electrostatic interaction between the Ag atom and the
carbon atoms of the benzene ring.
A different situation obtains for the benzene�Pd complex.

Here, the covalent interaction between the metal and the arene
means the binding energy is large; using the PBE method, it is
predicted to be 26.3, 27.3, and 19.0 kcal/mol for the (t), (b), and
(h) positions, respectively. These values are significantly higher
than the benchmark CCSD(T) values. In contrast to the situa-
tion with the Ag complex, the inclusion of the vdW term
substantially reduces the predicted binding energies. While this
may be surprising at first sight, the kernel Φ(r, r0) used to
describe the interactions between electron densities (eq 1)
becomes repulsive at small distances.49 Thus, the PBE+vdW
calculation corrects the overbinding predicted by PBE alone,
giving binding energies of 21.5, 21.8, and 13.3 kcal/mol. It should
be noted that such repulsive corrections are impossible in the
various empirical DFT+D2 (or D3)26 approaches, because D2
and D3 terms are always attractive, i.e., they provide a nonzero
and positive (in terms of the definition of binding energy used in
this paper) contribution to the binding energy. Incorporating a
fraction of the exact exchange energy further reduced the
calculated binding energy, as was the case for the benzene�Au

complex. The EE+vdW binding energies for the (t), (b), and (h)
positions were thus reduced to 17.2, 18.7, and 10.6 kcal/mol,
respectively. As before, the inclusion of one-quarter of the exact
exchange yielded DFT results that were very close to the
benchmark value (although in this case, the DFT binding
energies were slightly lower than the reference values),
demonstrating that methods for improving on the treatment
of long-range correlation effects (the vdW term) should be
used in conjunction with methods that treat midrange ex-
change properly.
Graphene�MComplexes.Themain advantage of calculations

that use periodic plane-wave basis sets is that they can be applied
to the study of extended systems. Our studies on benzene�M
complexes demonstrated that the PBE functional can yield
binding energies that agree very well with reference CCSD(T)
values when augmented with a nonlocal vdW correction and one-
quarter of the exact exchange (EE+vdW). We therefore used this
method to obtain DFT benchmark energies for the interactions
of metal atoms with a graphene sheet. In this context, it should be
noted that PBE+vdW interaction energies for Cu, Ag, and Au
atoms on graphene have been published very recently.53 Our
calculations differ from those reported in that publication,
however, since (i) we included the contribution of the exact
HF exchange in order to obtain more reliable interaction
energies, and (ii) our calculations used carbon atoms that were
fixed in place (i.e., no geometrical relaxation of the graphene
sheet was allowed) in order to facilitate comparisons of the bonding
of metals adsorbed on graphene with that in benzene and coronene
complexes. The role of geometrical relaxation of the graphene
surface is thoroughly discussed by Amft et al.53

Figures 14�16 and Table 4 summarize the calculated inter-
action energies for the graphene�M complexes. On examining
the binding energy of the graphene�Au complex, it is apparent
the bonding is dominated by vdW term, which stands in stark
contrast to the situation in the benzene�Au complex. The
binding energy calculated using the GGA/PBE approximation
alone is very weak (∼1.6 kcal/mol), which is consistent with the
GGA values of 2.2 kcal/mol for the most favorable (t) position
reported in previous works.12,13 The difference in the GGA
binding energies can be attributed to the fact that in those
previous works, the geometry of the graphene was allowed to

Figure 14. Periodic plane-wave DFT/PBE and DFT/PBE+vdW po-
tential curves for the graphene�Ag complex with the metal adsorbed at
the (t), (b), and (h) positions.

Figure 15. Periodic plane-wave DFT/PBE, DFT/PBE+vdW, and
DFT/EE+vdW potential curves for the graphene�Au complex with
the metal adsorbed at the (t), (b), and (h) positions.
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relax (i.e., was optimized). It should also be noted that our test
calculations using the B3LYP hybrid functional (data not shown)
predicted no binding at all for gold in the (t) position on
graphene, which would appear to support the hypothesis that
gold binds only very weakly to graphene surfaces.
On the other hand, LDA calculations gave binding energies of

12.6, 12.2, and 10.3 kcal/mol for the (t), (b), and (h) positions,
respectively (data not shown). These energies are twice as high as
the benchmark values calculated for the coronene�Au complex,
indicating unphysical overbinding by the LDA method; the
electronic structures of coronene and graphite are certainly not
sufficiently dissimilar to account for this discrepancy. These
results clearly show that the LDA is inadequate for modeling
the interactions of graphene with gold atoms or surfaces.
The PBE+vdW method gives rather uniform binding energies

of 6.3, 6.4, and 6.2 kcal/mol for the (t), (b), and (h) positions,
respectively. These values and the differences between them are
in good agreement with the MP2 values calculated for the
coronene�Au complex. In the original paper by Dion et al.49

the authors suggested to replace the PBE exchange energy by its
revPBE counterpart to obtain more accurate binding energies.
We tested this scheme, which is becoming more and more

popular, for the graphene�M (M = Pd, Au) complexes. The
revPBE+vdW binding energies of 3.8, 3.9, and 3.9 kcal/mol for
the (t), (b), and (h) positions in graphene�Au complex,
respectively, are approximately two-times lower than the corre-
sponding benchmark energies for coronene�Au complexes. The
same applies also for graphene�Pd complexes (see the following
paragraph). The small differences of the electronic structure
between graphene and coronene, discussed in the previous
paragraph, imply that the revPBE+vdW binding energies are
significantly underestimated and that the revPBE+vdW method
cannot be recommended for such type of calculations.
The carbon�metal bonding distances are longer than those in

the benzene�Au complex because of the greater exchange
repulsion between the Au atom and the carbon atoms in the
graphene sheet. The elongation of bonding distances with
respect to benzene complex is consistent with the elongation
of the metal�carbon bond observed in the coronene�Au
complex. As was the case with the benzene�M complexes, the
incorporation of a fraction of the exact exchange energy slightly
reduced the calculated binding energies. The EE+vdW binding
energies for the (t), (b), and (h) positions were 5.6, 5.5, and
5.4 kcal/mol, respectively. It should be noted that the preferred
(t) position of gold on graphene surface agrees with recent
experimental data.67 The incorporation of exact exchange re-
duces the distances between the metal atom and the graphene
sheet, which are 3.14, 3.07, and 3.33 Å for the (t), (b), and (h)
positions, respectively. The distance between themetal atom and
the plane containing the arene increases consistently on going
from benzene to coronene to graphene, and the calculated
binding energies for the adsorption of gold atoms on graphene
are somewhat lower than those for the coronene�Au complex.
This is largely due to the underestimation of the charge-transfer
contribution in the pure PBE GGA calculation, which is high-
lighted when one compares the results for the graphene and
benzene complexes.
The energies of the graphene�Pd complex shown in Figure 16

continue the trend observed on going from benzene to coronene.
The interaction energies for the top (t) and bond (b) positions
are slightly lowered in comparison with benzene, whereas the
energy of the hollow (h) site is higher. The PBE+vdW energies
are 20.1, 18.3, and 15.6 kcal/mol and agree very well with those
for the coronene�Pd complex. The only difference is that the (t)
position is predicted to be the most stable for graphene, whereas
the MP2 results for coronene predict that the above-bond
position (b) is the most stable. The adsorption of Pd at the
(b) position results in the formation of a partial covalent bond
with neighboring carbon atoms, as was demonstrated by means
of an overlap population analysis in the preceding section. The
EE+vdW binding energies for the (t), (b), and (h) positions
were 17.4, 15.9, and 12.0 kcal/mol, respectively. For the sake of
completeness, the revPBE+vdWbinding energies for the (t), (b),
and (h) positions were 12.8, 10.9, and 8.2 kcal/mol, respectively.
Finally, examination of the energy profiles for the graphene�

Ag complex reveals that silver atoms bind a little more strongly to
graphene than to benzene, primarily because of stronger vdW
(dispersion) interactions. In this case, the pure GGA predicts
only very weak bonding of ∼0.6 kcal/mol, at large equilibrium
distances of around 3.5 Å. Because of the interaction between the
silver atom and the graphene sheet is dominated by dispersion
forces, the energetic differences between the three adsorption
sites examined were negligible. Adsorbed silver atoms can thus
easily slide over a graphene surface; the barriers to their diffusion

Figure 16. Periodic plane-wave DFT/PBE, DFT/PBE+vdW, and
DFT/EE+vdW potential curves for the graphene�Pd complex with
the metal adsorbed at the (t), (b), and (h) positions.

Table 4. Interaction Energies ΔE [kcal/mol] for
Graphene�M (M = Ag, Au, Pd) Complexes with an Opti-
mized Bond Length R [Å]

graphene�Pd graphene�Ag graphene�Au

(t) (b) (h) (t) (b) (h) (t) (b) (h)

PBE

ΔE �22.8 �21.3 �19.0 �0.6 �0.6 �0.6 �1.6 �1.6 �1.6

R 2.11 2.07 2.02 3.72 3.72 3.73 3.41 3.54 3.63

PBE+vdW

ΔE �20.1 �18.3 �15.6 �4.3 �4.3 �4.2 �6.3 �6.4 �6.2

R 2.22 2.20 2.18 3.35 3.35 3.39 3.30 3.36 3.42

EE+vdW

ΔE �17.4 �15.9 �12.0 �4.3 �4.3 �4.2 �5.6 �5.5 �5.2

R 2.21 2.17 2.18 3.35 3.35 3.39 3.14 3.07 3.33
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relate primarily to the buckling of the graphene sheet, which is
most pronounced at the hollow site.53

The interaction energies for the graphene�Ag complex
calculated using the PBE+vdW method were 4.3, 4.3, and
4.2 kcal/mol for the (t), (b), and (h) positions, respectively.
The vdW term is obviously dominant and is essential for accurately
modeling the adsorption of Ag on graphene. Our results agree
very well with PBE+vdW values published by Amft et al. (Ag: 4.5,
4.5, and 4.4 kcal/mol for the (t), (b), and (h) positions,
respectively)53 and also with the MP2 values calculated for the
coronene�Ag complex. In accord with the negligible electro-
static interaction between silver and graphene, the inclusion of an
exact exchange correction has little impact on the calculated
interaction energies, changing them by less than 0.1 kcal/mol for
all positions. As such, the PBE+vdW values can effectively be
regarded as the benchmark in this case.
On comparing the results for coronene and graphene, it is

apparent that MP2 and EE+vdW strongly favor the adsorption of
Pd over Au or Ag. Moreover, these two methods both yield
similar ratios for the binding energy of Pd relative to Au and Ag;
the ratio for MP2 is 9:5:2, while that for EE+vdW is 9:3:2. The
two methods also predict similar behavior for the binding energy
on switching from benzene to coronene or graphene, in terms of
both overall trends and absolute values.

5. CONCLUSIONS

WFT and DFT calculations performed for the benzene�M
and coronene�M complexes (M = Ag, Au, Pd) indicate that Pd
is bound most strongly, followed by Au and Ag. The difference in
binding energy between the strongest and weakest complexes is,
however, reduced on going from benzene to coronene. The
nature of the adsorption of these three elements is different.
While silver binds primarily via dispersion forces in both cases,
the binding of gold is primarily attributable to charge-transfer
interactions between the electron donor (benzene or coronene)
and the electron acceptor (the gold atom). Relativistic effects are
important in the binding of gold, and their neglect leads to
dramatic underestimation of the binding energy. The binding of
Pd is quite different again; it forms a (partial) covalent bond with
the arene.

The CCSD(T) benchmark binding energies for the
benzene�M (M = Pd, Au, Ag) complexes were 19.7, 4.2,
2.4 kcal/mol, respectively; the MP2 binding energies for the
coronene�M (M = Pd, Au, Ag) complexes were 17.7, 7.0,
4.1 kcal/mol, respectively. These numbers indicate that the
nature of the binding of the metal atoms does not change
dramatically on going from benzene to coronene and that the
values obtained at the benchmark CCSD(T) level can thus be
used to characterize the adsorption of metals on a carbon surface.

Comparison between the reference CCSD(T) and plane-
wave DFT calculations demonstrates that neither LDA nor
GGA provide reliable binding energies. On the other hand,
PBE+vdW performs well, but surprisingly, the revPBE+vdW
underbinds studied complexes. The most accurate plane-wave
DFT method identified was PBE+vdW with an exact exchange
correction; referred here as EE+vdW. Using this method,
the binding energies calculated for the benzene�M and
graphene�M (M = Pd, Au, Ag) complexes were 18.7, 5.1, and
2.5 kcal/mol and 17.4, 5.6, and 4.3 kcal/mol, respectively. The
values obtained for the benzene complexes agree with the
benchmark CCSD(T) energies to within chemical accuracy

(∼1 kcal/mol). Moreover, calculations using this method accu-
rately reproduced the trends in binding energy observed on
switching from benzene to coronene or graphene as well as the
corresponding absolute reference values. By comparing the pure
GGA binding energies to those calculated using the nonlocal
vdW correlation, it was demonstrated that the vdW corrections
are purely attractive only in Ag complexes; in Pd complexes, they
are repulsive and serve to correct the overbinding predicted by
the PBEmethod. This implies that using empirical corrections to
simulate dispersion interactions can be counterproductive when
studying graphene�metal systems, since corrections of this kind
will always favor binding.

The good agreement obtained with two rather different
computationalmethods (specifically, wave function-basedCCSD(T)
and MP2 with a local basis set and the density functional-based
EE+vdW method, with a plane-wave basis set) indicates that the
calculated graphene binding energies reported in this paper can
be used as reliable benchmark values and that EE+vdW is a useful
and practical method for accurate computational studies of
extended systems. Moreover, it also demonstrates that coronene
complexes are useful model systems for modeling adsorption on
graphene with chemical accuracy.
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ABSTRACT: Polylactide is a biodegradable polymer that is widely used for biomedical applications, and it is a replacement for some
petroleum-based polymers in applications that range from packaging to carpeting. Efforts to characterize and further enhance
polylactide-based systems using molecular simulations have to this point been hindered by the lack of accurate atomistic models for
the polymer. Thus, we present force field parameters specifically suited formolecular modeling of PLA. Themodel, which we refer to
as PLAFF3, is based on a combination of the OPLS and CHARMM force fields, with modifications to bonded and nonbonded
parameters. Dihedral angle parameters were adjusted to reproduce DFT data using newly developed CMAP dihedral cross terms,
and the model was further adjusted to reproduce experimentally resolved crystal structure conformations, melt density, volume
expansivity, and the glass transition temperature of PLA. We recommend the use of PLAFF3 in modeling PLA in its crystalline or
amorphous states and have provided the necessary input files required for the publicly available molecular dynamics code
GROMACS.

’ INTRODUCTION

Polylactide, also called polylactic acid (PLA), is an important
polymer for biomedical applications, because it is compatible
with living cells and is biodegradable.1,2 Further, PLA is of
interest as a commodity polymer, and is used especially in
single-use packaging applications.3 PLA is an α-polyester, and
the primary structure of its repeat unit is shown in Figure 1.

Classical molecular force fields, such as CHARMM4 and
OPLS,5 have been widely used in recent decades for simulating
organic molecules, by and large with good success. However,
neither force field has been parametrized specifically for the
dihedral angles present inα-polyesters such as PLA. In particular,
dihedral interaction parameters for the OS�C�Cα�OS,
C�Cα�OS�C, and Cα�OS�C�Cα motifs, all of which are
unique to α-polyesters, are not found in the parameter databases
for these force fields. In lieu of these specific four-atom interac-
tion parameters, one would typically use the so-called wildcard
parameters included in the force field (these are general para-
meters represented by X�C�Cα�Y, X�Cα�OS�Y, and
X�OS�C�Y, where X and Y may be any atom type). Though
wildcard parameters provide a reasonable guess for the dihedral
interactions in cases where more accurate parameters are un-
available, it has been shown that use of the wildcard parameters
for α-polyesters results in poor accuracy when modeling PLA
because the wildcard rotational energy barriers are centered at
the wrong dihedral angles and do not describe the barrier heights
predicted via quantum (DFT and MP2 level) models well.6,7

In this work, we develop a classical force field model specifi-
cally suited for polylactides, based on the OPLS and CHARMM
forms. The present force field follows the work of O’Brien,7 in
which the PLAFFmodel was developed and validated extensively
for crystalline PLA, and of McAliley,6 in which the model was
further developed for accuracy in modeling amorphous PLA
(the resulting force field was referred to as PLAFF2). Our present

model is PLAFF3, and it differs from previous versions in its use
of the CMAP cross-term dihedral potential originally developed
for CHARMM.8 This potential function provides more flexibility
in fitting barriers to bond rotation and has allowed us to fit the
glass transition temperature of PLA with far more accuracy than
could be obtained from linear combinations of individual dihe-
dral potentials. We demonstrate that PLAFF3 is better suited
than its predecessors for modeling the amorphous dihedral angle
distributions in PLA, and that it retains the accuracy of PLAFF in
simulating the crystalline phase.We believe that these parameters
will be of value to the biological science community in studying
PLA. Further, with the growing interest in using renewable
polymers for commodity packaging applications, this model will
likely be of use to the materials science community in exploring
new PLA-based materials. Though other work on PLA force field
development has appeared in the literature,9�12 to our knowl-
edge, the PLAFF3 parameters represent the first noncommercial
molecular model validated against electronic structure calcula-
tions and experimental data for PLA in melt, glassy, and crystal-
line phases. As such, we hope this work will allow a larger number
of researchers to study the material through simulation than was
previously feasible.

’METHODS

The fitting procedure used in this work is shown schematically
in Figure 2. The procedure begins with assembling target data
and providing an initial guess for the force field parameters. As a
first step, the torsional parameters are adjusted to match DFT
data obtained in previous work.13 Next, the model is tested
against experimental crystal structure data for PLA. Dihedral
parameters are then adjusted accordingly, until reasonable

Received: April 14, 2011
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agreement is obtained with the experimental data for crystalline
PLA. Following this step, the model is used to simulate the
polymer in its melt state. The volume expansivity, β, is estimated
from these simulations and compared with experimental dilato-
metric measurements. In some cases, an adjustment of the
relative energies between energy minima can affect a change in β,
by establishing a different temperature dependence of the
polymer’s rotational isomeric states. However, if a more drastic
change is required, the nonbonded parameters are adjusted for
those atom types that are unique to α-polyesters, until the
density and volume expansivity are near experimental values.
After such adjustments, the entire fitting procedure must be
repeated to ensure the agreement with DFT and that crystal
structure data is maintained. Finally, the model is used in quench
simulations, where the polymer is rapidly cooled from the melt

state into the glassy state. Using the Williams�Landel�Ferry
(WLF) equation, the resulting glass transition temperature, Tg,
may be compared to experimental measurements. If necessary,
the energy barriers are then adjusted for rotation about eachmain
chain dihedral angle until agreement is reached with experimen-
talTg values. Each of these steps will be discussed in greater detail
in the following sections.
Initial Force Field Parameters. We considered two force

fields as a starting point for the PLAFF models: The Optimized
Potentials for Liquid Simulations5 (OPLS) and the force field
from theChemistry at HarvardMolecularMechanics (CHARMM)
package.4 The OPLS parameters were taken from the OPLS-AA
parameter files as distributed with GROMACS14 version 3.3.3.
For the CHARMM force field, parameters were taken from
the CHARMM27 protein�lipid parameter files distributed with
CHARMM version c32b2. Atom types were assigned on the
basis of chemical functionality (see Supporting Information).
Partial atomic charges were unaltered in each force field, with the
exception of main-chain atoms and the carbonyl oxygen, which
were adjusted slightly to achieve charge neutrality in the lactyl
residue and to improve agreement with DFT results. The needed
CHARMM27 parameters for PLAwere ported into GROMACS,
and all further molecular mechanics calculations reported for
the CHARMM force field were performed in GROMACS

Figure 1. Chemical structure of PLA. Superscript labels on atoms are
used for reference in the text. The three main chain bond rotations are
labeled according to the convention for polypeptides.

Figure 2. Flow diagram showing the procedure for fitting PLA force field parameters. The dihedral angles for ϕ andψ that define the g�t and g�c energy
minima are shown later in Figure 4.
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version 3.3.3. It is important to note that the parameters, especially
the nonbonded parameters, from the OPLS and CHARMM
force fields are not fully compatible. This mixed set of param-
eters was only used as a starting point for further parameter
optimization.
In the fitting procedure, bond stretching and angle bending

parameters were optimized to more accurately reproduce energy
potentials predicted using DFT (see the Supporting Information).
In general, DFTmethods are known to give accurate geometries,
whereas they are less accurate at predicting vibrational frequen-
cies. For this reason, geometric parameters for bonds and angles
(the b0 parameter for bonds and the θ0 parameter for angles)
were fit to DFT data, but the bond and angle force constants
(kb and kθ, respectively) were unaltered from their original
OPLS values. In this way, we deviated as little as possible from the
OPLS model.
Three dihedral interactions were also adjusted to achieve

better agreement with the bond rotational potential energy
surfaces calculated from DFT. These correspond to the back-
bone dihedrals labeled as ϕ,ψ, andω in Figure 1 and are defined
by the IUPAC convention using the main chain atoms (OS, C,
and Cα). In PLAFF3, the potential energies for these three
dihedral interactions were represented by tabulated functions.
For rotation about ω, a one-dimensional tabulated function was
used (see the GROMACSUserManual14 for more information),
whereas a two-dimensional tabulated function (also called a
correction map or CMAP15) was used for each pair of neighbor-
ing ϕ, ψ dihedrals. The CMAP potential was recently imple-
mented inGROMACS,8 and all calculations involving such terms
were performed with GROMACS version 4.5.1.
Target Data.We used several criteria to select target data for

parameter fitting. One criterion was that the model should be
consistent with results from higher-level molecular simulation
methods, namely, our DFT results from previous work.13 In
addition, we aimed to be consistent with experimental results.
Because PLA is often used in its semicrystalline form, we desired
a model that could reproduce the properties of both the crystalline
and amorphous states of thematerial. Thus, conformational data for
the crystalline form of PLA were used, as well as the glass transition
temperature and volumetric data for the amorphous polymer.
DFT Data. The target potential energy values were taken

from in vacuo DFT calculations (B3LYP/6-31G**) for a methyl

terminated PLA trimer (CH3(OC(O)CH(CH3))3OCH3), as
reported previously.13 These include an estimate of the potential
energy barriers encountered with bond stretching and angle
bending (see the Supporting Information), during rotation of
the OS�C bond described byω (reproduced in Figure 3), and
likewise for simultaneous rotation of bonds described by ϕ and ψ
(Figure 4) for the central repeat unit in a PLA trimer.
Crystal Structure Data. Several studies on the crystal structure

of PLA have appeared in the literature.16�20 We have chosen to
use the structural coordinates from Sasaki and Asakura20 as our
target data. The authors’ use of the linked atom full-matrix least-
squares (LAFLS) method21 and the Rietveld whole-fitting
method22 allowed for the positions of individual atoms in the
unit cell to be determined with a high degree of accuracy. The
authors derived the α-form of the crystal structure from WAXD
data, resulting in a frustrated 103 helix. The orthorhombic (α =
β = γ = 90�) unit cell from that study has P212121 symmetry and
lattice constants of a = 10.66(1) Å, b = 6.16(1) Å, and c =
28.88(2) Å.20

Volumetric Data for Amorphous/Melt PLA. To represent the
volumetric properties of amorphous PLA, we selected the experi-
mental data from Sato et al.,23 where the specific volumes of
polylactide samples were measured at various temperatures and
pressures usingmetal bellows dilatometry. While the experimental
data cover a wide range of temperatures, the only specific volume
data used in this study are plotted in Figure 5, and these data
correspond to specific volumes measured by heating PLA samples
at 1 bar above the melting temperature, Tm. It can be seen in
Figure 5 that an abrupt change in volume occurs upon heating
above Tm, which is attributed to the change in volume that occurs
when the crystallites in the sample become amorphous.
In practice, we use molecular simulations to study the melt

phase of polymers at temperatures higher than those shown in
Figure 5, utilizing the well-known time�temperature superposi-
tion principle for polymers.24 Thus, we look at the volume ex-
pansivity (see eq 1 below) to facilitate a comparison. From the data

Figure 3. DFT potential energy profile for rotation of the OS�C bond
through all values of dihedral angleω. Calculations performed on a PLA
trimer in vacuo.13

Figure 4. (a) DFT potential energy surface, with dihedral angles ϕ and
ψ as independent variables. Calculations performed on a PLA trimer
in vacuo.13 The two lowest energy minima, gauche�/trans (g�t) and
gauche�/cis (g�c) are indicated. (b) Molecular geometry of g�c con-
formation. (c) g�t conformation.
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in Figure 5, an expansivity of β = 7.8� 10�4 K�1 is calculated for
the melt state.
Glass Transition Data. It is generally accepted that barriers to

bond rotation play a major role in determining the glass transi-
tion temperature of polymers. Experimentally, the value of the
PLA glass transition is dependent on the method used to
measure it, and it has also been reported to vary widely with
moisture content.25 Common reported values of Tg for PLA are
in the range of 327 to 345 K (see Table 1), which were obtained
using differential scanning calorimetry (DSC) and dielectric
relaxation spectroscopy (DRS). The value reported by Auras
was measured after extensive drying of the PLA samples.25 Since
water is known to have a plasticizing effect on the material, it
follows that this estimate is at the high end of the reported range
of Tg values.
Fitting Procedure Using DFT Target Data. In fitting our

model to DFT data, we performed energy minimizations using
the force field model, each constrained by the same independent
variable(s) as the DFT energy minimizations (i.e.,ω or ϕ andψ)
before comparing energies with the DFT results. This energy
minimization step with the force field model adds a high level of
nonlinearity to the fitting procedure. Each time the dihedral
parameters are adjusted, the minimum energy conformation at
each independent variable also changes. Thus, obtaining the
optimal torsional potentials according to this prescription re-
quires an iterative scheme.
We began each iteration of the fitting procedure with the

dihedral having the largest potential energy barriers. Thus, the
rotational energy barrier for theOS�Cbond (dihedral angleω) was
fit to the DFT data shown in Figure 3 first, followed by a
simultaneous fit of the ϕ and ψ potentials to the data shown in
Figure 4. A weighted least-squares approach was used in developing
PLAFF2, as described elsewhere.6 However, in PLAFF3, simple
adjustments to the tabulated potentials were used tomatch theDFT
data. Weighting of data points was not necessary due to the greater
flexibility of the tabulated potentials versus the traditional cosine
expansions used in PLAFF2. After each parameter optimization
step, the force field minimum energy conformations were re-
evaluated using the most current dihedral parameters. This process
was repeated until reasonable convergence was achieved with
respect to the dihedral parameters and the minimized energies.

Bounded Adjustment of Dihedral Potentials. We employ a
bounded adjustment procedure for altering the dihedral poten-
tials, to avoid drastically changing the force field parameters and
thus the minimum energy conformations. For all iterations, the
tabulated potentials were adjusted to be as close as possible to the
DFT target data without exceeding a specified change in energy.
Otherwise, if unbounded adjustments were allowed, we often
observed divergent behavior due to the nonlinear aspects of the
iterative scheme. It was found that suitable stability was achieved
by limiting the change in energy at each tabulated point to 10 kJ/mol
for fitting the ω dihedral, and 5 kJ/mol for fitting ϕ and ψ
dihedrals. Because these limits gave satisfactory performance, no
attempt was made at further tuning the fitting procedure with
respect to them.
Refinement Using Crystal Structure Data. Returning to our

discussion of Figure 2, we proceed, after sufficient convergence is
obtained in fitting to DFT bond rotation data, by examining the
crystal structure of PLA with the resulting force field parameters.
In these simulations, a super cell based on the crystalline unit cell
is built according to the WAXD-resolved structure of Sasaki and
Asakura.20 This super cell contains 32 PLA chains, each contain-
ing 50 monomers, with the boundary conditions for the polymer
being such that monomer number 1 in a chain was bonded to
monomer number 50 from the neighboring periodic cell. The
selected system size is sufficiently large that no finite size effects
are observed with the simulated systems. The system is simulated
for 3.0 ns in the NPT ensemble, whereby the lattice or box
dimensions are allowed to adjust to their equilibrium values;
however, all lattice angles (α, β, and γ) were constrained to 90�,
so as to maintain an orthorhombic unit cell that matched
experimental observations. Anisotropic pressure coupling was
applied with the Berendsen algorithm, such that each box length
was adjusted independently.29 The Nose�Hoover thermostat
was used to control temperature at 300 K.30,31 A cutoff of 1.0 nm
was used for van der Waals interactions, while the electrostatics
were treated with the Particle-Mesh Ewald (PME) method.32

While one of our goals was to have a minimized PLA system
that accurately reproduced the experimentally observed dihedral
angles from diffraction studies, obtaining these in the crystal
structure is difficult without first having accurate bond lengths
and valence angles due to packing considerations in the unit cell.
Therefore, before earnestly examining the predicted dihedral
values, we optimize the bond and angle force field parameters
using a series of in vacuo DFT calculations that examine the
variation in PLA system energy as a function of perturbations to
each bond and angle from its minimum energy value (see
Supporting Information). This is done in much the same way
as fitting the dihedral parameters to DFT bond rotation data,
using a self-consistent iteration scheme.
Once the prerequisite of accurate valence geometries is

achieved, the dihedral angles (ϕ, ψ, and ω) and lattice vectors

Figure 5. Target volume�temperature data at 1 bar, taken from Sato
et al.23 Arrows indicate the authors’ estimate of the glass transition
temperature, Tg, and the melting temperature, Tm, taken from separate
calorimetry data.

Table 1. Some Reported Values of the Glass Transition
Temperature of PLA

lead author method rate Tg (K)

Dorgan26 DSC 10 �C/min 331.6

Sato23 DSC 337

Auras25 DSC 10 �C/min 344.6

Joziasse27 DSC 10 �C/min 336

Kanchanasopa28 DRS τ = 100 s 327
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are examined over the final 1.0 ns of dynamics of a crystal
structure simulation, and their values are compared to those
reported in the experimental literature. Should the simulations be
inconsistent with the experimental data, the position of the g�t
energy minimum (see Figure 4) is adjusted with respect to ϕ and
ψ, as is the position of the trans energy minimum for ω. This
process is repeated until the experimental dihedral values are
accurately reproduced.
Refinement Using Melt Phase Target Data.Once adequate

agreement with the crystalline unit cell is obtained, simulations
are carried out on amorphous PLA using isothermal�isobaric
replica exchange molecular dynamics (NPT-REMD) as imple-
mented in GROMACS. Four separate NPT-REMD runs were
performed with unique input configurations, which were initially
generated using the Amorphous Cell module in Accelrys’
Materials Studio version 4.4.6

In our implementation, each replica is comprised of three
chains, each containing 500 repeat units (refer to Figure 1), and
two lactide molecules. The chain length was chosen to be greater
than the experimental entanglement length, which is approxi-
mately 125 repeat units. Additionally, limited simulations with
other chain length PLA systems showed that the calculated Tg

value decreased with chain length as expected, but no detailed
investigation of this effect was attempted. Lactide molecules were
also included in the simulated systems because there is always a
small percentage of residual lactide monomer in real polylactide
samples, and these monomers have a plasticizing effect on the
material. With two lactide molecules per simulation cell, our
simulated PLA system contains 0.26% residual lactide on a
weight basis; the specific amount of lactide present in an
industrially produced PLA resin is usually less than 1%,33 and
0.2 to 0.3 wt %34 is common.
In each replica exchange simulation, the average volume is

calculated for the melt state as a function of temperature. From
this, the volume expansivity can be estimated graphically using
the relation35

β ¼ 1
v

∂v
∂T

� �
P

ð1Þ

where v is the specific volume of the system. Since each replica
has the same pressure, a plot can be constructed of ln v versus T,
and β can be estimated from its slope. This is compared to
experimental measurements of the expansivity of PLA. If satis-
factory agreement is not obtained, this indicates that the non-
bonded parameters may need further adjustment.
When it was necessary to alter the nonbonded parameters, the

atom types for the ester oxygen (OS) and α-carbon (Cα) were
chosen for adjustment. These atom types were selected because
they are the most likely to deviate from the behavior of normal
esters, and no such atom types exist in OPLS or CHARMM for
α-polyesters. Note that, when adjustment of these atoms’ non-
bonded parameters is necessary, the dihedral angles must again
be readjusted to preserve agreement with the crystal structure.
Refinement Using Glass Transition Target Data. The glass

transition temperature, Tg, is commonly interpreted for poly-
mers as the temperature below which bond rotations are
kinetically trapped. That is, it is the temperature below which
torsional energy barriers are crossed at rates much longer than
the time scale on which the polymer is observed. As such, the
value of Tg for PLA is influenced by the height of the energy
barrier between the various rotational isomeric states.

Many studies have appeared in the literature examining the
glass transition temperature via molecular dynamics,36�38 though
relatively few papers address the temporal dependence of the
observed glass transition temperature.39,40 It is well-known,
experimentally, that the glass transition will be observed at higher
temperatures when a polymer specimen is cooled at a faster
rate.41 This behavior is described very well, over the range of
experimental time scales, by the WLF equation:42

ln AT ¼
B
f0

� �
ðT � T0Þ

f0
αf

þ ðT � T0Þ
ð2Þ

where AT is the reduced variables shift factor, B is a constant, f0 is
the fractional free volume of the polymer at the reference
temperature T0, and αf is the coefficient of expansion of the free
volume. Although the quenching rates accessible to molecular
dynamics simulations can differ from experimental cooling rates
by 14 orders of magnitude or more, the validity of the WLF
equation over such wide a temporal range has been established
recently through molecular simulation.40

The glass transition temperature of PLA was estimated from
our force field model by quenching the amorphous conforma-
tions from the NPT-REMD simulations, using a replica at 604.5 K
as the starting structure. Simulation conditions were identical
to those used in each of the NPT-REMD replicas, except that the
set point of the Nose-Hoover thermostat was varied linearly with
simulation time over the entire run. Each run lasted until a
temperature of 300 K was reached. From each of the four NPT-
REMD simulations, six separate quench runs were performed,
with quench rates of 15 K/ns, 30 K/ns, 60 K/ns, 150 K/ns,
300 K/ns, and 600 K/ns. The glass transition temperature was
estimated for each run by fitting a straight line to a plot of ln v
versusT, using all data points below 400 K. A second straight line
was drawn through the melt data taken from the NPT-REMD
runs, for temperatures above 500 K. The intersection of the two
lines was taken as Tg. Such estimates were then averaged for each
quench rate, and then a least-squares fit was performed using
the WLF model (eq 2). The reference quench rate was taken to
be 10 K/min (normal lab conditions for measuring Tg). We
found that the so-called universal WLF constants (B/f0 = 40.16
and f0/αf = 51.6 K) provided a good fit with the PLA force-field
models, reducing the WLF equation to a single adjustable
parameter, T0. When used in this manner, T0 corresponds to
the Tg observed at the reference quench rate.

’RESULTS AND DISCUSSION

In implementing the iterative procedure described in Figure 2,
many intermediate sets of force field parameters were examined
in this study. Here, we compare and discuss the important
results from seven different models, ranging from the unaltered
CHARMM and OPLS force fields to our intermediate parameter
sets derived from those force fields and from the first generation
PLAFF force field of O’Brien to the present version of our PLA
force field, PLAFF3. Abbreviations for these different models are
summarized in Table 2 for ease of reference. These include the
models obtained directly after a least-squares fit to the DFT
potential energies, referred to as the OPLS0 and CHARMM0
models. These two models demonstrate that fitting to the DFT
energies alone is not sufficient to reproduce experimental data,
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and further adjustment was required as described in Figure 2.
The OPLS00 model shows results in which the parameters have
been further adjusted to match the bond lengths and valence
angles reported in crystal structure studies of PLA, and in which
the nonbonded parameters were adjusted by trial-and-error to
better match the melt density and volumetric expansivity of PLA.
Finally, the PLAFF2 and PLAFF3 models improve upon OPLS00
by adjusting the dihedral parameters to match crystal structure
data and glass transition temperature data. The principal differ-
ence between PLAFF2 and PLAFF3 is that PLAFF3 uses CMAP
dihedral cross terms, whereas PLAFF2 uses linear combinations
of single dihedral potentials.
Comparison of the Classical Models to DFT Data. The

energy landscapes for bond rotation about ϕ and ψ are shown
in Figure 6, calculated using the various models described in
Table 2. The figure also shows the DFT target data for
comparison. While we do not expect the optimum force field to
be in complete agreement with DFT data, we desire the overall
shape and location of relative minima/maxima to coincide with
the DFT results in order to realistically model the amorphous
configuration distribution. Thus, as shown in Figure 6b, the first
generation PLAFF force field raises some concern, due to
the presence of a low-energy local minimum in the vicinity of
(ϕ,ψ) = (30�,�150�) that does not appear in the DFT potential
energy surface. Additionally, the g�c minimum is predicted by
PLAFF to be a much less probable configuration than predicted
by DFT. The presence of the extra minimum in Figure 6b is only
of concern for applications involving amorphous phases of PLA,
in which case the entire dihedral space may be accessed by the
simulated polymer chains according to the energetics of the force
field model.
While the nonphysical local minimum near (ϕ, ψ) =

(30�, �150�) is a striking feature of Figure 6b, it is also obvious
from the figure that O’Brien was very successful in fitting the
potential energy surface in the vicinity of the global minimum
(in the g�t position shown in Figure 4). This is evidenced by the
remarkable performance of PLAFF in simulating crystalline PLA,7

and therefore, we feel that the original PLAFF is still very well-suited
in modeling the crystalline phase of PLA. When examining the
OPLS and CHARMM models in Figure 6c and d, we see that
both models lack adequate representation of the global g�t
minimum predicted by DFT. This observation helps to explain

the superior performance of PLAFF in the crystalline phase as
compared with OPLS and CHARMM and suggests that OPLS
and CHARMM should not be used for crystalline or amorphous
phase simulations without first correcting the backbone torsional
potentials.
Figure 6e and f show the results of performing a least-squares

fitting procedure to alter the torsional potentials of OPLS and
CHARMM, while leaving all other interaction parameters in the
models unchanged. This figure demonstrates that there are
limitations inherent in each model, preventing a perfect fit to
the desired potential energy surface. For example, the CHARMM0
potential energy surface in Figure 6f still shows remnants of
the local minima, situated in the negative ϕ region between the
g�c and g�t energy minima of the CHARMM model in
Figure 6d. The major shortcoming of the models shown in
Figure 6b�h is that corrections to the (ϕ, ψ) potential energy
surface are limited to linear combinations of separate functions of
ϕ and functions of ψ. Without the use of more sophisticated
potential energy functions, e.g., the CMAP dihedral�dihedral
cross terms available in recent versions of the CHARMM
program,8,15 accurately reproducing the entire two-dimensional
potential energy surface of Figure 6a is highly dependent on the
other interactions within the model, such as the bond stretching
and angle bending parameters.
Figure 6g and h give the potential energy surfaces after

fitting the model to crystal structure data and glass transition
data, respectively (see discussion in the following sections).
The last plot (Figure 6i) is our currently recommended
model, PLAFF3. Note that the agreement between PLAFF2
and the DFT data is diminished when compared to OPLS0,
since adjustments to fit one set of target data inevitably alters
the performance of the model in reproducing all other target
data. The resulting model is a compromise between compet-
ing target data. However, the addition of the CMAP dihedral
term in PLAFF3 allows for a much more accurate fit of the
potential energy surface, which can be altered in very specific
local regions without affecting the shape of the surface else-
where. For example, the g�t global minimum of PLAFF3 was
shifted by approximately +10� and �15� in ϕ and ψ, respec-
tively, to improve agreement with the crystal structure,
yet the remaining portions of the surface are unaffected by
this shift.

Table 2. Description of the Various Classical Models Discussed in the Texta

model description

OPLS the OPLS force field as developed by Jorgensen and co-workers5,43 (all-atom version, also known as OPLS-AA)

CHARMM the CHARMM force field as developed by Brooks and co-workers4

OPLS0 OPLS, with backbone torsional potentials refit to DFT data

CHARMM0 CHARMM, with backbone torsional potentials refit to DFT data

OPLS00 OPLS, with CHARMM nonbonded parameters substituted for O1 and C3, selected bond stretching and angle bending terms

refit to DFT, and backbone torsional potentials refit to DFT data

PLAFF The PLA force field developed by O’Brien7 (all-atom version, also known as PLAFF-AA)

PLAFF2 the second version of PLAFF, with improved accuracy for simulating amorphous PLA;6 the model is OPLS00,
with backbone torsional parameters further adjusted to reproduce crystal structure data and

to improve agreement with the experimental glass transition temperature of PLA

PLAFF3 the PLA force field developed in this work; the model is OPLS00 , with backbone

torsional parameters further adjusted using the CMAP potential to reproduce crystal structure data and

to improve agreement with the experimental glass transition temperature of PLA
a PLAFF3 is the recommended potential for molecular simulation of PLA.
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Comparison of the Classical Models to Crystal Structure
Data. Results from crystal structure simulations using each of

the models are shown in Table 3 and in Figure 7. In each case,
the simulation results are compared to reference values from the

Figure 6. Bond rotational energy profiles for the ϕ and ψ dihedrals (shown in Figure 1) of a PLA trimer, calculated from (a) B3LYP/6-31G**,13 (b)
PLAFF,7 (c) OPLS,5 (d) CHARMM,4 (e) OPLS0, (f) CHARMM0, (g) OPLS00, (h) PLAFF2,6 and (i) PLAFF3. Refer to Table 2 for a description of the
models.

Table 3. Lattice Dimensions of PLA at 300 K from Published Studies and from Crystal Structure Simulationsa

a (Å) diff (%) b (Å) diff (%) c (Å) diff (%) density (g/cm3) diff (%)

Sasaki20 10.66 6.16 28.88 1.261

Alem�an16 9.66 �9 5.80 �5 29.01 1 1.472 16.7

Hoogsteen18 10.60 �1 6.10 �1 28.80 0 1.285 1.8

de Santis17 10.70 0 6.45 5 27.80 �4 1.247 �1.2

OPLS 10.46 �1.9 6.05 �1.8 31.14 7.8 1.214 �3.8

CHARMM 10.72 0.6 5.97 �3.1 31.47 9.0 1.188 �5.8

OPLS0 10.51 �1.4 5.97 �3.1 31.36 8.6 1.216 �3.6

CHARMM0 8.78 �17.6 6.03 �2.1 34.67 20.0 1.303 3.3

OPLS00 10.54 �1.1 6.08 �1.3 30.85 6.8 1.210 �4.1

PLAFF2 10.59 �0.7 6.25 1.5 29.74 3.0 1.215 �3.7

PLAFF3 10.70 0.4 6.14 -0.3 29.98 3.8 1.214 �3.7
aRefer to Table 2 for a description of the models. Differences are calculated with respect to the experimental study of Sasaki and Asakura.20 The
recommended model, PLAFF3, is emphasized in bold.
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experimentally resolved crystal structure(s). We have given
priority to ensure PLAFF3 matches the data in Table 3, as the
crystalline density and lattice vectors can be measured directly
with very few assumptions involved in the experimental analysis.
Thus, the dihedral angle distributions in Figure 7 were consid-
ered a secondary target.
Figure 7 shows the dihedral angle distributions during simula-

tion of crystalline PLA. For each model, five different histograms
are accumulated for each backbone dihedral, ω, ϕ, and ψ. These
separate histograms are presented for each of the five unique
residues in the frustrated helical structure predicted by Sasaki and
Asakura.20 In eachmodel, it is evident that these five residues take
on different dihedral values, according to their orientation inside
the unit cell. This supports the existence of a frustrated structure
and demonstrates that a helix with perfect screw symmetry is not
possible under the crystalline packing conditions of PLA.
FromFigure 7a andb, it is apparent that theOPLSandCHARMM

models do not predict the same dihedral angle distribution as
suggested by the WAXD results.20 A more surprising result was that
refitting the torsional potentials to DFT data had very little effect on
the dihedral angle distributions in the crystalline phase, as evident in
Figure 7c and d.We found it essential to improve agreement with the

experimental unit cell lattice vectors before adjusting the dihedral
parameters. The unit cell dimensions impose constraints on the set of
dihedral angles that are probable, given that the crystal structuremust
be periodic with respect to those dimensions. Further, the set of bond
lengths and angles played a vital role in achieving agreement with the
crystal structure, as these impose the same sort of constraints on the
dihedral angles when a periodic cell is used. Adjustments to bond
stretching and angle bendingparameters for this purpose are provided
in the Supporting Information.
Once the bonded interactions were adjusted and more closely

matched those used in theWAXD analysis of Sasaki and Asakura,20

adjustment of the dihedral angles in the crystalline structure was
relatively simple; in practice, we found that all of the backbone
dihedral angle distributions could be shifted toward the WAXD
values, by altering the potential with respect to the ϕ andψ dihedral
angles alone. A simple shift in the position of the global minimum
was required, as depicted in Figure 8. The minimum was shifted by
10� in the ϕ dihedral angle and �15� in the ψ dihedral angle. A
similar shift in ϕ was also required by O’Brien in developing
PLAFF.7

In developing the PLAFF3 model, one of our stated goals was
to obtain a force field that is suitable for modeling PLA in its

Figure 7. Dihedral angle distributions for crystalline PLLA at 300 K, simulated with (a) OPLS,5 (b) CHARMM,4 (c) OPLS0, (d) CHARMM0, (e)
PLAFF2, (f) PLAFF3. Refer to Table 2 for a description of the models. Vertical dotted lines, values from the WAXD crystal structure analysis of Sasaki
and Asakura;20 vertical dashed lines, averaged values from the PLAFF simulations performed by O’Brien.7
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amorphous state. Simultaneously, we wished to retain the
model’s accuracy in simulating crystalline PLA, which was a
hallmark of O’Brien’s original PLAFF.7 We believe the results
presented thus far demonstrate that PLAFF3 does indeed
accurately predict the crystalline structure of PLA. In addition,
Figure 6i shows the improvement in the topography of the
PLAFF3 bond rotational energy landscape, when compared to
PLAFF and PLAFF2, and demonstrates that the new model is
more likely to have the correct dihedral angle distribution in the
melt and amorphous state. In what follows, we show that PLAFF3
is also better suited for simulating PLA in its noncrystalline form,

up to high temperatures when compared to the other models
discussed here.
Comparison of the Classical Models to Melt Phase Dilato-

metric Data.When examining the models’ performance in high
temperature simulations, we found that the OPLS model under-
predicts the specific volume of PLA in the melt phase. This is
shown in Figure 9, using results from the NPT-REMD simulations.
CHARMM, on the other hand, tends to overestimate the specific
volume. Results from the OPLS-based force fields generally repro-
duced the volume expansivity of PLA, as shown in Table 4, whereas
the CHARMM-based models tended to have higher expansivities
than indicated in the experimental results of Sato et al.23 It was found
that substituting one or more of the nonbonded parameters (both
Lennard-Jones parameters and partial charges) from CHARMM
helped to increase the specific volume in the melt, without increas-
ing the expansivity above the desired range. Following this observa-
tion, in the PLAFF3 force field, CHARMMnonbonded parameters
are used for the OS and Cα atoms. While still slightly lower than
the experimental measurements, the melt volumes predicted by
PLAFF3 are noticeably closer to the experiment than either OPLS
orCHARMM; this result supports our assertion that themodelmay
be used equally well in simulating the melt and/or crystalline states
of PLA.
Comparison of the Classical Models to Glass Transition

Data. The last material property we used in constructing the
PLAFF3 set of parameters was the PLA glass transition tempera-
ture, Tg. Figure 10 gives an example of the specific volume
intersection method used for determining Tg, at two different
quench rates, using the OPLS force field. The results depicted in

Figure 8. Adjustment of the torsional potential for the ϕ andψ dihedral
angles, which resulted in improvement of the dihedral angle distribu-
tions in crystalline simulations.

Figure 9. Melt phase densities of PLA, plotted from four separate NPT-
REMD simulations for each of the CHARMM, OPLS, and PLAFF3
models. The melt phase experimental measurements of Sato et al.23 are
included for comparison and extrapolated toward the higher simulation
temperatures.

Table 4. Volume Expansivities Estimated for Melt Phase
PLAa

method/model β � 104 (K�1)

OPLS 7.74 ( 0.07

CHARMM 9.5 ( 0.1

PLAFF3 7.7 ( 0.4

Sato et al.23 7.8 ( 0.4
aValues are calculated from the simulation results shown in Figure 9, by
a linear regression (on a log scale plot) of the data points above 550 K.
An estimate using the experimental data of Sato et al.23 is included for
comparison. Listed errors are 95% confidence intervals for each slope.

Figure 10. Example of the specific volume�temperature (v�T) plot
used to determine the glass transition temperature. Results are from the
OPLS model, using two different quench rates.
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the figure are generally representative of all intersection plots
constructed during this work; the faster quenching rates con-
sistently gave intersection points that are higher up on the melt
volumetric curve. Figure 11 demonstrates the extrapolative
method used to estimate Tg for laboratory scale quench rates
using the WLF relation. In fitting the WLF equation to the
simulation data in Figure 11, the only adjustable parameter used
wasT0, which corresponds to the laboratory-scale glass transition
temperature when the universal WLF constants are used (see the
Methods section of this paper).
A survey of the glass transition temperatures for some of the

models discussed in this work is presented in Table 5. Not all
models were tested for the glass transition temperature; follow-
ing our procedure laid out in Figure 2, we required that our
models perform accurately in both the crystalline and melt states
before attempting to examine the glass transition temperature.
Thus, the OPLS0 and CHARMM0 models were not examined

with glass transition simulations, as they did not meet the
prerequisites in simulating the crystal structure. Similarly, PLAFF
was not used because it is believed to give inadequate dihedral
angle distributions. We made three exceptions, for demonstra-
tion purposes. We chose to estimate Tg using OPLS, CHARMM,
and OPLS00, because these results give some idea of how the glass
transition temperature was affected by changes made early on in
the fitting procedure.
Most of the simulation-based estimates ofTg shown in Table 5

are higher than the experimentally observed glass transition
temperature, with the PLAFF3 force field being the closest to
the experimental value. It is also apparent in Table 5 that the
modification of the torsional and other potentials from the OPLS
to the OPLS00 model resulted in a worsening of the Tg estimate
using OPLS00. It is obvious that, in adjusting the nonbonded and
valence interactions in OPLS to obtain the OPLS00 model, we
affected the barrier height of bond rotation about the ψ dihedral
angle. In the PLAFF2model, we were able to remove this artifact,
yet the limitations of using uncorrelated (non-CMAP) dihedral
potentials for ϕ and ψ made further lowering of the barriers
difficult without drastically affecting the overall potential energy
surface with respect to ϕ and ψ, as discussed elsewhere.6 By
introducing the CMAP potential in PLAFF3, we were able to
remedy this problem.
The considerable freedom entailed in the CMAP model

allowed for a nearly exact fit of the DFT potential energy surface
in Figure 4, and any adjustments made during crystal structure
fitting could be made independently of the bond rotational
barrier heights. Whereas such changes in PLAFF2 resulted in
an unwanted increase in the barrier to rotation about the ψ
dihedral angle, this barrier height could be preserved using the
CMAP potential in PLAFF3. We found that the bond rotational
barrier height in PLAFF3 was very close to the DFT-predicted
value. PLAFF3 predicted a glass transition temperature within
the range of the experimental results, without need for further
adjustment of the barrier to rotation about the ψ dihedral angle.
This is a major improvement over previous versions of the
force field.

’CONCLUSIONS

In this paper, we presented our work related to the develop-
ment of an optimized model for the atomistic simulation of
polylactide (PLA). The model, PLAFF3, was shown to perform
well in simulations of the amorphous and crystalline states of
PLA. This model is an update to the previous versions by
O’Brien7 and McAliley,6 and we have significantly improved
the ability of the model to describe the proper dihedral angle
distributions in the amorphous states of PLA. On the basis of the
results of this work, we recommend the use of the PLAFF3model
under most circumstances.

A major improvement in PLAFF3 over previous models is its
ability to predict the glass transition temperature of PLA. This
was possible due to the CMAP dihedral cross terms that were
used in PLAFF3, in place of the linear combinations of individual
dihedral terms used in prior versions of the force field. The
inability to reproduce the experimental glass transition tempera-
ture was the largest shortcoming of PLAFF2, and PLAFF3
addresses this problem while retaining the accuracy of PLAFF2
in simulating the melt and crystalline states of PLA. We believe
the wide range of properties captured by the PLAFF3 model
make it well suited for studying a wide range of phenomena, such
as crystallization, permeant diffusion, and shear and elongational

Figure 11. WLF plot for extrapolating simulation glass transition data
to realistic (laboratory scale) quench rates. Results are from the PLAFF3
model. UniversalWLF constants are used, with a lab-scale quench rate of
q0 = 10 K/min. Error bars are propagated from 95% confidence intervals
on the slopes and intercepts of the melt and glassy v�T plots (see
Figure 10). Here, T0 = 327 K is the glass transition temperature
extrapolated to the lab-scale quench rate.

Table 5. Glass Transition Temperatures Calculated from the
Various Models Explored in This Worka

method/model Tg (K)

simulation data

OPLS 388 ( 14

CHARMM 367 ( 15

OPLS00 403 ( 12

PLAFF44 408b

PLAFF26 386 ( 11

PLAFF3 327 ( 12

Experimental Data

Dorgan26 331.6

Kanchanasopa28 327
a Simulation results from previous studies using PLAFF44 and PLAFF26

are included for reference, as well as selected experimental results25,28

for PLA. bExtrapolated to infinite molecular weight limit, not corrected
for quench rate dependence.
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flow. Due to the accuracy of PLAFF3 in simulating the pure
crystalline form, the model should work equally as well as PLAFF
in simulating various surface interactions with the polymer, since
the polymer is known to exhibit a high level of crystallization at
surface boundaries. We feel that a judicious practitioner of
molecular modeling should be able to apply PLAFF3 to success-
fully simulate any of these phenomena on a molecular level.

’ASSOCIATED CONTENT

bS Supporting Information. Parameters for the PLAFF3
force field as well as complete simulation input files for PLA.
The input files, including atomic coordinate files, are specifically
for the GROMACSmolecular dynamics package and employ the
PLAFF3 force field; however, the parameters in these files can be
easily ported to other simulation packages. The atomic coordi-
nate files are for fully equilibrated melt configurations of PLA.
Additionally, the DFT derived energy profiles associated with
bond stretching and angle bending of an in vacuo PLA trimer are
provided. This information is available free of charge via the
Internet at http://pubs.acs.org
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ABSTRACT: We have evaluated the efficiency of two popular end-point methods to calculate ligand-binding free energies, LIE
(linear interaction energy) and MM/GBSA (molecular mechanics with generalized Born surface-area solvation), i.e. the
computational effort needed to obtain estimates of a similar precision. As a test case, we use the binding of seven biotin analogues
to avidin. The energy terms used byMM/GBSA and LIE exhibit a similar correlation time (∼5 ps), and the equilibration time seems
also to be similar, although it varies much between the various ligands. The results show that the LIE method is more effective than
MM/GBSA, by a factor of 2�7 for a truncated spherical system with a radius of 26 Å and by a factor of 1.0�2.4 for the full avidin
tetramer (radius 47 Å). The reason for this is the cost for theMM/GBSA entropy calculations, which more than compensates for the
extra simulation of the free ligand in LIE. On the other hand, LIE requires that the protein is neutralized, whereas MM/GBSA has no
such requirements. Our results indicate that both the truncation and neutralization of the proteins may slow the convergence and
emphasize small differences in the calculations, e.g., differences between the four subunits in avidin. Moreover, LIE cannot take
advantage of the fact that avidin is a tetramer. For this test case, LIE gives poor results with the standard parametrization, but after
optimizing the scaling factor of the van derWaals terms, reasonable binding affinities can be obtained, althoughMM/GBSA still gives
a significantly better predictive index and correlation to the experimental affinities.

’ INTRODUCTION

One of the most important challenges of computational chem-
istry is to accurately estimate the free-energy change of a biochemical
reaction. For instance, in drug design, one is interested in the
binding of small ligands to a biomolecular target, usually a protein. If
accurate free energies could be estimated for this reaction by
computational methods, billions of dollars could be saved because
it would be necessary to synthesize fewer molecules.1,2

Many methods are available to estimate free energies, ranging
from simple scoring functions that are fast, but not very accurate,
to rigorous free energy perturbation (FEP), which is accurate but
time-consuming.3,4 The reason for the latter is that FEP requires
extensive sampling using molecular dynamics (MD) or Monte
Carlo methods on a series of intermediate, unphysical states. A
class of methods that is intermediate in efficiency is the so-called
end-point methods, which still are based on physical laws and
require sampling, but only of the reactants and the products, not of
any intermediate states.5 However, even with perfect sampling,
thesemethods will not give the exact result, because they are based
on several approximations. Therefore, such methods need to be
evaluated carefully to identify their strengths and weaknesses.

Two such methods are LIE6�8 (linear interaction energy) and
MM/GBSA9,10 (molecular mechanics with generalized Born and
surface-area solvation). LIE estimates the free energy for the binding
of a ligand (L) to its targetmacromolecule (P) by simulating the free
ligand in solution and the ligand�macromolecule complex (PL),
using the relation7

ΔG ¼ βðÆEL � S
ele æPL � ÆEL � S

ele æLÞ þ αðÆEL � S
vdW æPL � ÆEL � S

vdW æLÞ ð1Þ

where Eele
L�S and EvdW

L�S are the electrostatic and van der Waals
intermolecular interaction energies between the ligand and the

surroundings (S; i.e., protein and solvent), α and β are two
parameters, and the angle brackets indicate ensemble averages from
the simulations of either the free ligand or the complex, as indicated
by the subscripts. β was originally set to 0.5,6 because LIE was
derived from the linear-response approximation. However, this
value was later refined to reflect the chemical nature of the
ligand,7,11,12 based on FEP calculations. α is usually set to
0.18,13,14 but this value has been much debated and may be system
dependent.5,8 In several studies, this parameter has been fitted to
experimental data for each protein target and ligand type.5 A third
constant term has also been suggested,15 but it is important only
when estimating absolute free energies.13

MM/GBSA, on the other hand, estimates the free energy as9,10

ΔG ¼ GðPLÞ �GðPÞ � GðLÞ ð2Þ
where each free energy is calculated from a sum of six terms

G ¼ ÆEint þ Eele þ EvdW þ Gsolv þ Gnp � TSMMæ ð3Þ
The three first terms are the molecular-mechanics (MM) inter-
nal, electrostatics, and van der Waals energies; Gsolv is the polar
solvation energy; Gnp is the nonpolar solvation free energy; T is
the absolute entropy; and SMM is an entropy estimate from
harmonic frequencies calculated at the MM level. The average in
eq 3 should in principle be calculated from three separate
simulations PL, P, and L, but for stability reasons,16 it is more
common to simulate only the complex. In that case, Eint cancels.
In the MM/GBSA approach, the polar solvation free energy is
calculated by a generalized Born (GB) approach, but it could be
calculated by any continuum-solvation method.17 A common
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choice is the Poisson�Boltzmann method, giving the MM/
PBSA approach. The nonpolar solvation free energy is usually
estimated by a relation to the solvent-accessible surface area
(SASA).5

Because LIE and MM/GBSA are two popular end-point
methods, it is interesting to compare them. This has been done a
few times in the past.18�21 For the binding of biotin analogues to
avidin, MM/PBSA was found to reproduce experimental results
more accurately than LIE,19 although both methods were less
accurate than FEP.22 However, for acetylcholinesterase huprine
inhibitors, LIE gave better results than MM/PBSA.18 For the
binding of eight hydroxamate inhibitors to gelatinase A, the
two methods showed a similar performance.20 In all of these
studies, the LIE parameters were adjusted to an optimal fit. For
the binding of fragment B of protein A to the Fc domain of
immunoglobin G, LIE gave similar results to both MM/PBSA
andMM/GBSA, but only one complex was examined, a protein
for which it is not clear what α and β parameters should be
used.21 Apparently, the accuracy of the two methods (i.e., how
well they reproduce experimental results) depends strongly on
the systems studied, and much larger test sets are needed before
any general conclusion can be reached.

In this paper, we will instead focus on the precision (i.e., the
statistical uncertainty of the results) and efficiency (i.e., the
computer time required to reach a given precision) of the two
methods. The statistical precision is important when comparing
ligand-affinity methods:23 Congeneric ligands often have quite
similar affinities, and an order of magnitude difference in the
binding constant corresponds to only 6 kJ/mol in the free energy
of binding. If statistically significant differences should be dis-
cerned, a precision of 1�2 kJ/mol is therefore needed. Such
precision is also needed to make results obtained by different
groups comparable24 and to avoid the temptation to rerun
simulations that gave poor agreement with experiments. On
the other hand, we have shown that once such a precision is
reached, results obtained by MM/GBSA are reproducible and
not sensitive to the setup of the simulations, except for the
protonation of residues very close to the ligand.24

In a previous paper, we developed a simulation protocol for
MM/GBSA that gave a precision of 1 kJ/mol.23 In particular, we
showed that it was more favorable to run several rather short
simulations instead of a single long one, as has been concluded
also in other studies.25�27 By running a proper number of inde-
pendent simulations, any precision can be reached. In this paper, we
develop a similar protocol for LIE. This also allows us to discuss the
efficiency of the two methods, i.e., to compare the computational
effort needed to obtain results of the same statistical precision. If the
methods give similar accuracy, of course the more efficient method
is preferred. To facilitate the comparison, we use the same test case
as for MM/PBSA, viz., the binding of seven biotin analogues to
avidin. This test system has been studied before with FEP,28

MM/PB(GB)SA,17,19,23,24,29�33 and LIE,22 and experimental
structures34 as well as affinities are available.35�37

’METHODS

System Preparation. We have studied the binding of the
seven biotin analogues in Figure 1 to avidin. Btn1�Btn3 have a
net charge of�1, whereas the other four ligands are neutral. The
structure of avidin was taken from the 1avd crystal structure,34

which contains a cocrystallized biotinmolecule in each subunit of
the tetrameric protein. However, in this study, we consider the

binding of only a single ligand to the tetrameric protein. The six
biotin analogues were built into the active site to mimic the
binding mode of biotin, as has been described previously.30 In
LIE, it is essential that the protein is neutral.8 Therefore, all
titratable residues were neutralized (all of these residues are
solvent exposed). This has shown to be the optimal approach to
ensure that the complex and free ligand simulations have
identical total charge, which is required if we want to ignore
long-range effects beyond the simulation sphere.38 The single
histidine residue in each subunit was modeled to be protonated
on the NE2 atom.30 The protein atoms were described by the
Amber99SB force field,39 and parameters for the ligands were
taken from the Amber99 force field.30,40 Ligand charges were
calculated with the RESP procedure,41 using ESP points calcu-
lated at the Hartree�Fock 6-31G* level and sampled with the
Merz�Kollman scheme,42 as has been described before.30

Two sets of systems were prepared for each protein�ligand
complex, a full system and a truncated system. The full system
was prepared by solvating the entire (tetrameric) protein�ligand
complex in a sphere with a radius of 47 Å (i.e., extending at least
10 Å outside the protein; in total∼43 925 atoms). The truncated
system was prepared by solvating the complex in a 26 Å sphere,
centered on the ligand and, thereafter, removing all residues
more than 26 Å from the ligand (∼8325 atoms). Atoms between
26 and 24 Å were restrained in the simulations, by a harmonic
restraint of 41.84 kJ/mol/Å2. The truncated system represents a
more typical use of LIE.8 Likewise, two sets of free-ligand systems
were created by solvating the ligand in a sphere with a radius of
either 47 or 26 Å, because LIE requires that the simulations of the
complex and the free ligand have the same size, so that the
ignored interactions outside the simulated systems cancel.8 In these
simulations, the geometrical center of the ligand was restrained to
the origin using a harmonic restraint of 41.84 kJ/mol/Å2. In all
simulations, the water model was TIP3P.43 The systems were

Figure 1. The seven biotin analogues studied: (a) biotin (Btn1), (b�g)
Btn2�Btn7. The numbers shown are experimental affinities in kJ/mol.36
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prepared with a combination of the Qprep program of the Q
simulation package, the Leapmodule of the Amber package, and in-
house programs.
Simulations. All MD simulations were run by the Q simula-

tion package.44 All bonds involving hydrogen atoms were con-
strained with the SHAKE approach45 and a 2 fs time step was
employed. The temperature was kept at 300 K using a Berendsen
thermostat.46 The nonbonded cutoff was 10 Å, except for
interactions with the ligand, for which an infinite cutoff was
applied. Long-range electrostatic interactions were treated with
the local reaction-field approximation.47 Water molecules at the
surface of the simulated sphere were subjected to radial and
polarization restraints.44,48

Prior to theMD simulation, the systems wereminimized using
the sander module of Amber 1049 using 100 steps of steepest
descent and with a harmonic restraint of 104.6 kJ/mol/Å2 on all
atoms except hydrogen and water atoms. This was followed by
starting a number of independent 20 ps MD simulations with the
same restraint as in theminimization. Thereafter, an unrestrained
MD simulation was carried out for 800 ps (full systems) or 1600
ps (truncated systems) for each of the independent simulations.
Snapshots were sampled each picosecond. Twenty independent
simulations were employed for the free ligand and for each of the
subunits of avidin (i.e., 20 + 80 in total). These independent
simulations were initiated by assigning different initial random
velocities to all atoms, i.e., the velocity-induced independent-
trajectory approach.24

Free Energy Estimates. The LIE interaction energies in eq 1
(with an infinite cutoff, but without any long-range corrections)
were sampled withQ44 during the simulation andwere processed
by in-house scripts. β was set to 0.5 for the charged ligands and
0.43 for the other ligands,7 whereas α was set to 0.18 as a default
for all ligands,13 although it was also optimized (see below). A
new parametrization of β to include more chemical groups has
been suggested,12 but it does not involve thioether and other
groups in our ligand set. For the charged ligands, a correction to
the neutralization of the charged residues, ΔGcc, was estimated
by placing a single charge at the position of the CG, CD, NZ, and
CZ atoms of Asp, Glu, Lys, and Arg, respectively, and calculating
the Coulomb interaction between this charge and all atoms in the
ligand for each snapshot, assuming a dielectric constant of 80, as
suggested previously.38,50,51We tested this correction also for the
neutral ligands, but it was found to be negligible, ∼0.1 kJ/mol.
The MM/GBSA calculations were performed by the Amber

10 package on snapshots from the QMD simulations.49 The Eele
and EvdW energies in eq 3 were calculated with the same force
field as in the simulation and with an infinite cutoff. The polar
solvation free energy was estimated by the GB method of
Onufriev et al.,52 model I (OBCI, i.e. with α = 0.8, β = 0, and
γ = 2.91). The nonpolar solvation energy was estimated from the
SASA according to ΔGnp = γ SASA + b, where γ = 0.0227 kJ/
mol/Å2 and b = 3.85 kJ/mol.53 The entropy was estimated by
calculating harmonic frequencies at the MM level on a truncated
and buffered system (8 + 4 Å from the ligand), as described
previously, to improve the statistical precision of the estimate.32

Estimation of the Correlation Time. The correlation time of
the LIE interaction energies was estimated with the statistical
inefficiency method.54,55 In this procedure, the following mea-
sure is calculated

Φ ¼ τσ2ðYÞτ
σ2ðXÞ ð4Þ

where σ2(X) is the variance of the distribution {X}, i.e., the
variance of the time series of a particular energy, e.g., Eele

L�S in eq 1,
and σ2(Y)τ is the variance of the block average of {X}, where the
block length is τ. This block average is calculated from

Yi ¼ 1
τ ∑

n � ði � 1Þτ

j¼ n � iτ þ 1
Xj ð5Þ

Put in another way, {X} is divided into a number of nonoverlap-
ping segments, each with length τ. Once τ is so large that the
successive values of Yi are statistically independent, Φ will
become a constant and an estimate of the correlation time of
{X}. This method is sensitive to equilibration, long-time trends,
and bumps in the data (increasing the apparent correlation time).
Therefore, we divided the data into segments of 200 ps and
calculated the correlation time within each segment separately.
The correlation time of the whole simulation was then taken as
the median of the calculated correlation time for the segments.
Error Analysis. To measure the quality of the free-energy

estimates, we use four different estimates: the correlation coeffi-
cient between the predicted and experimental data (r2), Pearlman’s
predictive index (PI),56 the mean absolute deviation (MAD),
and the mean absolute deviation from the best correlation line
through the origin (MADtr; i.e., MAD after subtraction of the
mean signed deviation). These measures are rather meaningless
without an estimate of their statistical uncertainty. They were
obtained by a simple parametric bootstrap simulation:23 Each
ligand was assigned a random normal-distributed affinity, with a
mean and standard deviation obtained from the free-energy
estimates. Then, r2, PI, MAD, and MADtr were evaluated, and
this procedure was repeated 10 000 times. The standard deviations
of these resampled sets are reported as the standard errors of the
quality measures. Throughout this paper, all reported statistical
uncertainties are standard errors of the mean, i.e., the standard
deviation divided by the square root of the number of estimates.

’RESULTS

We have estimated the binding free energy of seven biotin
analogues to avidin using the LIE and MM/GBSA approaches.
Binding affinities obtained with MM/GBSA have already been
published for these ligands.23 However, LIE requires calculations
performed on neutralized spherical systems with only one ligand,
and typically also for truncated systems. Therefore, the MM/
GBSA calculations were rerun with the same settings as the LIE
calculations tomake the results completely comparable and also to
allow for a comparison of the results obtained with the two setups.
Calculations were performed both on the full avidin tetramer and a
system truncated to 26 Å around the ligand of interest.

Before the comparison, we must decide how we best can
obtain reliable and efficient free energies with a well-defined
precision. This has already been done forMM/GBSA,23 and here
we perform a similar analysis for LIE. Following our previous
study,23 as well as several other investigations,25,26 we will not
employ one single long simulation, but instead many shorter
independent simulations, generated by using different starting
velocities. This gives a more reliable estimate of statistical
precision, and we can obtain any desired precision by simply
employing a proper number of independent simulations, because
the standard deviation of themean decreases with the square root
of the number of independent simulations included in the
average. Therefore, we only need to determine the sampling
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frequency of the energy terms in eqs 1, as well as the length of
the equilibration and production parts of the individual
simulations.
Correlation Time. For all methods that average energies over

a series of MD snapshots, it is essential to ensure that the
consecutive estimates are independent, i.e., that sampling is
not too frequent—otherwise the statistical error will be under-
estimated. The correlation time of the four time series that are
the basis of the LIE estimates (eq 1) were calculated using the
method of statistical inefficiency.54,55 This was done for the
whole 800 ps (full system) or 1600 ps (truncated system)

simulations (including equilibration) and for all independent
simulations of each ligand.
We soon discovered that the original method is very sensitive

to the drift during the equilibration period and also to occasional
bumps in the data, which often are seen in long simulations,
giving strongly increased correlation times (an example is shown
in Figure S1, Supporting Information). As a consequence, the
estimated correlation time always increased when the simulation
time was increased. Strictly speaking, this shows that there are
nanosecond time-scalemotions in the structure that may indicate
that much longer equilibration and simulation times are needed

Figure 2. Correlation time of interaction energies of the truncated systems (the results for the full systems are similar): (a) ÆEvdWL�SæL, (b) ÆEvdWL�SæPL,
(c) ÆEeleL�SæL, (d) ÆEeleL�SæPL, and (e) ÆΔGMM/GBSAæ.
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to obtain truly uncorrelated data that are independent of the
starting structure.57 However, in standard LIE and MM/GBSA
applications, it is assumed that simulations on a nanosecond
time-scale started from the crystal structure provide representa-
tive structures for binding-energy calculations.8,10 Therefore, we
decided to divide all simulations into segments of 200 ps, for
which a separate correlation time was estimated with the original
method. This gave correction times of 1�4 ps for most segments,
but segments during the equilibration period and segments with
bumps gave much higher values. The latter were ignored by
taking the median of the segment estimates (cf. Figure S1).
With this approach, we obtained stable results for all systems,

which are presented in Figure 2 as the cumulative frequency of
the number of simulations (among the 80 or 20 independent
simulations) that have a particular correlation time. It can be seen
that the correlation time for the ÆEvdWL�SæL and ÆEeleL�SæL terms are
always 3 ps or less. The ÆEvdWL�SæPL term has a slightly longer
correlation time, up to 5 ps, whereas the ÆEeleL�SæPL term shows the
longest correlation time, up to 18 ps for Btn5 but up to 7 ps for
the other systems. The reason for the long correlation time for
Btn5 is that this energy term shows a long-term oscillation (see
Figure S2, Supporting Information). If segments of 160 or 100 ps
are instead used, we obtain correlation times of 4 and 2 ps,
respectively.
In our previous study, we showed that the MM/GBSA

energies have a correlation time of about 5 ps, at which point
90% of the data were uncorrelated without discarding any data
and 98% of the data if the first 100 ps of the simulations were
discarded.23 However, this conclusion was based on only two
ligands (Btn1 and Btn2) and with a somewhat different setup
(e.g., octahedral systems treated with particle-mesh Ewald summa-
tion and no neutralization). Therefore, we repeated the analysis
also for MM/GBSA for all ligands. The results in Figure 2e show
that the correlation time is up to 7 ps, but 90% of the data are
uncorrelated already at 4 ps.
Altogether, these data indicate that the correlation time is

shortest for the free-ligand simulations (2�3 ps), slightly longer
for theMM/GBSA results (∼4 ps), and still somewhat longer for
the ÆEeleL�SæPL term (∼6 ps). However, these differences are small
and somewhat dependent on the details of the method to
calculate the correlation time. Therefore, we decided to use the
same correlation time for both methods and also for the two
types of LIE simulations, 5 ps.
Equilibration Time. The next step is to determine the length

of the equilibration period of the simulations, i.e., the part of the
simulation that is excluded in the averages. Many methods are
available to determine the equilibration time (teq).

8,23,55,58 We
have tested several different variants, e.g., including block aver-
aging or reverse cumulative averaging with two different tests for
normal distribution. Unfortunately, all methods to determine teq
are sensitive to details and parameters of the algorithms. At the
end, we decided to use the following scheme: For each ligand, we
calculated block averages of either the MM/GBSA binding
energy or the LIE βÆEeleL�Sæ + αÆEvdWL�Sæ energy terms for the
complex or free-ligand simulations for each 100 ps of the
simulations. These averages were compared to the average over
the last 400 ps (full system) or 500 ps (truncated system) of the
simulation, and if the difference was over 2 kJ/mol, that block was
rejected. The equilibration time was taken as the end of the last
set of at least two consecutive rejected blocks, but including also
isolated rejected blocks if they are one or two blocks away from a
set of consecutive rejected blocks. By such a rule, we disregard

occasional isolated rejected blocks late in the simulation, because the
aim of the equilibration period is to remove data with a drift at the
beginning of the simulation, but not bumps later in the simulation. A
minimum equilibration time of 100 ps was assumed for all simula-
tions. Several examples of typical equilibration curves and our
selection of teq are shown in Figure S3 (Supporting Information).
For the present comparison between LIE andMM/GBSA, the

exact length of the equilibration period is not of prime interest,
but rather whether one of the two methods has a longer
equilibration time than the other. However, for the present test
case, we do not see any clear tendency: The two methods show
similar equilibration time for (the complex simulation) of most
ligands (eight out of the 7 + 7 simulations with full and truncated
protein). When this is not the case, MM/GBSA gives the shorter
equilibration time for two of the simulations and LIE a shorter
time for four of the simulations. Therefore, we decided to use the
same equilibration time for both MM/GBSA and LIE (viz. the
largest of the two individual values) to avoid that the comparison
is biased by differences in the equilibration.
For the free-ligand simulations (which are relevant only for

LIE), the equilibration time is normally shorter than that for the
complex. However, for the three charged ligands, it is notable that
the free-ligand simulations give a quite large variation in the LIE
energies, which quite often give rise to occasional isolated large
deviations in block averages (cf. Figure S3e, Supporting In-
formation). However, since the simulations do not show any
pronounced trends, only rejected blocks at the beginning of the
simulation were omitted (in accordance to the rule given above).
The selected equilibration times are collected in Table S1

(Supporting Information). In variance to our previous investiga-
tion of MM/GBSA,23 we allow for different equilibration times
for different ligands, which is more realistic and economic. It can
be seen that the equilibration times vary from the requested
minimum of 100 ps up to 1000 ps for Btn3. During this process,
we decided to increase the simulation time of the truncated
systems from 800 to 1600 ps. For the full systems, this could not
be afforded (remember that 80 + 20 independent simulations were
run for each ligand, giving a total simulation time of 1.12 μs). It is
notable that the equilibration times are longer than in our previous
MM/GBSA investigation, in which all simulations were judged to
be converged after 100 ps.23 A typical example of a curve from the
previous study is shown in Figure S4 (Supporting Information).
Length of Production Simulation and Efficiency. We have

now determined the correlation and equilibration times for our
simulations of the seven ligands. What remains is to determine
the length of the production simulation. This is somewhat
involved, because we also run a number of independent simula-
tions for each ligand. Therefore, we can improve the precision
either by elongating the production time of each independent
simulation or by increasing the number of independent simula-
tions. The latter is more effective because the standard error of
the final estimate (average over the independent simulations)
will decrease with the square root of the number of independent
simulations, whereas the dependence on the production time is
less clear, since the results are not fully independent (this is the
reason why we use several independent simulations23). On the
other hand, the independent simulations cost more, because an
initial equilibration has to be run. Therefore, to reach an
optimum distribution, we need to consider also the computa-
tional cost of the simulations and energy calculations (which of
course depends on the simulated system and the computer
equipment).
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We will follow our previous suggestion to optimize the CPU
time required to reach a certain precision, e.g., sav = 1 kJ/mol

23 (but
the comparison of the twomethods will not depend on this limit).
We can estimate the standard error of each independent simula-
tion, ssimu, with a certain number of production snapshots, nprod,
from our available data. The number of independent simulations
(nav) needed to reach the desired precision is then simply

nav ¼ s2simu
s2av

ð6Þ

With these data, we can then calculate the required total CPU
time: A 50 ps MD simulation takes 8 and 0.6 CPU hours on a
single 3.0 GHz Intel Xenon processor for the full and truncated
systems, respectively. The MM/GBSA postprocessing energies
take ∼0.25 CPU hours, irrespectively whether full or truncated
systems are used (because the time is dominated by the entropy
calculations, which are performed on truncated systems in both
cases), whereas the LIE energies can be calculated without any
overhead. Therefore, the time consumption for LIE is

CPULIE ¼ navðteqcMD þ ðnprod � 1ÞfcMDÞ ð7Þ
and for MM/GBSA

CPUMM=GBSA ¼ navðteqcMD þ ðnprod � 1ÞfcMD þ nprodceneÞ
ð8Þ

where f is the sampling frequency (so that (nprod� 1)f is the length
of the production simulation), cMD is the cost of running the MD
simulation, and cene is the cost of doing a singleMM/GBSA energy
calculation. We can now calculate the CPU consumption as a
function of nprod using the equilibration times and the sampling
frequency determined in the previous section, as well as ssimu

obtained from the simulations. As can be seen in Figure S5
(Supporting Information), the CPU shows a minimum when
nprod is varied, because the first term in eqs 7 and 8 depends on nav,
which decreases as nprod is increased, whereas the other terms
depend on navnprod, which increases with nprod. This is the
optimum value of nprod. Strictly speaking, the results depend on
the equilibration time (ligands with long equilibration times prefer
somewhat longer production times and therefore fewer indepen-
dent simulations), but the dependence is rather week. Moreover,
for some ligands, it is also favorable to increase the sampling
frequency. Therefore, we have optimized nprod and f separately for
each ligand (Table S2, Supporting Information). However, the
results are quite similar if we average ssimu and the CPU time over
all seven ligands (and then f = 5 ps is optimal; cf. Figure S5b).
These averaged results are given in Table 1.
It can be seen that for the complex simulation of LIE, it is most

efficient to run short production simulations,∼50 ps, and instead
run many independent simulations (91�135). For the free
ligand, it is more efficient to run longer simulations (∼300 ps)
and fewer independent simulations (7�10). The reason for this
is that the standard error of the free-ligand simulations is
appreciably smaller for the complex simulations and that it
decreases more with the number of snapshots. However, in both
cases, the simulation time is shorter than typically is used with
LIE, illustrating that long simulations underestimate the statis-
tical uncertainty. On the other hand, the total simulation time,
7.4 + 2.3 ns for the truncated systems and 4.6 + 3.0 ns for the full
systems, plus 10�140 ns equilibration, is much longer than
normally used with LIE. The total LIE CPU times are 1050 and
3900 CPU hours for the truncated and full systems, respectively.

Looking at MM/GBSA instead, we see that also for this
method, rather short production simulations are most efficient,
25 and 45 ps for the truncated and full systems, respectively. This
amounts to a total time of 3135 and 5983 CPU hours, respec-
tively. Thus, this analysis indicates that LIE is more efficient than
MM/GBSA, by a factor 3 for the truncated systems and 1.5 for
the full systems. Looking at the more detailed data in Table S2
(Supporting Information), it can be seen that for the truncated
system, MM/GBSA requires between 1.7 and 6.7 times more
CPU than LIE for the truncated system, whereas for the full
system the ratios are 1.0�2.4.
From eqs 7 and 8, it can be seen that the CPU consumption

depends on three terms, two of which are common to both
methods, whereas the last one, the cost of the energy calculations,
only applies toMM/GBSA. This inherent difference between the
two methods will always favor LIE and also lead to MM/GBSA
typically preferring a slightly lower nprod than LIE. However, the
importance of this difference decreases with the size of the
system, because for the truncated system the third term is 4�8
times larger than the second term, whereas for the full system, it is
only 30�60% of the second term.
On the other hand, this effect is counteracted by the fact that

LIE requires simulations of both the free ligand and the complex,
whereas MM/GBSA is based only on the simulations of the
complex. If everything else were equal, this would compensate
for the extra cost of the energy calculations, and MM/GBSA
would always be preferable.
However, a third factor is also important, viz., the standard

errors (ssimu) of the various energies and their dependence on the
number of snapshots, which will affect nav and the optimum nprod.
As we will see below, there is little difference in the standard error
of the MM/GBSA and LIE estimates of the binding energy from
the simulations of the complex (although the various ligands
show a rather large variation). However, the standard error for
the free-ligand simulations are appreciably smaller than for the
complex simulations and also shows a larger decrease with nprod,
as can be seen in Figure S6 (Supporting Information). This leads
to a lower total number of required snapshots (navnprod,) for the
free ligand than for the complex (469 compared to 1620 for the
truncated system and 600 compared to 1001 for the full system).
The combination of these three factors gives the net efficiency
illustrated in Table 1.

Table 1. Optimum Estimates of nprod and nav, Together with
the Corresponding ssimu (kJ/mol) and CPU (h) Estimates for
LIE and MM/GBSA, Following the Procedure Described in
the Text (eqs 6�8), Using f = 5 ps and the teq Values Listed in
Table S1 (Supporting Information), and Averaging ssimu and
CPU over All Seven Ligandsa

system method nprod nav ssimu CPU

truncated MM/GBSA 6 366 19.1 3135

LIE PL 12 135 11.6 1000

LIE L 67 7 2.6 54

LIE total 142 1053

full MM/GBSA 10 168 13.0 5983

LIE PL 11 91 9.6 3218

LIE L 60 10 3.1 715

LIE total 101 3933
a nav and CPU are calculated for a desired precision of (sav = 1 kJ/mol).
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Affinity Estimates. Next, we estimated the binding free
energy for the seven biotin analogues using the optimum
equilibration time and sampling frequency, but using all available
snapshots for production (because these are the best estimates
we can obtain with available data). For LIE, we used β = 0.5 for
the charged ligands (Btn1�Btn3) and 0.43 for the neutral
ligands (Btn4�Btn7) and α = 0.18 for all ligands. These values
are usually denoted the standard parametrization.13,14 The bind-
ing free energies for the truncated and full systems are shown in
Tables 2 and 3, respectively. It can be seen that the results with the
standard parametrization are poor with negative predictive indices
and negative correlation coefficients (although r2 is positive by
definition). This is because LIE predicts a higher affinity for the
neutral ligands than for the charged ones.
Kollman and co-workers have studied a similar set of biotin

analogues with the LIE method, but they obtained a reasonable,
positive correlation.19 The reason for this is that they used a
special value for α (1.0), fitted to the experimental data. Using
the standard parametrization for their data (available for all our
biotin analogues, except Btn3), we obtain a negative correlation

and r2 = 0.01. Reported electrostatic and van der Waals energies
are rather similar to ours with correlation coefficients (r2) of 0.57
and 0.96 (Table S3, Supporting Information). The rather large
difference in the electrostatic energy is probably caused by
differences in the simulation setup: They employed smaller
systems and neutralized only a minimum amount of titrable
residues.19

Therefore, we also tried to optimize the α value, keeping β at
the default values. Since we use four different quality estimates
(MAD, MADtr, r2, and PI), we fitted α to optimize each of these
measures by varying α from �5 to +5 with increments of
0.05. The results are shown in Table 4 for the truncated system
(the full system gave similar results). Optimizingα against r2 gave
unrealistic binding affinities because the correlation coefficient
benefits from large energy differences, which are obtained when
the energies are scaled up. r2 converges asymptotically at α > 20,
but as can be seen in Table 4, both MAD and MADtr are poor
already at α = 5.
Optimizing α against PI gave a nonsmooth dependence on α,

although it gave similar results as when optimizing against

Table 2. Binding Free Energies for the Various Methods on the Truncated Systems in kJ/mola

LIE LIE (ΔGcc) LIE (opt) LIE (ΔGcc,opt) MM/GBSA

α 0.18 0.18 1.15 1.15

with ΔGcc no yes no yes

Btn1 �9.7(2.0 �11.7(2.0 �117.1(2.2 �119.0(2.2 �125.2(2.3

Btn2 2.4(2.0 0.3(2.0 �107.9(2.2 �109.9(2.2 �105.3(2.7

Btn3 �5.7(1.6 �7.7(1.6 �105.8(1.7 �107.8(1.7 �111.4(1.8

Btn4 �19.7(1.0 �19.7(1.0 �133.2(1.3 �133.2(1.3 �98.1(1.1

Btn5 �10.9(0.7 �10.9(0.7 �86.6(0.9 �86.6(0.9 �54.2(2.3

Btn6 �16.4(0.5 �16.4(0.5 �86.0(0.7 �86.0(0.7 �58.6(1.3

Btn7 �11.7(0.7 �11.7(0.7 �45.0(0.7 �45.0(0.7 �14.2(0.7

MAD 34.7(0.5 34.7(0.5 52.4(0.6 53.3(0.6 37.4(0.7

MADtr 24.8(0.6 24.8(0.6 16.2(0.5 15.7(0.4 16.2(0.6

r2 �0.27(0.08 �0.27(0.08 0.38(0.02 0.41(0.02 0.76(0.01

PI �0.70(0.15 �0.70(0.15 0.69(0.02 0.69(0.02 0.95(0.01
aA negative r2 indicates that r is negative.

Table 3. Binding Free Energies Using Various Methods on the Full Systems in kJ/mola

LIE LIE (ΔGcc) LIE (opt) LIE (ΔGcc,opt) MM/GBSA

α 0.18 0.18 1.15 1.15

with ΔGcc no yes no yes

Btn1 �2.5(1.5 �9.5(1.5 �109.3(1.7 �116.4(1.7 �123.5(1.4

Btn2 9.3(1.4 2.1(1.4 �103.6(1.6 �110.7(1.6 �114.4(1.4

Btn3 2.5(1.1 �4.2(1.1 �94.2(1.3 �100.9(1.3 �106.3(1.5

Btn4 �14.2(1.3 �14.2(1.3 �121.0(1.6 �121.0(1.6 �93.3(1.1

Btn5 �9.7(0.9 �9.7(0.9 �82.7(1.1 �82.7(1.1 �56.2(1.2

Btn6 �15.0(0.7 �15.0(0.7 �81.3(0.9 �81.3(0.9 �53.6(0.7

Btn7 �13.0(0.8 �13.0(0.8 �43.0(0.9 �43.0(0.9 �13.5(0.8

MAD 38.9(0.4 35.9(0.4 45.8(0.5 48.8(0.6 36.7(0.5

MADtr 27.6(0.4 24.2(0.4 15.9(0.5 14.1(0.5 16.1(0.4

r2 �0.53(0.06 �0.33(0.08 0.39(0.02 0.50(0.03 0.79(0.01

PI �0.75(0.04 �0.75(0.11 0.69(0.02 0.69(0.04 1.00(0.01
aA negative r2 indicates that r is negative.
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MADtr. On the other hand, fitting α against MADtr and MAD
gave a smooth, parabolic dependence on α. The fits gave optimal
values of α = 0.70 and 1.15, respectively. For these two α values,
PI and MADtr differ by only 0.05 and 0.3, respectively, which
probably are not statistically significant. On the other hand,MAD
and r2 differ significantly. We consider it more important to
obtain good relative estimates (high r2) than absolute estimates
(low MAD), and we therefore prefer the α value obtained by
fitting to MADtr, 1.15.
The LIE results using α = 1.15 are included in Tables 2 and 3

(column LIE (opt)) and are plotted in Figure 3. It can be seen
that the largest error is found for Btn4. Kollman et al. also had a
problem with this ligand. They argued that the error comes from
the fact that the protein needs to be reorganized to accommodate
the ester group of Btn4 and that such a term is missing in the LIE
approach.19

Finally, we also considered the correction to the binding
affinities of the charged ligands from the omitted surface charges,
ΔGcc. For the truncated systems, this amounts to ∼2 kJ/mol,
irrespectively of the ligand, and for the full systems it amounts to
∼7 kJ/mol. The largest contribution from a residue is∼2 kJ/mol,
showing that neutralization does not affect individual interactions
so much. However, since avidin contains almost 100 charged
surface residues, the sum is significant for the full systems. The
effect of addingΔGcc is shown in Table 2 for the truncated system,
and as the correction is small, it hardly affects the result at all.
However, for the full system, the correlation coefficient increases
to 0.50, and MADtr decreases to 14 kJ/mol (see Table 3).
The MM/GBSA estimates of binding free energies are also

included in Tables 2 and 3 and are plotted in Figure 3. For the
truncated system, MADtr is 16 kJ/mol, r2 = 0.76, and PI = 0.95.
The full-system estimates are slightly better (see Table 3).
Comparing with LIE, the difference in MADtr is not statistically
significant, but the better results for the correlation coefficient
and the PI are statistically significant. This is becauseMM/GBSA
does not have any problems with Btn4. It is notable that the LIE
and MM/GBSA results are quite similar for the three charged
ligands (differences less than 6 kJ/mol), whereas for the neutral
systems, the difference is appreciably larger (27�35 kJ/mol),
MM/GBSA always giving a less favorable binding.
The binding affinities obtained with the truncated and full

systems are quite similar. For LIE, they differ by up to 12 kJ/mol,
the results of the full system almost always being more positive.
For MM/GBSA, the results differ by 1�10 kJ/mol in a less
systematic way.
Compared to our previousMM/GBSA binding affinities,23 the

difference is 1�19 kJ/mol (for the full system), i.e., much larger
than the statistical uncertainty. The difference is systematic in
that the negative ligands give more negative affinities (by 5�12
kJ/mol) in the present calculations, whereas the neutral ligands

give more positive affinities (by 1�19 kJ/mol). As a conse-
quence, the present simulations give a similar MADtr (16
compared to 15 kJ/mol) but improved r2 (0.79 compared to
0.59) and PI (1.00 compared to 0.85). This shows that the MM/
GBSA results depend much more strongly on the water model
(TIP3P or TIP4P-Ewald), the treatment of long-range electro-
statics (a spherical system with reaction-field corrections or an
octahedral system with Ewald summation), and the treatment of
surface charges (neutralization or not) than on the placement of
the explicit water molecules, the initial velocities, and the
protonation and rotation of residues, which gave variations of
less than 1 kJ/mol for Btn1 in a previous investigation.24We have
previously compared the results of spherical vs periodic simula-
tions and neutralized systems with MM/PBSA, but the precision
was too low to discern differences of relevant sizes.30

Precision. The statistical precision of the free-energy esti-
mates is also shown in Tables 2 and 3 (standard deviation of the
mean). It can be seen that LIE and MM/GBSA give similar
uncertainties, 1�3 kJ/mol. For the truncated system, LIE with
fitted α and charge corrections gives a smaller uncertainty than
MM/GBSA for five ligands. In general, the charged ligands show
a slightly larger uncertainty than the neutral ligands. For the full
systems, the precision is often slightly better (1�2 kJ/mol), and
in most cases, MM/GBSA has a lower uncertainty than LIE (not
for Btn3 and Btn5). This better precision of the full system is
unexpected considering that the simulations are only half as long
(0.8 ns compared to 1.6 ns). This shows that the intrinsic
standard deviation of the data is larger for the truncated system
than for the full system.
It should be noted that the LIE terms are scaled by the

parameters α and β. Without this scaling, the uncertainty of the
LIE energies is larger than that of theMM/PBSAenergies (and the
two methods would become more equal in efficiency). The fact
that LIE with α =1.15 gives only a slightly larger uncertainty than
with α = 0.18 (by 0.1�0.3 kJ/mol), although the van der Waals
term is scaled up by a factor of 1.15/0.18 ≈ 6, shows that the
precision of LIE is strongly dominated by the electrostatic term.
This is also the reason why the optimization of the LIE procedure
does not need to be redone with the optimized α value.
It is somewhat disappointing that even with 80 + 20 indepen-

dent simulations of 1.6 ns length, we have not been able to reach a

Table 4. Results for LIE Obtained after Optimizing the α
Parameter with Respect to the Four Quality Measures MAD,
MADtr, r2, and PI

optimized measure α MAD MADtr r2 PI

MAD 0.70 17.9 16.5 0.23 0.64

MADtr 1.15 52.4 16.2 0.38 0.69

r2 5.00 377.0 91.9 0.50 0.61

PI 1.10 35.3 16.2 0.34 0.69

Kollman et al.22 1.00 35.3 16.3 0.34 0.65

Figure 3. Correlation between predicted and experimental free ener-
gies of the seven biotin analogues for the truncated systems. The LIE
results are obtained with α = 1.15 and with the ΔGcc corrections.
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precision of 1 kJ/mol for four of the ligands. In fact, for Btn1,
which has the poorest precision, this would require 390 simula-
tions or 620 ns simulation time. It is also notable that the
precision of the MM/GBSA results is worse than in our previous
investigation,23 for which a precision of 1 kJ/mol was reached for
all seven ligands with 20�50 300 ps simulations of the complex.
This emphasizes a specific shortcoming of LIE for this tetrameric
protein: With LIE, we can only simulate one ligand at a time,
whereas for MM/GBSA, we could obtain four affinity estimates
from the simulation of the complex with four ligands. We
employed that opportunity in the previous study, but in this study,
we used the same simulations for both LIE and MM/GBSA.
Moreover, it seems that the convergence of the MM/GBSA
energy terms is slower for a neutralized and truncated protein.
Affinities of Individual Subunits.We have previously shown

that MM/GBSA estimates employing several independent simu-
lations gave identical affinities for the four subunits in avidin
within statistical uncertainty.23 It is of interest to see if the same
holds also for LIE. The binding free energies for the four subunits
are shown in Tables 5 and 6 for the truncated and full systems,
respectively, usingα = 1.15. It is evident that the four subunits do
not give the same binding affinities for the truncated systems:
The four subunits give results that differ by up to 21�36 kJ/mol
for the charged ligands and by 5�8 kJ/mol for the neutral ones.
This is much more than expected from the standard errors of the
estimates, 2�4 and 1�2 kJ/mol, respectively. On the other hand,
subunits B and D give binding affinities that are the same within
statistical uncertainty (the difference is less than 3 kJ/mol), and
the same applies to subunits A and C, although the difference is
up to 5 kJ/mol. This indicates that the differences are caused by
differences in the subunits, probably the fact that subunits A and

C have one less amino-terminal residue than subunits B and D in
the crystal structure.
Surprisingly, for the full systems, the differences between the

subunits are smaller, 2�9 kJ/mol, with no difference between the
charged and neutral ligands. In this case, the differences are
statistically significant only for Btn5�Btn7. Subunits B and D
still give very similar results (within 2 kJ/mol), whereas the
differences for subunits A and C are larger, up to 6 kJ/mol for
Btn2 (but they are not statistically significant at the 95% level).
These large differences between the subunits for LIE led us to

check also the MM/GBSA results. From Table 6, it can be seen
that MM/GBSA actually gives similar differences between the
subunits to LIE, 2�28 kJ/mol differences for the truncated
systems and 2�18 kJ/mol for the full systems. This is a surprising
difference compared to our previous results,23 which most likely
is caused by differences in the setup of the two sets of calcula-
tions, in particular the neutralization of surface charges, which
may emphasize the one-residue difference between the subunits.
Moreover, it is clear that the differences are amplified by the
truncation of the protein. This is an important issue that will be
the subject of future investigations of other proteins.

’CONCLUSIONS

In this study, we have designed a simulation protocol for the
LIE method to reach a certain level of statistical precision in the
predicted affinities, in the same way as in a previous study with
MM/GBSA.23 Our results indicate that for this biotin�avidin
system, a sampling frequency of∼5 ps and equilibration times of
0.1�1.0 ns are appropriate. By optimizing the CPU time, we also
suggest that rather short simulations should be used for the
complex (50 ps after equilibration) but longer for the free ligand

Table 5. Binding Free Energies (kJ/mol) for Each Subunit of Avidin in the Truncated Simulationsa

LIE MM/GBSA

A B C D A B C D

Btn1 �132.1(2.3 �99.6(3.0 �135.8(3.1 �100.8(2.7 �128.9(3.2 �112.8(3.5 �136.2(4.0 �120.6(2.8

Btn2 �121.9(3.4 �92.5(3.8 �124.6(3.2 �92.5(2.6 �107.0(2.0 �86.0(2.7 �104.4(1.1 �96.9(2.3

Btn3 �116.1(2.7 �95.6(2.4 �115.6(3.0 �96.0(2.3 �89.8(4.7 �115.3(2.4 �97.3(5.7 �110.6(2.0

Btn4 �137.0(2.5 �133.5(1.9 �131.9(2.4 �130.3(2.1 �99.8(1.4 �98.1(1.6 �99.5(1.6 �100.3(1.5

Btn5 �83.5(1.8 �89.3(1.4 �83.0(1.5 �90.6(1.4 �45.5(2.7 �66.6(2.7 �39.1(3.7 �63.4(1.7

Btn6 �86.3(1.1 �86.7(1.2 �82.9(1.6 �88.1(1.1 �58.6(3.0 �58.9(1.3 �52.7(2.0 �56.6(1.6

Btn7 �41.5(0.8 �48.1(0.6 �42.2(1.0 �48.0(0.6 �9.1(1.0 �21.3(0.7 �10.2(0.8 �20.5(0.8
a For LIE, α = 1.20 was used.

Table 6. Binding Free Energies (kJ/mol) for Each Subunit of Avidin in the Simulations of the Full Systema

LIE MM/GBSA

A B C D A B C D

Btn1 �108.8(2.9 �109.2(1.8 �109.1(2.9 �110.3(2.4 �116.8(3.4 �122.3(1.2 �121.5(2.7 �118.2(2.8

Btn2 �106.8(3.0 �103.5(1.9 �101.2(2.9 �102.7(2.6 �119.0(1.6 �112.4(0.7 �105.1(1.6 �101.5(1.6

Btn3 �95.0(3.1 �95.9(1.4 �91.2(2.6 �94.7(1.4 �100.4(4.2 �102.6(1.1 �99.5(3.2 �103.2(0.7

Btn4 �117.9(2.6 �124.4(1.9 �118.1(2.6 �124.2(1.9 �92.3(2.2 �91.9(2.0 �93.7(2.0 �93.7(2.1

Btn5 �77.9(1.6 �87.0(1.4 �80.0(1.8 �86.3(1.3 �51.0(2.6 �61.2(1.4 �48.3(1.9 �58.6(1.8

Btn6 �78.9(1.4 �83.1(0.9 �77.6(1.3 �85.1(1.2 �49.9(1.1 �56.0(0.8 �49.4(1.4 �58.2(0.9

Btn7 �39.6(1.8 �46.8(0.5 �37.9(1.5 �47.0(0.4 �9.4(1.2 �17.4(0.8 �7.7(1.3 �19.2(0.4
a For LIE, α = 1.15 was used.
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(∼300 ps). Then, a proper number of independent simulations
should be run until the desired precision is obtained. The
sampling frequency and equilibration times are probably similar
for most systems, whereas the length of the production simula-
tion may depend on the simulated system and the computational
equipment. Considering the long equilibration times observed
for some systems, it would probably have been better to first run
one long equilibration of each avidin�ligand complex (1�5 ps),
before the independent simulations were started by using
different sets of starting velocities. Then, the equilibration for
the individual simulations could most likely have been reduced,
as was observed for galectin-3 with MM/GBSA.23

In parallel, similar calculations have been performed with the
MM/GBSA approach, based on the same simulations. This
allows us to compare the efficiency of these two popular end-
point methods. We have reached several interesting conclusions:
• The correlation time of the LIE and MM/GBSA energies is
similar.

• The equilibration time varies heavily with the ligand, but the
two methods seem to require similar equilibration times.

• In general, LIE seems to be more efficient than MM/PBSA
by a factor of 2�7 for the truncated systems, but by a factor
of 1.0�2.4 for the full system (i.e., it gives the same statistical
precision with a computational effort that is lower by these
factors). The lower efficiency of MM/GBSA comes from
the extra time required for the entropy calculation, which
more than compensates for the fact that LIE requires an
extra simulation (of the free ligand).

• On the other hand, in variance to MM/GBSA, LIE contains
one empirical parameter, α. If the standard value (α = 0.18)
is used, LIE gives very poor results for this test case, with
negative correlation and PI. However, if α is fitted, LIE and
MM/GBSA give similar MADtr, ∼16 kJ/mol, although
MM/GBSA still outperforms LIE for r2 and PI. This is
mainly due to LIE problems with a single ligand, Btn4.

• LIE is more restrictive in the setup of the simulation: It
requires that the size of the simulated systems is the same for
the complex and the free ligand and also that the protein is
neutralized in the simulations. Our results indicate that this
neutralization may slow the convergence and make the
result different for the four subunits in avidin.

• Moreover, LIE simulations are typically performed on
truncated systems with a radius of ∼25 Å.8 Our results
indicate that such a truncation may also slow the conver-
gence and emphasize differences between the subunits.

• The change of the water model, the treatment of long-range
electrostatics, and the neutralization of the protein have a
quite large effect on the MM/GBSA binding energies
(1�19 kJ/mol), much larger than the initial solvation, the
starting velocities, as well as the protonation and rotation of
residues.23 It remains to be seen with larger test sets which of
these setups is preferred, but for the present systems, the
current setup gives a somewhat better correlation and PI
compared to the experimental results.

Thus, we can conclude that LIE is inherently more effective
than MM/GBSA (giving a certain precision at a smaller expense
in computation time), at least for the present test case. Con-
sidering that the avidin tetramer is rather large and that LIE is
typically run on truncated proteins, it is likely that this conclusion
is valid also for other proteins, although more tests are required
to confirm this. However, if the entropy term in MM/GBSA is

ignored, as has been done in many studies,5,59,60 MM/GBSA is
expected to become the more effective method. This might be an
interesting alternative for MM/GBSA, especially as the entropy
term has been criticized61 and it limits both the precision and the
CPU consumption.

On the other hand, we have seen that LIE depends on an
empirical parameter and that it has more restrictions on the setup
of the calculations. Clearly, MM/GBSA is disfavored by the LIE
setup used in this study, giving a slower convergence, and it may
be more effective with a more typical MM/GBSA setup. In
particular, MM/GBSA may obtain four energy estimates from
each snapshot for this tetrameric protein. Even more seriously, it
is clear that the setup of the calculations quite strongly affects the
results. It remains to be shown on much larger and more diverse
test sets which of the setups are more realistic and which of the
MM/GBSA and the LIE methods give the more accurate results.
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ABSTRACT: Conformational changes are important in RNA for binding and catalysis, and understanding these changes is
important for understanding how RNA functions. Computational techniques using all-atom molecular models can be used to
characterize conformational changes in RNA. These techniques were applied to an RNA conformational change involving a single
base pair within a nine base pair RNA duplex. The adenine�adenine (AA) noncanonical pair in the sequence 50GGUGAAGGCU30
paired with 30PCCGAAGCCG50, where P is purine, undergoes conformational exchange between two conformations on the time
scale of tens of microseconds, as demonstrated in a previous NMR solution structure [Chen, G.; et al. Biochemistry 2006, 45,
6889�903]. The more populated, major, conformation was estimated to be 0.5 to 1.3 kcal/mol more stable at 30 �C than the less
populated, minor, conformation. Both conformations are trans-Hoogsteen/sugar edge pairs, where the interacting edges on the
adenines change with the conformational change. Targeted molecular dynamics (TMD) and nudged elastic band (NEB) were used
to model the pathway between the major and minor conformations using the AMBER software package. The adenines were
predicted to change conformation via intermediates in which they are stacked as opposed to hydrogen-bonded. The predicted
pathways can be described by an improper dihedral angle reaction coordinate. Umbrella sampling along the reaction coordinate was
performed to model the free energy profile for the conformational change using a total of 1800 ns of sampling. Although the barrier
height between the major and minor conformations was reasonable, the free energy difference between the major and minor
conformations was the opposite of that expected on the basis of the NMR experiments. Variations in the force field applied did not
improve the misrepresentation of the free energies of the major and minor conformations. As an alternative, the molecular
mechanics Poisson�Boltzmann surface area (MM-PBSA) approximation was applied to predict free energy differences between the
two conformations using a total of 800 ns of sampling. MM-PBSA also incorrectly predicted the major conformation to be higher in
free energy than the minor conformation.

’ INTRODUCTION

There are many known noncoding RNAs involved in diverse
biological processes, such as binding and catalysis, where con-
formational changes are crucial for function.1�3 Important
biological roles of RNA depend upon single base pairs and
bulged bases.4�7 Diverse conformational changes in structured
noncoding RNAs, such as rRNA and other ribozymes, are known
to occur.8,9 Conformational changes can alter binding surfaces to
change their specificity, facilitate movement such as translocation
of the ribosome,10�12 or change activity as in riboswitches.13�15

Thus, it is important to develop methods to model conforma-
tional changes to improve the understanding of RNA function.

Molecular dynamics and umbrella sampling have been used
previously to study conformational changes in both DNA16�18

and RNA.19�21 Many of these studies examine base pair
opening17,19 and base flipping,16,18,22 where a base becomes
unpaired, breaks its stacking interactions, and leaves the helix.
This is described as a looped out or extra-helical state. A variety of

reaction coordinates are used in these studies, including a
pseudodihedral angle known as the center of mass (COM or
CPD) dihedral,18 a projection of the glycosidic bond into a plane
which is normal to a local helical axis vector and also includes
the C0�C0 vector,17 and an improper dihedral angle defined by
four atoms.19 These studies demonstrate the use of free energy
methods to give free energy for conformational changes invol-
ving individual bases or base pairs. RNA hairpin stability was also
investigated using the end-to-end distance for two hairpin
sequences known to be of different stabilities.21

The AA noncanonical pair system studied here is an RNA
duplex of nine base pairs. The center base pair is a noncanonical
pair consisting of adenine 5 (A5) and adenine 15 (A15)
(Figure 1) that undergoes a conformational change from amajor,
i.e., more populated, A15�A5 to a minor, i.e., less populated,

Received: April 1, 2011
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A5�A15 trans-Hoogsteen/sugar edge noncanonical base pairing
interaction.23 The NMR data obtained by Chen et al. for the
duplex contained NOEs that were inconsistent with a single
structure.24 The NMR data were divided into two sets of NOE
and dihedral angle restraints, based on a prior well-determined
structure,25 that were separately used to model structures for the
major (Protein Data Bank, PDB, accession #: 2DD2) and minor
(PDB: 2DD3) conformations.24 Estimates of chemical shift
differences of the H2 of adenine-5 between major and minor
forms suggest an exchange rate of at least 435 s�1, while line
widths suggest higher rates ranging from 20 000 to 65 000 s�1.24

The observed chemical shifts of A5 and A15 H2 protons
suggested that the major conformation is 0.5 to 1.3 kcal/mol
more stable than the minor conformation at 30 �C.

This study focused on modeling the conformational change
pathway to provide insight about the pathway and to test the
accuracy of modern molecular mechanics methods. For example,
two types of pathways can be imagined for the conformational
change. One pathway would have stacked intermediates where
the adenines are stacked on each other, and the other would have
intermediates where the adenines are hydrogen bonded in a
common plane.

In this study, a number of computational methods, tar-
geted molecular dynamics (TMD),26,27 nudged elastic band
(NEB),20,28�30 umbrella sampling free energy calculations,31�34

and MM-PBSA,35�43 were used to model the conformational
change pathway and equilibrium for a trans Hoogsteen/sugar
edge AA noncanonical pair.23 TMD applies a biasing potential to
drive a starting structure toward a target structure in a molecular
dynamics simulation. This can therefore generate plausible path-
ways for conformational changes. In contrast, NEB uses a string
of states attached by virtual springs between fixed end states to
generate a low potential energy pathway as determined by the
potential energy landscape. These low potential energy confor-
mational change pathways are close to likely pathways but
are approximate because they neglect entropic effects.28�30 True
pathways involve thermal fluctuation and thus undergo random
motions that do not follow exact minimum energy pathways;
though the conformations visited by molecules undergo-
ing conformational transitions are frequently along minimum
potential energy pathways. NEB requires that the first and last

images of the string of conformations, i.e., the reactant and
product structures, be fixed in conformation. Thus, themajor and
minor conformations are unchanged by the calculation. The low
potential energy pathways determined with NEB are indepen-
dent of the directionality of the pathway, and therefore the choice
of reactant and product structures is arbitrary. TMD and NEB
provide complementary information.

TMD and NEB predicted pathways where the adenines stack
in the intermediates. These calculations suggested a reaction
coordinate16 described by an improper dihedral angle. Umbrella
sampling and the weighted histogram analysis method (WHAM)
were applied to predict relative free energies along the reaction
coordinate.31�34 The reaction coordinate observed in both
TMD- and NEB-predicted conformational change pathways
was used to facilitate umbrella sampling to determine the
potential of mean force for the pathway.

The free energy profiles from umbrella sampling calculations
with a molecular mechanics force field contradicted the experi-
mental results. The relative free energy change between the
major and minor conformations was overestimated and opposite
that given the relative populations of these forms in solution. Free
energy calculations were repeated using the parmbsc044 force
field parameters, variations in salt concentration, or the
TIP4PEW45,46 water model. Each of these alternatives also was
unable to correctly model the free energy difference between the
major and minor conformations.

An alternative method, MM-PBSA/GBSA, for estimating
free energies was also applied. This method uses a force field to
estimate the molecular mechanics potential energy of the
RNA in gas phase and then applies either the Poisson�
Boltzmann35�37,39�42 or generalized Born38,43 surface area
(PBSA or GBSA) methods of implicit solvation to estimate the
free energy in solution. In addition, normal-mode analysis is used
to predict the conformational entropy. MM-PBSA/GBSA also
predicted a higher free energy for the major conformation than
for the minor conformation and thus also did not qualitatively
agree with experimental results. These results suggest that the
AMBER99 force field is unable to adequately represent the
conformational free energy change of this RNA molecule.

’METHODS

Model Structures. The models of the AA noncanonical pair
systemwere those byChen et al. for themajor (PDB: 2DD2) and
minor (PDB: 2DD3) RNA structures.24 The dangling ends
(unpaired U and purine), added to stabilize the structures for
NMR, were removed for these calculations. Both structures have
the same covalent structure and consist of 587 atoms. The lowest
potential energy structure as evaluated by the AMBER9947,48

force field from the reported set of NMR-guided models was
selected as the representative structure for each conformation.
This was structure 23 and structure 9 for 2DD2 and 2DD3,
respectively.
Modeling. The AMBER48�50 molecular dynamics package

(version 9 or 10) was used for all calculations. Unless stated
otherwise, the Cornell et al. ff99 (AMBER99) force field was
used.47,48 Trajectories were analyzed using ptraj51 included with
AMBER and the LOOS52 software package.
Implicit Solvent MD. For implicit solvent molecular dy-

namics, generalized Born (GB) implicit solvation53�56 was used,
and the pairwise interactions were modeled with the HCT
method.56 A salt concentration of 0.1 M was simulated using a

Figure 1. Diagram of the AA noncanonical pair system, including the
minor form on the left andmajor form on the right. The sequence for the
AA noncanonical pair system is given at the top, including dangling ends
that were removed for all simulations. Flanking GA pairs are in blue, A5
in green, and A15 in red. The yellow arrow indicates the single hydrogen
bond stabilizing the noncanonical pair.
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Debye�H€uckel limiting law for interaction screening.55 An
effective generalized Born radius of 25 Å was used with a non-
bonded cutoff of 100 Å. Energyminimization was first performed
with steepest descent for 1000 steps, and then for 10 000 steps via
the conjugate gradient method. A 2 fs time step was used for
dynamics. To start dynamics, the system was heated from 0 to
300 K over 60 ps followed by 100 ps of equilibrating MD.
SHAKE57,58 was applied for bonds to hydrogen. A Langevin
thermostat, with a collision frequency of 1 ps�1, was used.59,60

Explicit Solvent MD. Explicit solvent NPT molecular dy-
namics utilized the TIP3P water model61,62 with periodic
boundary conditions. The TIP4PEW water model45,46 was also
investigated, where only the water model and ion parameters
were changed and all other parameters were the same. Electro-
statics were modeled with the particle mesh Ewald (PME)
method63�65 with a direct space sum cutoff of 10 Å. Neutralizing
Na+ ions were added to counter backbone phosphates. Then, 1
MNaCl was added where the number of Na+ andCl� ions added
was calculated by dividing the total number of water molecules
added to the simulation box by the 55.5 M concentration of
pure water.
The structure models from the PDB were subjected to two

rounds of minimization, followed by heatup and equilibration. In
the first minimization, the RNA was held fixed by a harmonic
potential at 500 kcal/(mol � Å2) for 500 steps of steepest
descent minimization followed by 500 steps of conjugate gra-
dient minimization and with the system at constant volume. In
the second round, the RNAwas freed of restraint, and 1000 steps
of steepest descent followed by 1500 steps of conjugant gradient
minimization at constant volume were performed. The subse-
quent MD was run with a pressure relaxation time of 2 ps. A
warmup simulation was performed with the RNA fixed in space
with a harmonic potential of 10 kcal/(mol � Å2) for 20 ps of
simulation. Dynamics were run with a 2 fs time step with
SHAKE57,58 constraining hydrogens and a Langevin thermostat
collision frequency59,60,66 of 1.0 ps�1. Equilibration simulations
were run at a constant pressure of 1 atm at a temperature of 300 K
for 480 ps. Four separate trials of 100 ns of MD were performed
for both the major and minor conformations by varying the
random number seed used by the Langevin thermostat.
TMD. TMD26,27 calculations were run from an energy-mini-

mized structure to an energy-minimized target structure where
the RMSD bias was applied to the entire molecule with the target
RMSD set to 0 Å. GB implicit solvation53�56 was used. A
nonbonded and generalized Born radii cutoff of 100 Å was
used. A salt concentration of 0.2 M was simulated by Debye�
H€uckel screening.55,56 The temperature was set to 300 K, and
Langevin dynamics66 was used as a thermostat with a collis-
ion frequency59,60 of 1.0 ps�1. The time step was 2 fs, and
SHAKE57,58 was used.
NEB. NEB20,28�30 was done using AMBER with a 12 step

simulated annealing67 protocol that was concluded by quenched
dynamics. The implementation uses revised tangents to pre-
vent kinks in the pathway.30 Trials were varied by changing
the random number seed. The simulated annealing protocol
applied here was the same as in previous work.68 GB implicit
solvation53�56 was used in NEB calculations with a nonbonded
and GB radii cutoff of 15 Å and no Debye�H€uckel screening.55

Langevin temperature scaling was used with a collision frequency
of 1000 ps�1.59,60,66 SHAKE57,58 was used. Fifteen trials were
performed with 30 images, where the first 15 images were started
as the major conformation and the last 15 images were started as

the minor conformation. The first image was fixed as the
experimental model of the minor conformation and the last
image as the major conformation. An additional trial with 60
images using 30 major and 30 minor images was performed to
test resolution.
Umbrella Sampling. Umbrella sampling31 calculations

were performed along the improper dihedral reaction coordinate
from�210� to 30�with the equilibrium position of the harmonic
potential in windows separated by 10�. Initial atomic structures
for each windowwere selectedmanually from available structures
from NEB-determined pathways. Structures were selected that
were close to the equilibrium dihedral values for the windows.
The improper dihedral restraint was applied with parabolic sides
extending (40� from the window center with a maximum
100 kcal/(mol � rad2) restraining potential outside of the well.
The sampling of the improper dihedral angle was verified to
remain within the parabolic well for all umbrella sampling
windows. The force constant value allowed for adequate overlap
between distributions of reaction coordinate values between
neighboring windows. NEB images selected for windows were
solvated with TIP3P water61,62 with an isometric box with
nearest contact to the RNA at a radius of 10 Å. Neutralizing
Na+ was added, and then an additional 1MNaCl ions was added.
The number of Na+ and Cl� ions added was determined by
dividing the number of water molecules in the box by the 55.5 M
concentration of pure water. Umbrella sampling was repeated
with neutralizing Na+ but without additional NaCl ions to the
simulation box as well to test whether the presence of salt had an
effect on the free energy surface.
Energy minimization was then performed as for explicit MD

for the end states above followed by a heatup with the RNA
solute fixed. Equilibration was run the same as for the explicit MD
above with the addition of the improper dihedral restraint for the
umbrella sampling window. The restraint was ramped up for
the first 20 ps of simulation time from 0% to 100% strength and
then maintained for the duration of equilibration and sampling.
Different trials were run by changing the random number seed
for all simulations. Following umbrella sampling, the weighted
histogram analysis method (WHAM)33,34 was used to obtain the
free energy profile, i.e., the potential of mean force (PMF) along
the reaction coordinate. The AMBER99 force field47�49 with
TIP3P water61,62 was used unless otherwise noted. This proce-
dure was applied similarly for umbrella sampling done with the
TIP4PEW45,46 water model and with the parmbsc044 force field.
Averaging Multiple Free Energy Calculations. When plot-

ting multiple free energy profiles (free energy as a function of the
reaction coordinate) on the same plot or when averaging free
energy profiles, a reference profile was chosen, and all other
profiles were adjusted in the free energy axis to minimize the sum
of squares difference with the reference. This adjustment was
calculated by averaging the difference of each point within the
free energy profile from the corresponding point in the reference
free energy profile. Then, the average of these differences was
subtracted from the nonreference profile to obtain the new
profile, adjusted to the minimum square difference relative to
the reference profile. To average multiple profiles, the reference
free energy profile and the profiles with the minimized sum of
squares difference to the reference profile were averaged. The
RMSD between free energy profiles was calculated using one
profile as a reference and the other compared profile adjusted to
minimize the sum of squares difference.
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Molecular Mechanics Poisson�Boltzmann and General-
ized Born Surface Area (MM-PBSA/GBSA) Calculations.MM-
PBSA35�43 calculations were performed on the eight total 100 ns
trajectories of the major and minor conformations. The AMBER
10 mmpbsa.pl script was used to automate the procedure.69

Snapshots were taken at 1 ps intervals from the simulations. The
calculation was run including normal-mode analysis with 100 000
maximum cycles of minimization for each image from the MD
trajectories to ensure convergence with a relaxed convergence
criterion for the energy gradient of 0.001 kcal/mol. For GB
implicit solvent calculations, Debye�H€uckel screening for 1 M
NaCl was used. The free energy for configurations sampled by a
trajectory was the sum of the gas phase molecular mechanics
energy, the estimated hydrophobic and reaction field energy
contributions from either the PBSA or GBSA methods, the
hydrophobic contribution to the solvation free energy for either
the PB calculation or the GB calculation, and the product of
conformational entropy estimated by normal-mode analysis and
the temperature of 300 K.

’RESULTS

Molecular Dynamics. The models for the major and minor
conformations of the AA noncanonical pair system were sub-
jected to molecular dynamics as an initial test of their stability.
The dangling unpaired uridine and purine present in the experi-
mental model structures were not included in the calculations
performed in this work. Given the estimated rate of exchange
between the major and minor conformations from the NMR
experiment between 20 000 and 65 000 s�1, it was expected that a
spontaneous change in conformation was unlikely to be observed
on molecular dynamics simulation time scales. A total of 30 ns of
generalized Born implicit solvent molecular dynamics53�56 was
applied to both the major and minor structures. The structures
have an RMSD to the starting experimental structure of less than
5.9 Å throughout the trajectory (Figure 2) with means of 2.93 Å

and 2.98 Å for the major and minor structures, respectively.
In the major structure, A15 moves out of the helix away from
A5 at 8.1 ns and makes temporary van der Waals and hydrogen
bonded interactions with the edges of paired bases in the stem
of the helix between the A5�A15 noncanonical pair and the
G2�C17 base pair. In the minor structure, A15 leaves the helix
and moves away from A5 at 5 ns and forms a hydrogen bond
with the 20 hydroxyl of G8 for the remainder of the simulation.
Thus, the unrestrained AA noncanonical pair was not stable
during implicit solvent molecular dynamics for both the major
and minor conformations.
Four 100 ns explicit solvent simulations were performed on

each the major and minor conformations. All simulations had
consistently lower RMSDs than the implicit solvent simulations
(Figure 3, Table 1). The AA noncanonical pair retained its
native (trans-Hoogsteen/sugar edge) pairing throughout each
of the simulations. Over the four simulations, the mean RMSD
was 2.17 and 2.13 Å, for the major and minor conformations,
respectively.
Sugar puckers were also determined for all of the nucleotides

in the major and minor conformations of the AA noncanonical
pair structure from the TOCSY and NOESY spectra.24 The
Altona and Sunderlingam70 convention was used to measure the
sugar pucker along the MD trajectories of the major and minor
conformations. The NMR results indicate that the nucleo-
tides have C30 endo sugar puckers with angles ranging from
0 to 36�. Exceptions to this are for A5, which goes from C30 endo
in the minor conformation to C20 endo with an angle range of
144�180� in the major conformation, and for A15 which goes
from C20 endo in the minor conformation to C30 endo in the
major conformation. The sugar puckers for A5 and A15 are
plotted in Figure S1 for the minor conformation and Figure S2
for the major conformation (see Supporting Information). The
time courses for sugar pucker indicate that A15 in the minor
conformation usually shifts from the experimental C20 endo
conformation fluctuating near 180� to the C30 endo conforma-
tion at 0� before 50 ns of simulation time. Otherwise, the sugar
puckers of A5 in the minor conformation and A5 and A15 in the
major conformation reasonably agree with the NMR experiment.
Conformational Change Pathway Hypotheses. The con-

formational change pathway translates A5 and A15 as shown in
Figure 1 from the major configuration on the left to the minor
configuration on the right. This can be imagined to occur in three
possible ways. One possibility is that the bases move around the
edges of each other in an edge-on-edge conformational change
pathway, involving hydrogen-bonded intermediates. The other
possibility is that the adenine bases of the noncanonical pair may
slide one over the other through a stacked intermediate. The
sliding pathway can occur in two alternative directions where the
faces of the bases in the stacked intermediate are different. These
two stacked pathways can be defined by which faces of the
adenines were toward each other (Figure 4), thus giving a 50-
facing and 30-facing stacked pathway.
TMD Modeling. TMD calculations were performed using a

number of different force constants to give an initial estimate of
conformational change pathways. The ideal range for the
biasing potential force constant was determined to be
0.14�0.19 kcal/mol. Force constants below 0.14 kcal/mol
resulted in trajectories where the RMSD with the target
structure as a reference remained at 1.4 Å for the complete
1.5 ns of TMD simulation, indicating that the change to the
target structure was not achieved (Figure S3, Supporting

Figure 2. Mass weighted RMSD of all of the atoms to the solution
structure for implicit solvent simulations for theminor (a) andmajor (b)
conformations.
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Information). Force constants greater than 0.19 kcal/mol were
too high because the conformational change occurred within
the first 30 ps of the trajectory.

Figure S4 (Supporting Information) shows RMSD as a
function of time for four force constants. For each simulation,
the RMSD started at the RMSD between the starting and target

Figure 3. Mass weighted RMSD of all solute atoms to the solution structure for 100 ns of explicit solvent simulations in TIP3P water with neutralizing
Na+ plus 1 M NaCl for the minor (a, b, c, d) and major (e, f, g, h) conformations. Four simulations were performed for each by changing the random
number seed.
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structure (2.2 Å) and then dropped to an RMSD of approxi-
mately 1.4 Å within the first picosecond of TMD. The plot of
RMSD to the target structure for the 0.14 kcal/mol force
constant TMD calculation (Figure S4b) indicated a conforma-
tion in which a 1.4 Å RMSD was maintained for 0.6 ns of
simulation before the conformation changed to the target
structure. Adenine-5 and adenine-15 were stacked on each other
within the helix during this time period, with the 50 faces of the
adenines toward each other. Thus, TMD results showed a
stacked intermediate structure along the pathway betweenminor
and major configurations. Thirteen TMD trajectories with the
biasing force constants from 0.01 to 0.13 kcal/mol eachmoved to
a 50-facing stacked configuration but did not continue to
approach the target conformation. Seven TMD trajectories with
biasing force constants from 0.14 to 0.2 kcal/mol underwent a 50-
facing pathway. A separate set of 11 TMD calculations with the
major conformation as the initial state and the minor conforma-
tion as the target gave similar results.
To address whether either face of the adenines can stack

during the conformational change, TMD calculations were used
to generate the alternative 30-facing pathway within the same
force constant range by using a modified starting structure. The
modified structure was generated by first applying three distance
restraints, found empirically, to an MD simulation of the minor

conformation to move adenine-5 to the 30 side of adenine-15.
The distance restraints were all flat bottom harmonic potential
wells with force constants of 30 kcal/mol. Outside of the well, the
potential was at this constant. The three restraints were from the
C8 of A5 to C2 of A15 with the well centered from 4.425 Å to
5.925 Å with outside bounds of 4.175 Å and 6.175 Å, N9 of G8 to
C2 of A15 with the well centered from 9.278 Å to 10.278 Å with
outside bounds of 8.278 Å and 11.278 Å, and C8 of A5 to N9 of
G17 with the well centered from 4.53 Å to 5.53 Å with outside
bounds of 3.53 Å and 6.53 Å. The starting minor experimental
structure measured 3.88 Å for C8 of A5 to C2 of A15, 11.70 Å for
N9 of G8 to C2 of A15, and 7.30 Å for C8 of A5 to N9 of G17. A
structure was selected from the MD trajectory with the restraints
applied as a starting configuration for TMD. With the altered
starting structure, TMD followed the 30-side pathway rather than
the 50-side pathway.
NEB. Fifteen NEB calculations with different random number

seeds were performed. The end points are held fixed for NEB,
thus reducing the error associated with their instability observed
in implicit solvent calculations. Like the TMD simulations, the
initial NEB pathways predicted stacked intermediates in the
pathways with the adenines sliding by the 50 face (Figure 4).
Although each NEB pathway slides by the 50 face, potential
energy profiles of different trials revealed variability in the
numbers of transition states and intermediates (Figure 5).
For the fifteen different NEB calculations, the images along the

pathways showed varying degrees of progress along the con-
formational change from the major to minor forms. These NEB
pathways provide a model for the conformational change. The
initial images of the NEB pathways involve breaking of the
hydrogen bonding interaction between the noncanonical pair
adenines and the stacking interactions with the neighboring
sheared GA pairs of the minor conformation, as shown in
Figure 4. The stacking interactions broken include those between
A5 and both A6 and A16, as well as those between A15 and both
G14 and G4. The noncanonical pair adenines move to form the
stacking interactions of the major configuration, as shown in
Figure 6, by moving through configurations where the two
adenines are stacked with each other through the 50-facing
pathway described in Figure 4. In the major form, the stacking
interactions include those between A5 and both G4 and G14 as
well as A15 with both A6 and A16.
It is possible that the bases could also traverse a pathway where

the 30 faces are toward each other during sliding (Figure 4).

Table 1. RMSD Information for Implicit and Explicit Solvent Simulations of Major and Minor Forms of the AA Non-Canonical
Pair Systema

simulation avg. RMSD (Å) min. RMSD (Å) min. at time (ns) max RMSD (Å) max. at time (ns) std. dev. (Å)

implicit minor 2.98 1.10 0.086 5.88 9.162 0.58

implicit major 2.93 1.34 0.880 5.32 3.713 0.60

explicit minor 1 1.87 0.83 88.856 3.83 2.586 0.46

explicit major 1 2.48 0.82 4.185 3.95 21.466 0.52

explicit major 2 2.05 0.86 2.827 3.98 44.645 0.43

explicit major 2 1.89 0.82 8.571 3.98 44.645 0.42

explicit minor 3 2.28 0.94 7.160 4.25 81.683 0.43

explicit major 3 2.08 0.61 3.266 4.26 35.586 0.48

explicit minor 4 2.31 1.06 92.692 3.93 7.467 0.40

explicit major 4 2.22 0.69 16.111 4.40 73.560 0.54
a Implicit simulations were both 30 ns in length, and all four independent explicit solvent simulations were 100 ns in length for both conformations.

Figure 4. Definition of 50- and 30-side facing pathways. The circle with a
dot indicates the backbone with the 50 end coming out of the page. The
circle with an X is the backbone with the 50 end going into the page.
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The 30-facing pathway was explored by NEB. Snapshots from the
30-stacking TMD trajectories were used as starting images for five
NEB calculations. The same NEB protocol was used for these
calculations, but with 32 images total. These NEB pathways each
converged on 30-stacked intermediates. The potential energies of
the intermediate structures in the 30-side-biased NEB trials were
similar to those of the 50-side NEB pathways described above.
The average, maximum, minimum, and standard deviation of the
potential energies for the images are plotted in Figures S5 and S6
in the Supporting Information. The NEB pathways appear to
depend on the starting configurations, which has been noted
previously for systems with periodic reaction coordinates.20

Starting with the experimental major and minor conformations
poises the NEB method to produce the 50-side pathway. Moving
the adenines as described above using restraints biases both
TMD and NEB to produce the 30-side pathway.
Reaction Coordinate.Given the pathways observed by TMD

and NEB, an improper dihedral reaction coordinate defined by
C8, C4, and N1 on adenine-5 and C5 on adenine-15 described
the conformational change (Figure 6). Other candidate coordi-
nates were tested, such as the glycosidic sugar angle (χ) and sugar
pucker, but were found to be unsuitable reaction coordinates
(results not shown). The glycosidic angle of A15 did not differ for
the major and minor conformations. The glycosidic angle for A5
did have distinct values for the major and minor conformation;
however, the value fluctuated up and down along the pathways
and thus did not follow reaction progress. The sugar pucker was
found to change suddenly, within two or three images at different
points along the pathway, for both A5 and A15, and thus did not
adequately follow reaction progress.
The A5 base plane was defined by choosing three atoms,

namely, C8, N4, and N1. Defining the final atom as C5 of base
A15 resulted in an improper dihedral angle that brought one
mismatch based over the face of the other. The 50- and 30-facing
pathways were distinguishable by whether the angle changed

Figure 5. Variation in potential energy profiles for NEB trials. Red circles
indicate images where the AMBER99 force field finds a more stable
configuration than the experimental structure, an artifact of the force field.
Potential energy profiles appearwith nowell-defined features (a), with single
transition states (blue circles) (b), two transition states and one intermediate
(green box) (c), and three transition states and two intermediates (d).

Figure 6. Definition of improper dihedral coordinate for the AA
noncanonical pair. (a) Atoms for the improper dihedral are labeled.
(b) The minor or reactant state starts at �8.7�. (c) The intermediate
state for the 50-side pathway occurs at�93.5�. (d) The major or product
state is at �173.5�.
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negatively from �8.7� to �173.5� (50-facing) or positively from
�8.7� to +186.5� (30-facing; Figure 6). The improper dihedral
was plotted together for the images from the 15 NEB pathways
(Figure 7a). The improper dihedral angle values were also
plotted for the five NEB trails undergoing the 30-facing pathway
(Figure 7b). The improper dihedral value went from a definitive
reactant value to a product value in a smooth continuous manner
for each of the trials, showing that this behaved well as a reaction
coordinate.
The improper dihedral angle was measured in the 100 ns

molecular dynamics trajectories of the major and minor con-
formations (Figure S7, Supporting Information). The improper
dihedral angle maintained expected values for all simulations,
with the minor conformation simulations averaging �4.2� and
the major conformation remaining near �170.6�. The average
standard deviation was (7.9� for the minor conformation and
(14.0� for the major conformation. This demonstrates that the
improper dihedral angle fluctuates more during unrestrained
molecular dynamics of the major conformation than for the
minor conformation.
Free Energy Calculations. Umbrella sampling31 and

WHAM32�34 were applied to predict the conformational free
energy change along the reaction coordinate. Six independent
calculations were run by varying the random number seed used
for Langevin dynamics. Twenty-five windows for equilibrium
sampling were used for each calculation. A total of 12 ns of

sampling was done for each window in each trial, yielding a total
of 1800 ns of sampling. The average of the free energy profiles for
each trial is plotted in Figure 8a. The standard deviations were
calculated using the six trials, and these ranged from 0.19 to
1.04 kcal/mol along the profile. The individual free energy curves
were also plotted separately (Figure 8b). Overall, the location of
minima and maxima and shape of free energy barriers remained
consistent between the trials, although some differences in
barrier heights and the relative free energy between maxima
and minima occur. The greatest free energy difference of
2.42 kcal/mol from the reference profile occurred at the bin centered
at �209.5� for one of the trials. This profile also had the highest
RMSD difference from the reference profile of 1.16 kcal/mol. The
greatest free energy difference of 2.81 kcal/mol between two
trials also occurred at the bin centered at �209.5�.
Separate umbrella sampling calculations were attempted for

the 30-facing pathway. Windows with the improper dihedral
angle value centered at 90� to 140� consistently changed to an
alternative conformation that was not supported by the NMR

Figure 7. Plot of improper dihedral angle for initial NEB trials. (a) Plot
of 15 NEB trials that follow the 50-side pathway. Each trial is plotted in a
distinct color. (b) Plot of improper dihedral angle for the five NEB trials
that follow the 30-side pathway.

Figure 8. Free energy profiles from sampling with the AMBER99 force
field47 and 1MNaCl. (a) A 12 ns sampling of 25 windows for six random
number seeds was combined to produce the free energy profile with
WHAM, and the plotted error is the standard deviation error between
trials. In total, 1800 ns of sampling was used to generate the free energy
profile. (b) The free energy profiles for the six random number seeds are
plotted separately.
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spectra. For these calculations, A5 moves parallel to the direction
of the helix, no longer stacking or hydrogen bonding with A15.
A5 also lost its stacking interactions with the flanking bases. A5
remained outside the helix in a configuration where the A5 edges
were at a right angle to the edges of bases G4 and G14, possibly
partly stabilized by transient electrostatic interactions between
heteroatoms. Therefore, these calculations were stopped. This
also implied that the 50-facing pathway is a more viable model for
the conformational change.
To test convergence, free energy profiles were generated

combining the data of all six random number seeds for 2, 4, 8,
and 12 ns of sampling at each equilibrium position (Figure 9).
The greatest free energy difference of 0.81 kcal/mol between the
2 and 12 ns of sampling occurred at the bin centered at�186.5�.
The RMSD difference between the free energy profiles for 2 and
12 ns of sampling was 0.36 kcal/mol. Between 6 and 12 ns of
sampling, this reduced to 0.22 kcal/mol. Free energy differences
between the major and minor conformations decreased as
sampling time was increased. Although the free energy difference
changed, the locations of energy maxima and minima remained
the same as the sampling time was increased. Therefore, 2 ns of
sampling for each window was enough to establish the overall
features of the free energy profile. The RMS difference of
0.13 kcal/mol between the free energy profile from 8 and 12 ns
of sampling suggests that 12 ns sampling was adequately converged.
The relative free energy change between the major and minor

conformations was estimated from the umbrella sampling, and
the minor conformation was predicted to be more stable. From
NMR data, the population of major to minor conformations was
estimated from 70:30% to 90:10%, giving a favorable free energy
for the major conformation of �0.51 to �1.31 kcal/mol.24 The
calculated free energy surface, using AMBER99, gave a free
energy difference of 7.04 kcal/mol in favor of the minor
conformation. This indicated the force field misrepresented the
stability of the major and minor conformations.
Although evidence suggests that the umbrella sampling simu-

lation time was adequate, one additional concern is that the
adjacent windows are not sampling adjacent conformations in
degrees of freedom aside from the chosen reaction coordinate.
To test this, both the stacking interactions of the bases and the

Figure 9. Convergence in time for the umbrella sampling calculations.
Free energy profiles were generated by combining six random number
seeds where the colored lines correspond to 2 (blue), 4 (green), 8 (red),
and 12 (black) ns of sampling for all windows.

Figure 10. Free energy profiles from calculations using modified force
field parameters. (a) The free energy profile produced using the
Barcelona parameters (parmbsc0)44 with 12 ns of sampling for all 25
windows with TIP3P water, neutralizing Na+, and 1 M NaCl. (b) The
free energy profile produced using the AMBER99 force field with 12 ns
of sampling and the TIP4PEWwater model with neutralizing Na+ and 1M
NaCl. (c) Free energy profile from 12 ns of sampling of the AA
noncanonical pair in neutralizing Na+ only and no additional salt.
Overall features of the free energy profiles are similar to the final free
energy curve with 1 M NaCl (Figure 8a), with major and minor states
having similar energies and improper dihedral angle values.
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backbone dihedral angles were examined for all windows. There
was no evidence that the sampling was structurally disconnected
in adjacent windows.
The three base pairs of both stem regions were consistently

stacked in helical form on both sides of the three base pair GAA
internal loop in all umbrella sampling windows. Stacking inter-
actions of the AA noncanonical pair and the flanking GA pairs
were observed to change smoothly from one window to the next,
where the minor conformation’s stacking interactions were
gradually lost for intermediate windows at and around �90�
and progressively reformed in windows closer to the major
conformation’s improper dihedral angle value of �170�.
Backbone dihedral angles were measured for all of umbrella

sampling windows and all residues. Histograms of representative
residue backbone dihedrals are shown in Figure S8 (Supporting
Information). These dihedrals were chosen because they show
different distributions in the major and minor conformations, so
that intermediate umbrella sampling windows can be checked for
the degree with which they transition from one distribution to
the other. The δ dihedral angle for A5 was known from
experiment to be 160 ( 30� in the major conformation and
122( 67.5� in the minor conformation.24 The distribution of A5
δ angles in the umbrella sampling windows for the major and
minor conformation agree with this result, showing major A5 δ
to have an average value of 141.9� and minor A5 δ to have an
average value of 83.8� (Figure S8b). Observation of the distribu-
tions of all umbrella sampling windows between the major and
minor conformation shows a smooth change as the histograms of
neighboring umbrella sampling windows have significant over-
lap. Three other backbone dihedral angles also exhibit a similar
pattern with different values for the major and minor conforma-
tions and an overlapping distribution of neighboring windows
along the conformational change pathway between the two
conformations, including A6 α (Figure S8c,d), G14 δ (Figures
S8e,f), and G4 ζ (Figure S8g,h). The average values of these four
backbone dihedrals in the major and minor conformation
umbrella sampling windows agree with the backbone dihedral

angles in the experimental model of the major and minor
conformations. These plots support that sampling orthogonal
to the improper dihedral angle, such as these backbone dihedrals,
was related between umbrella window simulations along the
conformational change pathway.
Modified Molecular Mechanics Models. Variation in poten-

tials, salt concentration, water model, and periodic box size were
tested to check whether the predicted relative free energies of the
major and minor conformations would be closer to the expected
experimental result. An update to the force field parameters that
improved upon the α and γ dihedrals known as the Barcelona
parameters or parmbsc044 was tested and resulted in little change
in the free energy profile as plotted in Figure 10a. The RMSD
between the free energy profile produced with the original
AMBER99 force field and the parmbsc0 force field was
0.54 kcal/mol with a maximum difference of 1.23 kcal/mol
occurring at the bin centered at �165.5�.
The TIP4PEW water model45,46 and ion parameters were also

tested with 1 M NaCl, and the resulting free energy profile is
plotted in Figure 10b. The free energy profile has barriers in the
same location as the TIP3P free energy profile, but the free
energy difference between the major and minor conformations
increased to 9.45 kcal/mol. The RMSD between the TIP3P and
TIP4PEW free energy profiles was 1.04 kcal/mol with a max-
imum difference of 1.72 kcal/mol occurring at the bin centered at
24.5�. Thus, using the TIP4PEW water model instead of TIP3P
did not improve the results produced by the AMBER99
force field.
Running the free energy calculations at 1 M NaCl was

intended to mimic the electrolyte strength under physiological
conditions. The NMR experiments24 were performed in a
solution containing 80 mM NaCl, 10 mM sodium phosphate,
and 0.5 mMdisodium EDTA. To investigate the effect of salt, the
free energy calculations were repeated with only neutralizing Na+

ions and no additional NaCl with 12 ns of sampling per window
(Figure 10c). The free energy profiles with and without 1 M
NaCl have barriers at roughly the same locations. The profiles

Table 2. MM-PBSA Results from the Four 100 ns Explicit Solvent Trajectories for Both the Major and Minor Conformationsa

Nmode MM-PBSA MM-GBSA

TΔS�b (kcal/mol) energyc (kcal/mol) ΔG� (kcal/mol)d energye (kcal/mol) ΔG� (kcal/mol)f

major structure mean 492.42 ( 1.12 �3776.07 ( 20.07 �4268.49 ( 19.66 �3690.05 ( 9.91 �4182.47 ( 9.60

simulation 1 493.27 �3746.19 �4239.46 �3675.62 �4168.89

simulation 2 490.86 �3782.55 �4273.41 �3691.67 �4182.53

simulation 3 493.18 �3788.33 �4281.51 �3695.59 �4188.77

simulation 4 492.37 �3787.20 �4279.57 �3697.33 �4189.70

minor structure mean 493.57 ( 0.07 �3791.76 ( 2.23 �4285.33 ( 2.18 �3696.78 ( 1.08 �4190.35 ( 1.05

simulation 1 493.60 �3788.76 �4282.36 �3695.19 �4188.79

simulation 2 493.62 �3791.44 �4285.06 �3697.04 �4190.66

simulation 3 493.46 �3793.75 �4287.21 �3697.48 �4190.94

simulation 4 493.57 �3791.76 �4285.33 �3696.78 �4190.35

total Δ (major � minor) �1.15 ( 1.12 15.70 ( 20.20 16.84 ( 19.78 6.73 ( 9.97 7.88 ( 9.66
aTotal Δ values are determined by subtracting the mean of the minor conformation simulation from the mean of the major conformation and
propagating the errors from the means. Mean and standard deviation values for major and minor conformations are calculated on the four trajectories.
bThe conformational entropy from normal model analysis times the temperature of 300 K. cThe free energy value reported here is the sum of PBSUR,
the hydrophobic contribution to the solvation free energy from the Poisson�Boltzmann calculation, and PBCAL, the reaction field energy from the PB
calculation. dThe MM-PBSA free energy minus the normal-mode analysis entropy term. e Free energy value reported here is the sum of GBSUR, the
hydrophobic contribution to the solvation free energy from the generalized Born calculation, and GB, the reaction field energy from the GB calculation.
fThe MM-GBSA free energy minus the normal-mode analysis entropy term.
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have an RMSD of 0.39 kcal/mol and a maximum difference
of 1.17 kcal/mol at the bin centered at 29.5�. Therefore, the
1 M NaCl simulations were considered adequate because run-
ning with minimal salt did not change the free energy profile
significantly.
The size of the isometric solvent box for umbrella sampling

calculations was determined using a distance of nearest contact to
the solute. This was set to 10 Å as a compromise between having
a box large enough to be physically reasonable but not so large as
to become computationally prohibitive. To ensure that the box
size does not affect the free energy result, a larger solvent box
using a radius of nearest contact to the RNA of 20 Å was used in a
separate trial of simulations. The TIP3P water model and
neutralizing Na+ ions plus 1 M NaCl ions were added as for
the 10 Å box. A total of 2 ns of sampling for each of the 25
windows was performed and the resulting free energy profile
generated with WHAM and plotted in Figure S9 (Supporting
Information). The free energy of the major conformation was
still estimated to be 8.85 kcal/mol greater than the minor
conformation. Thus, increasing the explicit solvent periodic
box size did not affect the resulting free energy.
Molecular Mechanics Poisson�Boltzmann and General-

ized Born Surface Area (MM-PBSA/GBSA) Calculations.As an
alternative to umbrella sampling, the MM-PBSA andMM-GBSA
methods were used to predict the free energy changes between
the major and minor conformations. Calculations of the free
energy for the major and minor conformations were used to
predict the free energy change for the conformational transition
by subtracting the free energy of the minor conformation from
the major conformation (Table 2). Eight total calculations were
performed using the four independent 100 ns trajectories that
were run for each conformation. This facilitated an estimation of
the standard deviations of means. Both PB and GB solvation
methods incorrectly predicted that the minor conformation was
more stable than the major. MM-PBSA gave a larger positive free
energy change, 16.84( 19.78 kcal/mol, thanMM-GBSA, 7.88(
9.66 kcal/mol. MM-PBSA/GBSA gave an incorrect positive free
energy change similar to the umbrella sampling result.
The MM-PBSA/GBSA results demonstrate a potential pro-

blemwith themethod. The first 100 nsmajor structuremolecular
dynamics simulation MM-PBSA free energy deviates from the
other three simulations by about 40 kcal/mol. The major
contributor to this energy difference results from a much lower
gas phase electrostatic potential energy from the force field. The
RMSD and structure of the simulation appears similar to the
other simulations, indicating that the configurations visited by
this simulation happen to produce a much lower electrostatic
energy. Because electrostatic interactions can be strong and
highly sensitive to atomic coordinates, it is plausible that a small
change in conformation could yield a large change in electrostatic
energy. For MM-PBSA/GBSA, the free energy difference be-
tween the major and minor conformations is calculated by taking
the difference between two large numbers and is thus inherently
prone to error.

’DISCUSSION

This study reports the modeling of the conformational
change of an AA noncanonical pair. It highlights the capability
of modern methods for modeling conformational change and
predicting conformational free energy changes. This study also

reveals limitations in the AMBER force field, a commonly used
force field for modeling RNA dynamics.

TMD and NEB provided complementary information for the
modeling of the conformational change. Each method predicted
a pathway that involved stacked intermediates, and interestingly,
the RNA structure showed enough flexibility for the AA to
change conformation without the adjacent base pairs being
broken. This was also previously observed in modeling the
conformational change of a GG noncanonical pair.20

The TMD and NEB pathways suggested a dihedral reaction
coordinate that could be used to follow the conformational
change. This was then used to predict the free energy change
along the pathway using umbrella sampling and WHAM. The
rate of convergence and the magnitude of uncertainty for
umbrella sampling were explored by repeating the umbrella
sampling calculations with six independent trials. A total of
1800 ns of sampling was performed. The maxima, minima, and
barriers of the free energy profile appear in the first 2 ns of
sampling, but the independent trials have profiles differing with
RMSDs as high as 0.56 kcal/mol even out to 12 ns. It can thus
be concluded that the true rate of convergence is slower than
the 12 ns of sampling performed per window. The need for
extensive sampling is consistent with prior observations in
peptide systems.71 Over six trials, the error in free energies can
be estimated as the standard deviations of the separate trials.
These errors are a result of incomplete sampling of conforma-
tional space available to the molecule and are estimated to be less
than 1.04 kcal/mol. Experimental errors are typically on the
same order.

Both TMD and NEB predicted only a pathway in which the 50
sides of the bases face each other in the intermediate structure.
To model a pathway with the 30 bases facing each other, the
starting structures needed to be altered so that the bases were
poised to follow that pathway. The reaction coordinate that
describes the conformational change is periodic, where the
dihedral angle is defined by atoms C8, C4, and N1 on adenine
5 and C5 on adenine 15. It has been noted previously that
sampling pathways with NEB can be incomplete for a periodic
system. Here, it is shown that TMD can also miss pathways
around a periodic coordinate. In this case, the 30-facing pathway
was ruled out subsequently as a viable pathway because the
intermediate dihedrals were unstable in that direction during
umbrella sampling.

Free energy changes along a conformational change reaction
coordinate provide both an estimate of the relative stability of the
ends and the barrier(s) between states. For this AA system, the
AMBER ff99 force field incorrectly predicted the minor con-
formation as the more stable conformation by 7.04 kcal/mol. All
six independent calculations provided the same conclusion.
Furthermore, variations in the force field, including the Barcelo-
na dihedral parameters, using TIP4PEW water, altering the
concentration of additional salt in the box, and using a larger
water box did not change this incorrect prediction. Salt concen-
tration and the ions are important for determining the RNA
structure.72 The simulations appear relatively insensitive to salt
concentration, as the calculated RMSD between the free
energy profile from 1 M NaCl and from only neutralizing Na+

with TIP3P water was only 0.39 kcal/mol. Umbrella sampling
with TIP4PEW and the latest ion parameters for the water
model did not improve upon the relative free energies of
the major and minor conformations and, in fact, increased
the free energy of the major conformation to 9.45 kcal/mol.
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The parmbsc0 modification of the AMBER99 force field gave
a free energy profile with an RMSD of only 0.54 kcal/mol from
the original AMBER99 profile and thus did not improve upon
the result.

To test the possibilities that the umbrella sampling was
insufficient or that the force field inaccuracies are for structures
in the transition state, the MM/PBSA and MM/GBSA methods
were applied to predict free energy changes between the end
points. These methods also incorrectly favored the minor con-
formation above the major. This supports the hypothesis that the
force field is also inaccurate for native structures, not just for
structures along conformational change pathways.

’CONCLUSION

In this study, the conformational change pathway of an AA
noncanonical pair in RNA was modeled using both TMD and
NEB. Free energy calculations were then performed along a
reaction coordinate. This simple system provides an excellent test
case of available computational methods because of the availability
of NMR data.24 Direct observation of the actual conformational
change pathways and the configurations visited during the path-
ways, however, are not possible with current technology. Several
conclusions can be drawn. Both NEB and TMD predict a
conformational change pathway where the adenines slide one
over the other within the helix with the 50-side facing the opposing
adenine. The pathways involve breaking of the hydrogen bond
between the adenines of the noncanonical pair as well as the
stacking interactions between the adenines and the flanking GA
pairs as defined by the minor conformation as shown in Figure 11
with subsequent movement through intermediates with the
adenines stacked next to each other. The pathways move through
this stacked intermediate and reform the hydrogen bond and
stacking that defines the major structure, as shown in Figure 11.

Predicted free energy changes using both umbrella sampling
with 1800 ns of total sampling andMM-PBSA/GBSA incorrectly
favor the minor conformation, suggesting that the AMBER99
force field can be improved. This system, because of its size and
the available solution structures, provides a useful benchmark for
testing force fields.
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ABSTRACT: We present a new coarse-grained (CG) model for simulations of lipids and peptides. The model follows the same
topology and parametrization strategy as the MARTINI force field but is based on our recently developed big multipole water
(BMW) model for water (J. Phys. Chem. B 2010, 114, 10524�10529). The new BMW-MARTINI force field reproduces many
fundamental membrane properties and also yields improved energetics (when compared to the original MARTINI force-field) for
the interactions between charged amino acids with lipid membranes, especially at the membrane�water interface. A stable
attachment of cationic peptides (e.g., Arg8) to the membrane surface is predicted, consistent with experiment and in contrast to the
MARTINI model. The model predicts electroporation when there is a charge imbalance across the lipid bilayer, an improvement
over the original MARTINI. Moreover, the pore formed during electroporation is toroidal in nature, similar to the prediction of
atomistic simulations but distinct from results of polarizableMARTINI for small charge imbalances. The simulations emphasize the
importance of a reasonable description of the electrostatic properties of water in CG simulations. The BMW-MARTINI model is
particularly suitable for describing interactions between highly charged peptides with lipid membranes, which is crucial to the study
of antimicrobial peptides, cell penetrating peptides, and other proteins/peptides involved in the remodeling of biomembranes.

I. INTRODUCTION

Many biological processes that occur at the cellular membrane
involve lipid membrane deformations at many length scales,1,2

which are either triggered or facilitated by small peptides3 or
complex protein machineries.4,5 To effectively complement
experimental studies of these processes, it is important to develop
computational models that are capable of describing membrane
deformations as well as interactions between the membrane and
peptides/proteins. The latter requirement highlights the impor-
tance of developing particle-based coarse-grained (CG) models
for membrane systems, which are particularly useful for phenom-
ena that occur on length and time scales too large for atomistic
simulations but where continuum mechanical models1,6�8 are
not appropriate. In this paper we report a new CG model for
lipids and peptides that is based on an accurate CG model for
water developed in our groups.

The past decade has seen a flurry of activity in the develop-
ment of CGmodels for biomolecules and lipids.9�13 By grouping
several atoms into a single unit, thus decreasing computational cost,
CG models have proven valuable in many simulation studies of
biomembranes and their interactions with peptides and proteins.12

For example, the MARTINI force field14,15 has been successfully
applied to study lipid vesicle formation and fusion,16�19

lipid phase transformation,20 structure and dynamics of lipid
bilayers and monolayers,14,15,21 and effects of various molecules
(e.g., cholesterol, proteins) on the shape and phase behaviors of
complex membranes.22�25 Solvent-free CG models for mem-
branes have also been proposed and found useful in a number of
studies,26�28 although transferable protein models that are compa-
tible with these membrane models have not yet been reported to
our knowledge.

An important aspect of computational biophysics is the treatment
of electrostatic interactions. Driven by a desire for computational
efficiency, many CG models choose to remove and/or simplify
the treatment of electrostatic interactions. In MARTINI, for
example, four water molecules are grouped into a single uncharged
unit (bead), and electrostatic interactions between charged beads,
which represent either lipid head groups or charged amino acid
side chains, are treated with a cutoff scheme and a fairly large
dielectric constant (ε = 15�20). Although this model can be
effective for describing interactions between lipids and nonpolar
groups, we expect it to be less appropriate for describing the
interaction between lipid membrane and highly charged species,
such as cell penetrating peptides and antimicrobial peptides, for
which a proper treatment of electrostatics is likely crucial. This is
supported by the observation that although MARTINI gives
satisfactory results (when compared to atomistic simulations) for
the potential of mean force (PMF) for the penetration of nonpolar
and polar (neutral or with a small dipole moment) amino acids
into lipid bilayers, it incurs large errors for the PMF of charged
amino acids, especially positively charged residues.23

A major source of the error in MARTINI can be attributed to
the treatment of water. It has been well established that water
molecules near the lipid�water interface make a major contribu-
tion to the electrostatic potential profile near that interface.29

Since water molecules are treated as uncharged beads in MAR-
TINI, they do not contribute directly to the electrostatic potential,
which is the reason that the calculated interfacial potential at the
lipid bilayer�water interface with MARTINI is grossly incorrect
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(MARTINI predicts a value of �0.4 V which may be compared
to the experimental estimate30,31 of +0.22 to 0.28 V and results
from atomistic simulations32,33 of +0.4 to 1.0 V). A natural
remedy, therefore, is to include electrostatics for the description
of water, which has been recently pursued by several CGmodels.

In the CG force field of Essex and co-workers,34 water is treated
using the soft sticky dipole model of Ichiye and co-workers.35

Although the model has been shown to provide impressive
results for the mechanical and electrostatic properties of lipid
bilayers, it offers limited computational advantage over atomistic
models of water. Moreover, the orientation of lipid head groups
in their model is different from atomistic simulations, thus the
contributions from different groups to the interfacial potential do
not match atomistic results. An improved version of MARTINI,
called the polarizable MARTINI force field,36 has been proposed
and features a water model with two charged-sites; recent test
calculations suggest that the polarizable MARTINI model leads
to much improved results for the insertion PMF of charged
pentapeptides into a lipid bilayer.37 However, this model still
gives qualitatively incorrect results for the interfacial dipole
potential (reported as �2 V in ref 36), which suggests that the
improved PMF is due in part to error cancellation; it has also
been discussed in the literature that the insertion PMF is not a
simple function of the interfacial dipole potential.38 More
recently, a four-site CG water model (WAT FOUR)39 has been
reported. Although the model was constructed to map 5 water
molecules into 1 CG unit, the calculated properties (e.g., density)
suggested that 1 CG unit effectively reflects 11 water molecules;
moreover, the model overestimates the dielectric constant and
underestimates the surface tension, thus hampering its applicabil-
ity to bilayer systems. Finally, a dipolar CG model that represents
five water molecules has been proposed very recently;40 it
reproduces the key properties of water well but has not yet been
used to parametrize CG models for other biomolecules.

We have recently developed and reported a newCGmodel for
water, termed as the big multipole water (BMW) model;41 it
features the same four to one mapping as the original MARTINI
but includes three explicitly charged sites for each CG unit. Our
basic approach starts with using atomistic simulations to char-
acterize the electrostatic properties (multipole moments) and
the nonbonded interactions of four water clusters. The results
inform us of the appropriate functional forms of electrostatic and
nonpolar components of the model; for example, we found it was
necessary to describe the nonpolar component with a much softer
potential than the commonly used Lennard-Jones (LJ) form.
The parameters in the model are then fitted based on comparing
experimental and computed properties of water, including bulk
density, isothermal compressibility, dielectric permittivity, sur-
face tension, and air�water interface potential. A preliminary
combination of the BMW model with MARTINI lipids resulted
in a membrane dipole potential that is in good agreement with
experimental estimates. Finally, in a recent study,42 we have shown
that the electrostatic features of the water model also appear
important to a proper description of the hydrophobic effect. For
the association of two hydrophobic peptides, BMW simulations
predict the process as entropy driven, in agreement with atomis-
tic studies,43,44 while several nonelectrostatic/dipolar CG water
models (MARTINI,15 polarizable MARTINI36 and the model of
Shinoda et al.)45 predict the process as enthalpy driven with very
small entropic contributions.

In this work, we report our continuing efforts in developing a
CG force field for lipids and amino acids with BMW as the basis.

Since the basic topology and parametrization strategy of the force
field follow the MARTINI convention, we refer the model as
BMW-MARTINI. With a proper treatment of electrostatics but
similar limitations in secondary structure descriptions as the original
MARTINI, our model in current form is particularly useful for
describing the interaction between lipid membrane and highly
charged peptide or protein motifs that are either disordered or
rigid (i.e., the model is not capable of describing coupled binding/
folding processes).

In the following, we first describe how the model is con-
structed and how the parameters in the model are determined.
Next, we present results that illustrate the performance of the
BMW-MARTINI model for a fairly broad range of properties
concerning lipid membrane and its interaction with amino acids;
these include: (i) thermodynamics (free energy and enthalpy�
entropy components) of hydration and partitioning between
oil�water for basic bead types; (ii) mechanical properties of lipid
bilayers and self-assembly of lipids; (iii) potential of mean force
for the penetration of amino acid side chains into a lipid bilayer;
(iv) behavior of a highly charged peptide (Arg8) on the surface
of a lipid bilayer; and (v) electroporation. Finally, we draw a few
conclusions and comment on possible directions for future
developments.

II. MODEL AND METHODS

A. BigMultipoleWater (BMW). Since the BMWwater model
forms the basis of our CG force field, we briefly summarize its key
features. Four water molecules are mapped into one CG unit with
three charged sites (see Figure 1a). Since our atomistic simulations41

indicated that the distributions of dipole moment and quad-
rupole moment tensor of four water clusters are similar in bulk
water, at the air�water interface, and in salt solutions, we
chose the geometry and charges of these sites to reproduce the
most probable dipole and quadrupole tensors of four water
clusters from atomistic simulations. Nonpolar interactions between
sites are represented by a modified Born�Mayer�Huggins
(BMH)46,47 potential, which features a softer interaction at short
distance than the commonly used LJ potential; the soft-core
interaction is crucial for avoiding spurious long-range correla-
tions between water molecules. The BMW model is capable of
reproducing key properties of bulk water and air�water inter-
face, most notably bulk permittivity, surface tension, and air�
water interfacial potential. The BMW is more computationally
intensive (by a factor of 6) than the original MARTINI model
due to the larger number of sites and the use of particle mesh
Ewald (PME) for electrostatics but is nevertheless about two
orders of magnitude more computationally efficient than ato-
mistic simulations.
B. Parameterization Strategies. The new force field is

parametrized with a strategy that maintains the self-consistency
among models for lipids and amino acids. The parametrization is
done in a multistage fashion based on carefully monitoring a
broad set of properties related to hydration/transfer free en-
ergies, lipid bilayer properties, lipid self-assembly, and interaction
between amino acids and a lipid bilayer.
First, partition free energies of uncharged bead types between

water�air or water�hexadencane are tuned to give the approx-
imate sets of scaling factors for nonpolar interactions. Then, lipid
bilayer structural properties and lipid self-assembly phase beha-
viors are used to fine-tune these scaling factors as well as
parameters for charged group (Q)-BMW interactions and the
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angle bending force constant for lipid tails. Next, potentials of
mean force (PMFs) for the penetration of different amino acids
into a dioleoylphosphatidylcholine (DOPC) bilayer are calcu-
lated, and the values in the interfacial region are compared with
atomistic results48 to determine interactions between charged
(lipid head groups) and neutral (neutral amino acids) groups.
Finally, the insertion PMFs of charged amino acid side chains
into a bilayer are used to further refine the interaction between
CG beads and BMW water. The initial parametrization of the
models is described in this section, and a fine-tuning of the
parameters is presented in the Results and Discussion section.
C. Initial Parametrization of Lipid and Amino Acid Poten-

tials. For lipids and amino acids, we follow the same mapping
scheme as the MARTINI force field [illustrated in Figure 1b
for a dimyristoylphosphatidylcholine (DMPC) molecule].15,23

We adopt the same classification scheme for beads: charged
(Q ), polar (P), nonpolar (N), and apolar (C) for representing
similar chemical structures. We also use the same sets of subtypes
(with a few changes, see below) to label different levels of
effective nonelectrostatic interactions between beads. On the
other hand, since the MARTINI force field employs hydration
and transfer free energies as the guiding properties for parame-
trization, changing the underlyingwatermodel to BMWrequires an
extensive reparameterization.

Several modifications are made to the CG particle (or bead)
types in MARTINI. First, water specific types are added. The
modified BMH potential is used for BMW-BMW (only between
the charge-negative sites), while LJ is used for all other interac-
tions, including those between BMW and other bead types. The
antifreezing particle type BP4 is deleted, because with the soft
interaction the BMW water does not (unphysically) freeze, and
antifreeze particles are therefore not required. Second, a super
repulsive (with σ = 0.62 nm) interaction between charged (Q)
and apolar (C) types is no longer needed, because the interaction
between charged beads is now characterized by Coulombic
interactions with a small amount of screening (the screening
dielectric constant in the BMWmodel is 1.3 instead of 15�20 in
the original MARTINI). Subtypes AC1 and AC2 are therefore
deleted in the new force field, and all Q�C interactions are
assigned with σ = 0.47 nm (σ = 0.43 nm between bead types
in rings). Finally, new subtypes are added for amino acids to
introduce additional flexibility: RQd for guanidinium group in
arginine and AQa for aspartate and glutamate. For ions and peptide
terminal groups, the Qd subgroups are the same, while all Q a

subgroups are replaced by AQa (e.g., for Cl
�).

For the nonelectrostatic interaction levels among bead types,
those between groups of P, N, and C are mostly inherited from
MARTINI, except for the following: P5 and P4 interact with Nda,
Na, andNd with ε = 5.6 kJ/mol; all ring beads (label starting with S)
interact with C1 with a scaling factor of 90% for the original ε in
MARTINI. By contrast, bead�water interactions have to be modi-
fied to reproduce relevant hydration and transfer free energies.
Similar to the polarizableMARTINI model,36 scaling factors for the
well-depths, ε, are introduced to reduce the strength of interaction
(relative to the original MARTINI) between uncharged bead types
andwater (BMW); the factor is 71% for levels with ε<4.5 kJ/mol in
the original MARTINI and 75% otherwise. Further more, none-
lectrostatic interactions between charged groups (type Q) and all
other beads are modified, since electrostatic interactions are treated
differently in the new model. As shown in Table 1, besides Q�Q
and Q�BMW interactions, levels for Q to other uncharged groups,
especially apolar types (C), are also tuned to ensure reasonable
partitioning free energies. This is required because hydration free
energies of charged groups are altered upon using the BMWmodel
for water. Meanwhile, levels for Q�P and P�N interactions
remain very similar to the original MARTINI because the nonpolar
interactions between these bead types still implicitly represent both
van der Waals and dipolar/hydrogen-bonding contributions.
The bonded parameters (e.g., bond, angle, and torsional angle

force constants) for the newCGmodel are largely the same as the

Figure 1. Mapping between the chemical structure and the CG model
for water and DMPC lipid. Topologies for nonwater components are
taken directly from MARTINI.

Table 1. Levels of Nonpolar Interactions among Charged Groups, BMWWater, and Uncharged Groups in the BMW-MARTINI
Modela

Q P N C

BMW Qda Qd RQd Qa Qda Q0 P5 P4 P3 P2 P1 Nda Nd Na N0 C5 C4 C3 C2 C1

Qda I O O O O O II O O O I I O O O IV III IV IV IV IV

Qd I O I I O O II O O O I I O III O IV III IV IV IV IV

RQd IV O I I O O II O O O I I O III O IV III IV IV IV IV

Qa I O O O I I II O O O I I O O III IV III IV IV IV IV

AQa I O O O I I II O O O I I O O III IV III I I I I

Q0 I II II II II II IV I O I II III III III III IV III IV IV IV IV
a Level of interaction indicates thewell depth in the LJ potential:O, ε=5.6 kJ/mol; I, ε= 5.0 kJ/mol; II, ε= 4.5 kJ/mol; III, ε= 4.0 kJ/mol; IV, ε= 3.5 kJ/mol;
V, ε = 3.1 kJ/mol; VI, ε = 2.7 kJ/mol; VII, ε = 2.3 kJ/mol; and VIII, ε = 2.0 kJ/mol. The LJ parameter σ = 0.47 nm (σ = 0.43 nm for rings) is used for all
interaction levels. The same grouping criteria (including subgroups) are applied as in the original MARTINI scheme.15.
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original MARTINI. Only the force constant for angle bending in
hydrocarbons (lipid tails) is modified from 25 to 10 kJ/(mol 3
degree2), because it is reported that the angle distribution in
MARTINI is narrower than the atomistic counterpart.49 Also, the
scheme of restraining secondary structure elements inMARTINI
is adopted, and relieving such restraints50 will be an interesting
direction for further developments.
D. Simulation Protocols. The simulation protocols used for

the new CG model are largely the same as for BMW water simu-
lations.41 A time step of 20 fs is used with GROMACS 4.0.5.51

Temperature and pressure are kept constant by using the Berendsen
scheme,52 with coupling times of τT = 1 ps and τP = 5 ps. The
SETTLE algorithm53 is used to constrain “bonds” in CG water,
and LINCS54 is used for bonds in ring structures in several amino
acids. PME with a spacing of 0.2 nm and εr = 1.3 are applied for
electrostatics. Similar to the original MARTINI, LJ interactions
are excluded between bonded beads but not for second nearest
neighbors. The shift cutoff scheme (rshift = 0.9 nm and rcut =
1.2 nm) is applied to all LJ interactions, while the switch scheme
(rswitch = 1.2 nm and rcut = 1.4 nm) is used for water�water BMH
interactions (see Supporting Information for details). With these
protocols, simulations with the new force field are slower than
the original MARTINI but about 2�3 orders of magnitude faster
than atomistic simulations. As discussed inMARTINI applications,15

since the lipid lateral diffusion rate is about 4 times larger than
experimental measurement, time scales in all simulation are inter-
preted as 4 times the actual simulation lengths.
E. Properties Calculated. The free energies of hydration and

partitioning betweenwater and octanol for a number of n-alkanes
are calculated using thermodynamic integration (TI),55,56 which
is carried out at 300 K with 21 evenly spaced λ windows, where λ
is the coupling parameter in the TI method, each sampled for
160 ns; the target bead is decoupled from its surrounding solvents
with a soft core potential.
The area per lipid of lipid bilayers is calculated from NPxyPzT

simulations, where N is the number of molecules, Pxy and Pz are
the transverse and normal components of the pressure tensor,
andT is the temperature. Patches of 512 lipids are simulated with
a hydration level of∼60 water molecules per lipid; the results are
averaged over 240 ns production run after equilibration.
The area compressibility modulus, KA, is calculated from the

relation between membrane area per lipid A, tension-free equi-
librium area per lipid A0 and surface tension γ (eq 1):57

KA ¼ 2A0
∂γ

∂A

� �
T

ð1Þ

NAxyPzT simulations are performed on dipalmitoylphosphati-
dylcholine (DPPC) lipids with five different restrained mem-
brane areas (evenly from 60 to 68 Å2/lipid in the xy plane), and
the corresponding surface tension per leaflet γ is calculated. Test
calculations indicate only a small finite size effect on the calculated
KA, with the difference between a bilayer patch of 128 and 512
lipids being within statistical uncertainties.
The line tension is computed by constructing a ribbon

structure of bilayers, continued in the z direction as shown in
Figure 2. This structure is simulated in the NPxyLzT (325 K)
ensemble, and line tension is calculated from the edge along z
from eq 2:58

Λ ¼ 1
2

LxLy
Pxx þ Pyy

2
� Pzz

� �� �
ð2Þ

III. RESULTS AND DISCUSSION

A. Free Energies of Hydration and Partitioning.Calibration
of free energies of hydration and partitioning between water and
hexadecane plays an important role in the development of GRO-
MOS and MARTINI force fields. We also use these quantities to
calibrate LJ interaction parameters for uncharged bead types in
the BMW-MARTINI model. For charged groups, due to the lack
of relevant experimental data, they are parametrized based on
lipid properties and amino acid PMFs, as described in later
sections.
Due to the CG nature of the model, it is only meaningful to

compare calculated free energies with experimental values for a
range of similar compounds, as was done with the original
MARTINI model. As shown from Table 2, results with the
new CG model are overall in good agreement with experimental
and original MARTINI results. Thus simply using two scaling
factors for the LJ well-depth between uncharged groups and
water is sufficient for the current purpose. Due to the soft-core
nature of the BMWmodel, which allows smaller energy variation
upon solute insertion, the scaling factors are smaller than the one
(95%) introduced in the polarizable MARTINI model.36 Similar
to the original MARTINI model,15 our model systematically
underestimates the hydration free energies as compared to
experimental values. The magnitude of the underestimation is
larger for more polar beads (i.e., P groups), indicating that
improving the description of polar groups (e.g., by including
explicit dipoles) can be a future direction for development. Since
our current model mainly focuses on the partitioning of beads
between polar and apolar environments, as in the original
MARTINI, interactions between P and C groups are under-
estimated to compensate for the underestimated hydration of
P groups. For charged particles, because electrostatics are
explicitly included in the new model, the solvation free energies
are comparable to atomistic results (also see Supporting Informa-
tion for discussions of ions).
B. Hydration Thermodynamics. In addition to comparing

hydration free energies, it is of interest to compare the enthal-
pic�entropic components of hydration at the CG and atomistic
levels to ensure that the CGmodel captures the proper physics of
solvation, especially that of hydrophobic groups. For this pur-
pose, we study the hydration of N-hexadecane (four bonded C1
beads in the CGmodel), which forms the tail of DPPC. Solvation
free energies computed at different temperatures (263�343 K)
are decomposed into solute�solvent interaction energy Uuv and

Figure 2. Ribbon structure of 512 DPPC lipids and the simulation box
(shown with VMD)59 in the line tension calculation. For clarity, all
waters (16 096 BMW water) are omitted, and the ribbon is intercepted
in the x�y plane as shown, with tails in cyan, glycerol in green, and head
groups in tan and blue.
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entropy Suv,
60 and the results are compared to both atomistic and

MARTINI results.61

In all cases, the hydration free energies predicted by our new
CG model are similar to the original MARTINI model, and system-
atically overestimate the atomistic value for the free energy at all
temperatures, as can be seen in Figure 3. Decomposition of the
solvation free energy into enthalpic and entropic terms (not
shown) indicates that both models overestimate both the solute�
solvent interaction energy and the entropy by significant amounts
(of the order of 50 kJ/mol and 100�200 kJ/(mol 3K), respectively),
i.e., this does not simply originate from an overestimation of the
water�oil repulsion as previously reported.61 As the chain length
increases (Figure 3b), the enthalpic contribution in the CG
models decreases more slowly compared to atomistic results, while
contributions from entropy (�TS) change at a similar pace in the
three models. In other words, with a CG model, change in the
solute�solvent enthalpy as the chain elongates is not strong enough
to compensate for the change in solute�solvent entropy.
For the partition free energy of solutes between water and

octanol (see Figure 3c), the discrepancy between CG and atomistic

results is less sensitive to the chain length, due likely to error
cancellation. This is encouraging because partition free energies
are more important for the development of both original and our
improved MARTINI model.
C. Lipid Properties. 1. Bilayer Structural, Elastic, and Dynamic

Properties. The BMW-MARTINI model values for the area per
lipid in bilayers are similar (somewhat lower) to that obtained
from experiment or from the MARTINI model. Table 3 com-
pares the area per lipid obtained from various models for several
common saturated, unsaturated, and charged lipid bilayers. Given
the uncertainty in experimental measurements, the results from
the newmodel are satisfying, especially for charged lipids, such as
DOPS. Similar agreement is found for the thickness of lipid
bilayers. For DPPC bilayers (at 325 K), the experimentally
measured thickness is 3.8 nm,63 MARTINI gives 4.0 nm, and
BMW-MARTINI gives 3.9 nm. For DOPC bilayers (at 300 K),
both the original MARTINI (4.5 nm) and BMW-MARTINI
(4.6 nm) values are larger than the experimental result (3.7 nm).64

Considering the CG nature of the lipid tails (one bead represent-
ing ∼4 CH2 groups), the agreement can be considered satisfac-
tory. Further more, the density profiles of the CG bilayer are in
good agreement with experiment (see Supporting Information).
The BMW-MARTINI results for the area compressibility

modulus, KA, and the line tension are significantly higher than
the experimental values or those obtained from the MARTINI

Table 2. Free Energy of Hydration and Partition between Water and Hexadecane for Neutral Groups Is Compared to
Experimental Values for Target Compounds and MARTINIa

hydration partition

scaling factor type expt. MARTINI BMW expt. MARTINI BMW

75%

P5 �40 �25 �21 �27 �28 �27

P4 �27∼�35 �18 �15 �21∼�25 �23 �22

P3 �29 �18 �15 �19 �21 �19

P2 �21 �14 �11 �13 �17 �14

P1 �20∼�21 �14 �11 �9∼�10 �11 �10

71%

Nd/Na/Nda �12∼�20 �9 �5 �4∼�6 �7 �4

N0 �8 �2 �1 �1 �2 0

C5 �6 1 2 7 5 7

C4 �4∼2 5 5 7∼11 9 10

C3 �1∼�2 5 5 12 13 14

C2 8 10 8 16 17

C1 9∼10 14 10 18 18 19
aThe estimated experimental values are taken directly from ref 15 and compound names are not listed here. The scale in the first column is the scaling
factor for MARTINI potential levels between the groups and water. All units are in kJ/mol, and the new model is labeled as BMW.

Figure 3. Hydration free energy in water for (a) n-hexadecane as a
function of temperature and (b) n-alkanes at 303 K. Panel (c) shows the
partition free energy for n-alkanes between water and octanol at 303 K.
Data for both atomistic (AA) andMARTINI (MAR)14 are taken directly
from ref 61, while the partitioning data are compared to experimental
values (expt.).62 The corresponding linear regression curves and their
slopes are also displayed in the same color.

Table 3. Area Per Lipid for Common Saturated and Unsa-
turated PC, PE, and PS Phospholipids in the CG Modela

systems expt. MARTINI BMW

DPPC (325 K) 6363 64 64

DPPC (338 K) 64�6765,66 66 65

DOPC (300 K) 6764 67 64

DOPE (273 K) 6567 61 60

DOPS (303 K) 6568 67 62
aAll units are in Å2. Typical uncertainties in simulation results and experi-
ments are 1 and 2 Å2, respectively. For MARTINI, all values are shown as
reported in ref 14 except for DOPS, which is calculated from this work.
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model. For DPPC bilayers, the BMW-MARTINI prediction for
KA is 585 ( 16 dyn/cm, which is higher than the experimental
value69 of 234 dyn/cm and the MARTINI result of 292 dyn/cm
(also calculated using eq 1). The model predicts a line tension
of 118 ( 11 pN, which is higher than the experimental estimate
of 10�30 pN for similar lipids70�72 and the MARTINI value
of 64 pN.73

The high line tension in the BMW-MARTINImodel will likely
result in the model significantly overestimating the barrier to
pore formation in lipid bilayers. The energy E required to form a
pore inside the bilayers can be approximated by74 E(r) = 2πΛ�
πr2γ, where r is the pore radius and γ the tension on membrane.
At the critical tension γ*, the edge energy from Λ is overcome,
and a pore is stable at r = γ*/Λ. Therefore, overestimating Λ
means that the critical tension required to form a pore is likely to
be overestimated. The overestimated line tension is likely related
to the CG nature of the solvent, where the partitioning of
individual water molecules at the bilayer edge is not captured.
By grouping four waters together into a single site, the energy
penalty for bringing a CG water into the hydrophobic region
becomes larger. This energy penalty is large in the BMW-
MARTINI model, compared to the MARTINI model, because
of the presence of electrostatic interactions.
The lipid (DPPC) lateral diffusion constant is 0.8 ( 0.1 �

10�7 cm2/s (using the effective scaling factor of 4 due to coarse-
graining),15 which is similar to the experimental value of 1.0 �
10�7 cm2/s.75

2. Lipids Self-Assembly. The microphase morphology of lipids
is an important benchmark for interaction parameters of charged
groups. Experimental studies indicate that DOPE lipids assemble
into an inverted hexagonal phase at temperatures above
280�300 Kwith 1:16 lipid/water hydration level,76 while DOPC
lipids assemble into the lamellar phase under similar conditions.77

This phase behavior reflects the spontaneous curvature of the
lipid layers, which are negative for DOPE and about zero for
DOPC.78,79 The interactions between lipid head groups (Q�Q)
and between the head groups and water (Q�BMW) play a key
role, since they modulate the effective shape of the lipid molecules
(e.g., cone vs cylinder).
The BMW-MARTINI model gives the correct phases for

DOPE and DOPC, which suggests that the spontaneous curva-
tures for bilayers of both lipids are properly captured by the
current model. To study the phase behavior of lipids, a system of
1000 lipids mixed randomly with 4000CG solvents (corresponding
to 16 water molecules per lipid) is simulated with completely
anisotropic pressure coupling at 318 K. Because the lamellar
phase has a faster water exchange rate, it is prepared as the initial
configuration: A lamellar phase is first assembled by artificially
setting the lipid head groups to interact with water with the
highest interaction strength in the MARTINI force field (level
O), then the proper level of interaction is used for subsequent
simulations. For DOPE, “stalks” of lipids are gradually formed
between the lamellar layers, and the inverted hexagonal phase is
formed within∼5 μs (shown in Figure 4). The resulting hexagonal
spacing (distance between the central axes of water channels) is
6.8 nm, which agrees well with the estimate from SAXS data as
7.1 nm.80 For DOPC, no stalk formation is observed, and the
lamellar phase remains stable for the subsequent 5 μs simula-
tions, and the resulting lamellar repeat spacing is 5.8 nm; the
experimental value for fully hydrated lipids is 6.3 nm.63

3. Membrane Interface Electrostatic Properties. The dipole
potential at the membrane-water interface is significantly improved

with the BMW model over previous CG models, such as
MARTINI.41 With refined parameters in this work, this feature
is maintained. The calculated value of the interfacial potential is
+0.23 V (the value was +0.30 Vwith a preliminary combination41

of BMW and MARTINI lipid models), in good agreement with
experimental estimates of 0.22�0.28 V for DPPC bilayers.30

D. Interaction between Amino Acids and a Lipid Bi-
layer. 1. Partition of AminoAcid SideChains.ThePMF is calculated
for each amino acid side chain as a function of the distance from the
center of a DOPC lipid bilayer. Results are compared to both
atomistic48 andMARTINI23 models to further fine-tune interaction
levels in our CG model, especially for charged groups. For each
simulation, two side chain analogues are placed at a distance of
4.5 nm from each other, one in the center of bilayer and the other in
the bulk, in a system of 96DOPC lipids and 1300 BMWwaters; the
PMF is then calculated with the standard umbrella sampling
protocol, with 46 windows and 80 ns for each window, and force
constants of∼1000 kJ/ (mol 3nm

2). The PMF is averaged over the
symmetric halves of the bilayer. For charged side chains, two ions
(Na+ or Cl�) are added to maintain charge neutrality.
Some of the parameters are fine-tuned after a comparison with

atomistic results, so this is strictly not a test of the model. New
bead types are introduced: RQd for the arginine guanidinium
group and AQa for aspartate and glutamate. The other side chains
are represented with the same topology as MARTINI. For neutral
amino acids the parameters are not changed beyond what was
used for the partition free energy between water and hexadecane
(Table 2). For the aromatic side chains, a scaling factor of 90% for
all the ring groups (start with S) to C1 is applied. New parameters
are fit for the charged side groups. For highly polar but neutral
side chains, Gln (P4) and Asn (P5), their interactions to Nda, Nd,
and Na are changed as ε = 5.6 kJ/mol.
The new force field is more accurate for the side chain PMF

than the MARTINI force field, when compared to results from
atomistic simulations. In Figure 5, representative PMF profiles
for hydrophobic, polar, aromatic, and charged amino acid side
chain analogues are shown. For neutral amino acids, the PMFs
have the proper values in both solution and membrane tail
regions. PMF in the interfacial region is determined by inter-
actions between charged groups (lipid head groups) and the
side chain. Take leucine for example, modeled as C1, the scaling
factor for the nonpolar interactions determines its insertion
PMF between water and the bilayer center, and the barrier at
the interface is defined by Q�C1 interactions. Both the original
MARTINI and the BMW-MARTINI are accurate for these
PMFs. For the polar amino acids the performance of the new
force field is slightly superior to the MARTINI force field, but

Figure 4. BMW-MARTINI results for the inverted hexagonal phase of
DOPE (left) and lamellar phase of DOPC (right); the beads are color
coded: water in red, lipid tails in cyan, glycerol in green, lipid head groups
in blue and tan, and lipid tail terminals (last bead) in white.
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neither force field is in quantitative agreement with the atomis-
tic simulation results.
For the charged amino acids, their PMFs are closely coupled to

membrane�water defects induced by the penetration of the side
chains. This makes the parametrization more complicated than
for neutral groups because all Q�Q, Q�BMW, Q�neutral inter-
actions should, in principle, be considered. However, since our
model gives the correct electrostatic profile at the interface, a
deep minimum is always observed for the cationic side chains
although the depth of the minimum depends on the parame-
trization. Compared with the original MARTINI (Arg+: �6 kJ/
mol and Lys+: �9 kJ/mol), our new model gives a substantially
deeper minimum: �22 kJ/mol for arginine and �20 kJ/mol for
lysine; the latter values are close to the atomistic results. In the
center of the bilayer, the calculated PMF with BMW-MARTINI
is too high for all charged amino acids compared to atomistic
results. However, even different atomistic force fields give rather
different values in this region with an uncertainty up to 25 kJ/mol.81

Therefore, we do not consider the discrepancy in this region as a

significant limitation of the model, although this issue deserves
further exploration especially in the context of studying pore
formation, where the line tension of the bilayers will play an
important part.
2. Poly-Arg8 Attachment on Membrane. We use the new

force field to investigate the attachment of peptides to a
membrane surface. Simulations of a poly-Arg8 cationic peptide
(analogue to HIV-TAT peptide)82 on the surface of a 128DOPC
lipid bilayer are performed with both the new model and original
MARTINI; the simulation cells are charge neutral with counter-
ions (0.15MNaCl) (see details for ion in Supporting Information).
According to recent experimental observations,83 the peptide
attaches to the membrane surface with a long residence time of
up to a second; atomistic simulations82,84 up to 400 ns also showed
stable attachment. With the original MARTINI, the peptide does
not absorb in a stable fashion and desorbs frequently with the
longest residence time on the membrane surface of ∼350 ns
(Figure 6a).
The BMW-MARTINI model predicts a stable attachment of

poly-Arg8 to a DOPC bilayer. Figure 6 depicts the minimum
distance between the peptide and the bilayer as a function of time
and shows that with the BMW-MARTINI model the peptide
stays attached up to tens of microseconds (throughout the entire
simulation) unlike the original MARTINI model. On the surface
of an anionic bilayer (70% DOPC and 30% DOPS), the new
model gives very stable attachment of poly-Arg8. With MARTI-
NI, however, the peptides are still observed to desorb from the
membrane surface although the residence time (∼μs) is longer
than that at the surface of a zwitterionic (DOPC) bilayer. This
difference is anticipated based on the difference in the insertion
PMF for arginine side chains at the membrane surface (see
Figure 5 on DOPC), for which the MARTINI model predicts a
much shallower minimum than the BMW-MARTINI model.
This qualitative difference between BMW-MARTINI and MAR-
TINI highlights the importance of properly describing electro-
statics for the analysis of highly charged peptides or protein
motifs near membrane surface.

Figure 6. The minimum distance between Poly-Arg8 and a DOPC
bilayer as a function of time from MARTINI (MAR) and BMW-
MARTINI (BMW) simulations. The van der Waals diameter of the
relevant bead types is 0.47 nm, thus the peptide is considered attached to
the surface if the minimum distance is below 0.47 nm. Somewhat similar
differences are observed also for Poly-Arg8 at the surface of an anionic
membrane (70% DOPC and 30% DOPS).

Figure 5. Insertion PMF for amino acids into a DOPC bilayer (negative
distances indicate the interior of the bilayer). Note that although the
position of phosphate groups is strictly defined with electron density
maximum for each model, the position of the amino acid relative to the
phosphate (x-axis) in the MARTINI and BMW-MARTINI models is
subject to some uncertainty (up to 0.2 nm) due to the CG nature of
these models. Both atomistic (AA)48 and MARTINI (MAR)23 data are
obtained from Tieleman and co-workers (private communication).
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In a recent study37 of insertion PMF for pentapeptides that
feature both charged and hydrophobic groups, Singh and Tiele-
man found that the polarizable MARTINI model leads to a sub-
stantial improvement over the original MARTINI, and the results
were in good agreement with atomistic simulations. This is
interesting because the interfacial potential calculated by polariz-
able MARTINI still has the incorrect sign.36 On the other hand,
as analyzed by Allen and co-workers,38 the membrane permea-
tion energetics for charged groups are not a simple function of
the interfacial potential because the dipole potential is not fully
sensed at the locally deformed bilayer interface. Moreover, the
presence of both hydrophobic and charged groups in the pentapep-
tidesmay have further helped attenuate the errors associated with
the charged group. In the near future, as the amino acids parameters
for the polarizable MARTINI model36 become available, it is
valuable to compare the BMW-MARTINI and polarizable MAR-
TINI models in a systematic fashion.
Simulations with multiple copies of poly-Arg8 (in the presence

of Na+/Cl� counterions) on a DOPC bilayer show no mem-
brane penetration during up to 20 μs, in agreement with more
recent atomistic simulations.84 With 8 peptides, the area per lipid
increases slightly from the peptide-free value of 0.64�0.66 nm2.
Order parameter calculations indicate that the head groups
become more ordered and perpendicular to the membrane
normal in the presence of multiple cationic peptides; at the same
time, water clusters near the membrane surface (below phos-
phate groups) become slightly less ordered.
Finally, interesting phase behaviors have been observed ex-

perimentally for the mixture of cationic peptides (e.g., poly-Arg
vs poly-Lys) and lipids.85 Simulations with a reliable CG model
are expected to be very effective at complementing experiments
to better understand the connections between peptide sequence
and phase behavior.86 Such studies are in progress and will be
reported separately.
3. Electroporation.When two bilayers are constructed with an

imbalance of ions on the two sides, the chemical potential
difference and local electric field drive the transfer of ions through
the bilayer via the formation of a water pore. The process is referred
to as electroporation and has been used to test both atomistic87,88

and CG36 lipid models. Here we investigate the same systems
studied previously by the polarizable MARTINI model.36 A typical

system consists of two DPPC bilayers, which contain 512 lipid
molecules, 5632 CG BMW water molecules, 52 evenly distrib-
uted (over the two water compartments) Cl� ions and 52 Na+ in
one water compartment; this charge imbalance of 26 e� results in
an electric field of 0.7 V/nm. Simulations are performed in the
NPxyPzT ensemble, at 325 K, and for 6 μs.
With this charge imbalance, the simulations show the opening

of a water pore, transportation of both Na+ and Cl� ions, and then
closing of the pore. Typically, a water pore is formed within 1 ns,
and ions diffuse from onewater compartment to the other through
the pore (shown in Figure 7a); Na+ and Cl� ions translocate in
opposite directions during the process. The water pore grows in
size until approximately 20�40 ns, when it reaches its maximum
diameter (∼4 nm) and then starts to shrink in size. After
approximately 100 ns, only a water defect remains with about
5 CG water in the membrane interior. With the small charge
imbalances at this stage, the ions still translocate through a toroidal
pore (shown in Figure 7b), in agreement with previous atomistic
simulations.88 By contrast, the defect observed at this stage with
the polarizable MARTINI model does not involve significantly
displaced lipid headgroups and thus closer to the barrel stave
model.36 Eventually, after approximately 400 ns, the water defect
completely seals, and the two compartments have different con-
centrations of ions (containing about 36 Na+/34 Cl� and 16 Na+/
18Cl�, respectively) with a negligible charge imbalance of 1�2 e�.
Spontaneous electroporation also occurs for smaller (20 e�)

and larger (52 e�) charge imbalances. For large charge imbal-
ances, multiple pores located on different bilayers are observed.
With a smaller charge imbalance (20 e�), pore formation takes a
longer time, which could be several μs. The total number of Na+

and Cl� transferred to the opposite water compartment is similar
if the initial charge imbalance is small, indicating little membrane
selectivity toward anions (Cl�) over cations (Na+), in agreement
with atomistic studies.88

IV. CONCLUSIONS

We report a new CG force field, called BMW-MARTINI, for
simulations of lipids and peptides in water. The model follows
the same strategy as the original MARTINI force field but is
based on the BMW water model, which includes electrostatic
interactions. The interactions between almost all the CG sites are
reparameterized.

The new force field provides a reasonably accurate description
of the hydration of the CG sites, the transfer free energy of sites
between hexadecane and water, lipid phase behavior, membrane
electrostatic properties, and insertion potential of mean force
for amino acids into a bilayer. For most of these properties,
the BMW-MARTINI model gives similar results as the original
MARTINI.

For membrane electrostatic properties and the insertion
potential of mean force of charged amino acids into a bilayer,
the newmodel is superior to both the original and the polarizable
MARTINI models and predicts a much deeper free energy
minimum at the membrane�water interface. As a consequence,
the new model predicts a stable attachment of cationic peptides
to both zwitterionic and negatively charged membrane surfaces,
as observed in experiment and atomistic simulation, while
frequent desorptions are observed with the original MARTINI
force field. The model also predicts electroporation when there is
a charge imbalance across the lipid bilayer, in contrast to the
original MARTINI. The pore formed during electroporation is

Figure 7. Snapshots from simulations of electroporation (with an initial
charge imbalance of 26 e�). (a) The initial structure of the pore, formed
within 1 ns (the water molecules are omitted for clarity). (b) The final
structure of the (toroidal) water defect. Color code: yellow: Na+ or Cl�;
blue: choline; and tan: phosphate.
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toroidal in nature, similar to the prediction of atomistic simula-
tions but distinct from results of polarizable MARTINI for small
charge imbalances.

In terms of efficiency, the new model is more computationally
intensive than the nonelectrostatic MARTINI by a factor of less
than 6, but still more than 2 orders of magnitude more efficient
than atomistic models. Therefore, the BMW-MARTINImodel is
a useful alternative to the (polarizable) MARTINI model, and
future studies are required to systematically compare the merits
and limitations of these models in realistic applications.

In the current form, the BMW-MARTINI model is not as
accurate for the mechanical properties of the membrane, with
values for the area compressibility modulus and line tension
being significantly higher than experiment or the original MAR-
TINI model. We attribute this to the mapping of four water
molecules to one CG site whichmakes the process of transferring
a water from the aqueous phase to hydrophobic region unrealis-
tic. The electrostatic interactions in the BMW water model
exacerbate this problemwith the coarse-graining procedure. This
overestimation of mechanical properties is likely to result in a
high barrier to pore formation. A possible solution to this problem is
to use an adaptive resolution scheme for water,89,90 where CG
sites can be transformed into atomistic water molecules in the
interface and pore region. Alternatively, soft interactions, which
are limited to water�water interactions in the current model, can
be introduced between water and other components of the system.
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ABSTRACT:Anew approach to investigate amolecular recognition process of protein is presented based on the three-dimensional
reference interaction site model (3D-RISM) theory, a statistical mechanics theory of molecular liquids. Numerical procedure for
solving the conventional 3D-RISM equation consists of two steps. In step 1, we solve ordinary RISM (or 1D-RISM) equations for a
solvent mixture including target ligands in order to obtain the density pair correlation functions (PCF) among molecules in the
solution. Then, we solve the 3D-RISM equation for a solute�solvent system to find three-dimensional density distribution
functions (3D-DDF) of solvent species around a protein, using PCF obtained in the first step. A key to the success of themethod was
to regard a target ligand as one of “solvent” species. However, the success is limited due to a difficulty of solving the 1D-RISM
equation for a solvent mixture, including large ligand molecules. In the present paper, we propose a method which eases the
limitation concerning solute size in the conventional method. In this approach, we solve a solute�solute 3D-RISM equations for a
protein�ligand system in which both proteins and ligands are regarded as “solutes” at infinite dilution. The 3D- and 1D-RISM
equations are solved for protein�solvent and ligand�solvent systems, respectively, in order to obtain the 3D- and 1D-DDF of
solvent around the solutes, which are required for solving the solute�solute 3D-RISM equation. The method is applied to two
practical and noteworthy examples concerning pharmaceutical design. One is an odorant binding protein in the Drosophila
melanogaster, which binds an ethanol molecule. The other is phospholipase A2, which is known as a receptor of acetylsalicylic acid or
aspirin. The result indicates that the method successfully reproduces the binding mode of the ligand molecules in the binding sites
measured by the experiments.

1. INTRODUCTION

The molecular recognition (MR) in living systems is a crucial
elementary process for biomolecules to perform their functions
as, for example, enzymes or ion channels. TheMR process can be
defined as a molecular process in which one or few guest
molecules are bound in high probability at a particular site, a
cleft or a cavity, of a host molecule in a particular orientation. The
process is governed essentially by the two physicochemical
properties: (1) difference in the thermodynamic stability (or
free energy) between the bound and unbound states of host and
guest molecules, and (2) structural fluctuation of molecules. In
this article, we propose a new approach to describe the molecular
recognition process based on the statistical mechanics of molec-
ular liquids.

In the last three decades, many computational methodologies
for investigating a MR process have been proposed.1�18 As is
mentioned above, the focus of the MR in silico is concerned with
the prediction of ligands or drugs that would be strongly bound
to key regions of a receptor or an enzyme. The popular “docking
simulation” for drug design uses essentially a trial and error
scheme to find a “best-fit complex” of host and guest molecules
based on geometrical and/or energetic criteria.3,4 However, the
best-fit complex in a geometrical sense is not necessarily the most
stable one in terms of the thermodynamics because it cannot
account for the solvent; so neither the dehydration penalty nor
the entropy barrier is taken into account. By the “dehydration

penalty,” we mean a free energy penalty concerning a molecular
process in which a water molecule detaches from a binding site.

The so-called implicit solvent models, the generalized Born5

and the Poisson�Boltzmann equations,6 which have been used
most popularly for evaluating the solvation thermodynamics of
biomolecules, are not accurate and insightful for this problem
under concern, because by definition they do not have a
molecular view for solvent. It is impossible to define a dielectric
constant of solvent inside a host cavity, and therefore, it cannot
account for the dehydration penalty, especially that from the host
cavity. At best, those quantities can be calculated by fitting the
empirical parameters, such as the boundary conditions and the
dielectric constants, with experimental data, but then it loses
credibility as a theory to predict the phenomena.

The molecular simulation, on the other hand, can provide the
most detailed molecular view for the process. The simulation
methods, molecular dynamics (MD) and Monte Carlo (MC),
sample the configuration space of a ligand�receptor system in
solvent using the numerical integration of the Newtonian
equation (MD) or the probabilistic search along the Markov
path (MC) in order to evaluate the free energy difference
between the bound and unbound states of the host�guest
system. However, this type of simulation does not work for the
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problem well, because aMR process is usually slow as well as rare
events. A common strategy adopted by the simulation commu-
nity to overcome the difficulty is a non-Boltzmann-type sampling
which defines a “reaction coordinate” or an “order parameter”
onto which all other degrees of freedoms are projected. The best
example is the “umbrella” sampling to realize the potential of
mean force or the free energy along a conduction path of an ion in
an ion channel.7 The method is quite powerful for sampling the
configuration space around an order parameter if the parameter
is unique and if the configuration space to be projected on the
parameter is sufficiently small. Unfortunately, the problems in
the biochemical processes are not so simple as can be described
by a unique order parameter. So, it is often the case that the
results of the simulation depend on choices of order parameters
and on “scheduling” of the sampling. The other methodology
employed to accelerate the sampling is to apply an artificial
external force on the system. That kind of simulation should
verify that the configuration of water satisfies the Boltzmann
distribution.

A different approach to the MR process has been developed
based on the three-dimensional reference interaction site model
(3D-RISM) theory during the last five years.8�18 The method
integrates analytically the configuration space of a ligand�
receptor system in solvent by means of the statistical mechanics.
The analytical integration which extends over the infinitely large
configuration space is the advantage which distinguishes the
method from the molecular simulation. Due to this advantage,
the 3D-RISM theory is free from the difficulties which the
simulation methods are facing.

The 3D-RISM equation was derived from the molecular
Ornstein�Zernike (MOZ) equation, the most fundamental equa-
tion to describe the density pair correlation of liquids, for a
solute�solvent system in the infinite dilution by taking a statistical
average over the orientation of solvent molecules.19�21,35�37 By
solving the combined 3D-RISM with RISM equations, the latter
providing the solvent structure in terms of the site�site density pair
correlation functions, one can get the “solvation structure” or the
solvent distributions around a solute. The high peak of the solvent
distributions indicates that the solvent affinity of target protein or
receptor at that point is high. Therefore, the MR process can be
probed by the solvent or ligand distribution. Themethod produces
naturally all the solvation thermodynamics as well, including
energy, entropy, free energy, and their derivatives, such as the
partial molar volume and compressibility. Unlike the molecular
simulation, there is no necessity for concern about size of the
system and “sampling” of the configuration space, because the
method treats essentially the infinite number of molecules and
integrates over the entire configuration space of a system.22

By the way, in all previous studies of MR by 3D-RISM theory,
the receptor protein and ligand molecule were regarded as solute
and solvent, respectively. In those cases, the MR process is
analyzed in terms of solvent distribution around a solute
molecule, which is called a sol‘u’te�sol‘v’ent density distribution
function (uv-DDF). The RISM equation for solvent system
should be solved before a 3D-RISM calculation. There, “solvent”
consists of ligand molecules, water, and other components of
solution. Because the RISM and 3D-RISM equations coupled
with closure relation (i.e., hypernetted chain or Kovalenko�
Hirata (KH) closure) are nonlinear integral equations, those are
solved in an iterative manner.23,24

Although many theoretical and methodological efforts have
been devoted to solve the RISM and 3D-RISM equations, the

system has been largely limited to that including relatively small
solvent molecules, such as water, ions, carbon monoxide, and the
largest being glycerol.14,25,26 A reason why is because numerical
solution of the RISM equation for solution including large
ligands becomes increasingly unstable as the size of ligands
increases. However, many ligands of biological interests, includ-
ing ordinary drug molecules, are not so small. Therefore, we
propose a new approach to tackle MR of large ligand molecules
by protein based on the 3D-RISM and RISM theories. The
strategy of the method is to regard a ligandmolecule as a solute in
addition to a receptor protein, which are immersed in solvent in
the infinite dilution. The distribution of ligand molecules around
a receptor protein is described by the sol‘u’te�sol‘u’te density
distribution function (uu-DDF), instead of uv-DDF. In this
sense, the new method is named as “uu-3D-RISM.” Under the
treatment of this method, interactions between ligand molecules
can be ignored completely from the consideration, because the
density of ligand molecule is vanishingly small at the limit.
Therefore, it is not necessary to solve the ligand�ligand RISM
equation, the most unstable equation, anymore. This assumption
stabilizes the numerical solutions of a set of the 3D-RISM and
RISM equations dramatically.

An approach to uu-DDF has already been proposed by
Kovalenko and Hirata to investigate the potential of mean force
between two molecular ions in a polar molecular solvent.21 In
their method, uu-DDF is a function of position and orientation of
two solute molecules. Therefore, in order to obtain the uu-DDF
for all possible positions and orientations of a ligand molecule,
the method requires sampling in the entire coordinate space. On
the contrary, the uu-DDF can be obtained by a single calculation
in the present method, because one of the solute molecules,
usually a ligand molecule, is treated in terms of an interaction-
site model.

This paper is organized as follows. In Section 2, we briefly
review the RISM and 3D-RISM theories in order to identify each
member of the RISM family and derive the uu-3D-RISMequation.
We also clarify how the molecular recognition process of biolo-
gical system is treated with the uu-3D-RISM method. Section 3
is devoted to applications of the uu-3D-RISM method to two
practical and noteworthy examples, odorant binding protein27 and
phospholipase A2.28�31 Section 4 concludes the paper.

2. METHOD

2.1. Outline of 3D-RISM Theory.TheMOZ integral equation
for a multicomponent system is written as

hijð1, 2Þ ¼ cijð1, 2Þ þ ∑
l

Z
cijð1, 3ÞFlhljð3, 2Þdð3Þ ð1Þ

where Fl is the number density of species l, hij(1,2) and cij(1,2)
denote the total and direct correlation functions between a pair of
molecular species i and j in a solution, respectively.32 The
numbers in the parentheses represent the coordinates of mol-
ecules in the liquid system, including both the position r and the
orientation Ω. The total correlation function hij(1,2) is related
to the density pair correlation functions gij(1,2) by hij(1,2) =
gij(1,2) � 1. The summation in the right-hand side runs over
species in a mixture.
The eq 1 depends essentially on six coordinates in the

Cartesian space, and they include a six-fold integral. This integral
is the one which had prevented the theory from applying to
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polyatomic molecules. It is the interaction-site model and the
RISM approximation proposed byChandler and Andersen33 that
enabled one to solve the equations. The idea behind the model is
to project the functions onto the one-dimensional space along
the distance between a pair of interaction sites, usually placed on
the center of atoms, by taking the statistical average over the
angular coordinates of molecules, fixing the separation between
two interaction sites. The projection can be accomplished by the
following equation:

hαγðrÞ¼ 1

Ω2

Z
δð|r1 þ lα1 |Þδð|r2 þ lγ2 |� rÞhð1, 2Þdð1Þdð2Þ

ð2Þ
where r1 and l1

α indicate the position of molecule 1 in laboratory
frame and the position of siteα of molecule 1 in molecular frame,
respectively.
Now, we classify molecular species in the system into two

categories, “solute” and “solvent,” respectively, as previous
works.19�21 After this, the superscripts “u” and “v” denote solute
and solvent, respectively. For example, hvv

0
is the total correlation

function between different molecular species v and v0 in solvent,
and Fv and Fu also are elements of diagonal matrices which
denote density of each species in solvent and solute. The
summations concerning v and v0 in the equations run over
solvent species, while u and u0 run over solute species. The most
interesting case to investigate “solvation” of a biomolecule can be
realized by taking the infinite dilution limit for all the solute
species, namely, Fuf 0. Then, eqs 1 and 2 are constructed from
solvent�solvent, solute�solvent, and solute�solute systems,
and you note that these equations can be solved sequentially,
because the former equation is independent from the later.
The RISM equation can be derived from eqs 1 and 2 with a

super position approximation for the direct correlation function,
which reads

hvv
0

αλðrÞ ¼ ∑
η ∈ v0
γ ∈ v

ωv
αγ
�cvv0γη

�ωv0
ηλðrÞ

þ ∑
v00
Fv

00
∑

η ∈ v00
γ ∈ v

ωv
αγ
�cvv00γη

�hv00v0ηλ ðrÞ ð3Þ

where ω is an intramolecular correlation function, the asterisk
denotes the convolution integrals, and Fv denotes the number
density of solvent species v. For clarity, we refer to eq 3 as vv-1D-
RISM equation hereafter. A similar equation can be derived from
eqs 1 and 2 for a solute�solvent system in the infinite dilution
limit as follows:

huvαλðrÞ ¼ ∑
η ∈ v
γ ∈ u

ωu
αγ
�cuvγη�ωv

ηλðrÞ

þ ∑
v0
Fv

0
∑

η ∈ v0
γ ∈ v

ωu
αγ
�cuv0γη

�hv0vηλ ðrÞ ð4Þ

The theory has been proven to be so successful for describing
structure and thermodynamics of liquid and liquid mixtures,
including a variety of aqueous solutions.20 However, the theory
has exhibited serious breakdown, especially when it was applied
to solutions including macromolecules, such as protein as a
solute.34 Then, in order to avoid the problem, alternative

approaches have been developed during two decades.19,35 We
have derived from eq 1 by taking an average over angular
coordinates only for solvent coordinates, not for solute
coordinates.36,37

huvα ðrÞ ¼ 1
Ω

Z
δðr2 þ lα2 � rÞhuvð1, 2Þdð2Þ

¼ ∑
v0 ∈ solvent

∑
γ ∈ v0

cuv
0

α
�½ωv0

γα þ Fv
0
hv

0v
γα�ðrÞ ð5Þ

where v0 runs over the all solvent species. Where we also
employed a super position approximation for the solute�solvent
direct correlation function:

cuvð1, 2Þ � ∑
α ∈ v

cuvα ðrÞ ð6Þ

This is the basic assumption of the 3D-RISM theory. The
solvent�solvent (vv) total correlation function appeared in the
right-hand side of eq 5 is evaluated from the vv-1D-RISM
equation, or eq 4, in advance. The Fh(r) is essentially the “second
moment of the density fluctuation” of two spatial points, which
can be identified as a “mean excess density” due to the method
devised by Percus.38

The MR phenomena can be described by solving the vv-1D-
RISM and 3D-RISM equations sequentially, considering that a
receptor protein is immersed in solvent�ligand mixture in the
infinite dilution limit of the receptor. In other words, ligand
molecules are treated as one of components of a solvent mixture.
MR is realized in terms of the Fh(r) of ligand atoms at a binding
site, relative to bulk solutions; if Fh(r) is greater than zero, then
we conclude that the ligand is “recognized” by the site. So, the
procedure of realizing MR by 3D-RISM is quite straightforward.
There is no necessity to define order parameters, such as
“reaction coordinates” and “umbrella”, for exploring the config-
uration space of ligands, which is the case in the molecular
simulations.

Scheme 1. Scheme of uu-RISM Method
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It is the inclusion of ligand species in solvent that gave 3D-
RISM/vv-1D-RISM a great advantage. In fact, many applications
of 3D-RISM to MR processes so far have been so successful as
long as small ligands including water, CO, NH3, and metal ions,
etc. are concerned. However, the advantage turns into disadvan-
tage when large molecules including most of the drug com-
pounds are involved. The problem originates in the vv-1D-RISM
equation, not in the 3D-RISM equation. To describe a MR
process with 3D-RISM, we have to solve the vv-1D-RISM
equation for solvent mixture, including ligand species in advance.
However, according to our experience, numerical solutions of the
vv-1D-RISM equation for a mixture including a large compound
are quite unstable due to inherent nonlinearity of the integral
equation, which increases with increasing size and complexity of
molecules.
In the following subsection, we develop a new approach which

is derived from the solute�solute MOZ equation in which both
receptor and ligand molecules are dissolved in a solvent mixture
at the infinite dilution.
2.2. uu-3D-RISM Equation.The strategy of the new approach

is to regard a ligandmolecule as a solutemolecule, in addition to a
receptor protein, which is immersed in solvent in the infinite
dilution limit. By this assumption, eq 1 can be regarded as a
protein�ligand uu-MOZ equation. In the present approach,

since a ligand molecule can be assumed to be reasonably small,
we apply the interaction site model to a ligand molecule in a
manner similar to solvent. The uu-3D-RISM can be derived
from eq 1 by taking an average over angular coordinates for
ligand(solute) coordinates, not for protein(solute) coordinate.
The solute�solute total correlation functions can be written as

huu
0

α ðrÞ ¼ 1
Ω

Z
δðr2 þ lα2 � rÞhuu0 ð1, 2Þdð2Þ ð7Þ

Accordingly, the Fourier transform of total correlation func-
tions is obtained by orientational reduction of Fourier transform
of the molecular total correlation functions:

~huu
0

α ðkÞ ¼ 1
Ω

Z
dΩ2e

ikrα2~huu
0 ðk,Ω1,Ω2Þ ð8Þ

We employ a super position approximation for the solute�solute
direct correlation function:

cuu
0 ð1, 2Þ � ∑

α ∈ v
cuu

0
α ðrÞ ð9Þ

Table 1. Summary of Performed Calculationsa

odorant binding protein phospholipase A2

species uu-RISM uv-RISM uu-RISM

protein 1OOF 3D representation (solute) 3D representation (solute) 1OXR 3D representation (solute)

ligand ethanol site representation (solute) site representation (solvent) aspirin site representation (solute)

solvent water site representation (solvent) site representation (solvent) water site representation (solvent)
aNote that the type of ligand is different between uu- and uv-3D-RISM.

Figure 1. X-ray crystal structure of the odorant binding protein LUSH
fromDrosophila melanogaster. It has a specific alcohol binding site which
can bind a series of short-chain n-alcohols. The structure taken from
PDB (PDB ID: 1OOF) includes one ethanol molecule which is
represented be the VDW surface. The protein surfaces are represented
as a gray transparent surface. The binding site is constructed by a group
of amino acids, Thr57, Ser52, and Thr48. These amino acids form a
network of concerted hydrogen bonds between the protein and the
alcohol.

Figure 2. X-ray crystal structure of the complex formed between
phospholipase A2 (PLA2) and 2-acetoxybenzoic acid, aspirin. It can
be taken from PDB (PDB ID: 1OXR). Phospholipase A2 can bind
aspirin, which is represented by VDW surface, for anti-inflammatory
effects in its specific binding site. The protein surfaces are represented as
a gray transparent surface. The aromatic ring of aspirin is embedded in
the hydrophobic environment, and other substituted groups form
several important attractive interactions with calcium ion, His48, and
Asp49. Calcium ion is shown as a green sphere.

Figure 3. Structure aspirin depicted with two different presentations.
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The Fourier transform of solute�solute direct correlation func-
tions can be defined as

~cuu
0 ðk,Ω1,Ω2Þ ¼

Z
dr12e

ikr12 cuu
0 ðr12,Ω1,Ω2Þ

¼ ∑
α
e�ikrα2 cuu

0
α ðkÞ ð10Þ

The solute�solute MOZ eq 1 in Fourier space can be written as

~huu
0 ðk,Ω1,Ω2Þ

¼
Z

dr12e
ikr12huu

0 ðr12,Ω1,Ω2Þ

¼
Z

dr12e
ikr12 cuu

0 ðr12,Ω1,Ω2Þ

þ 1
Ω∑v

Z
dr12

Z
dð3Þeikr12 cuvðr12,Ω1,Ω2ÞFvhvu0 ðr12,Ω1,Ω2Þ

ð11Þ

From eqs 2 and 8�11, the uu-3D-RISM equation is obtained as

huu
0

α ðrÞ ¼ ∑
γ
cuu

0
γ
�ωu0

γαðrÞ þ ∑
v
∑
γ
cuvγ �Fvhvu

0
γαðrÞ ð12Þ

In order to solve those 1D- and 3D-RISM equations obtained
above, we need another equation which complements or “closes”
the equations. Here, we employ the KH closure which reads39

guu
0

α ðrÞ ¼ expðduu0α ðrÞÞ for duu
0

α ðrÞ e 0
1 þ duu

0
α ðrÞ for duu

0
α ðrÞ > 0

(

duu
0

α ðrÞ ¼ � βuuu
0

α ðrÞ þ huu
0

α ðrÞ � cuu
0

α ðrÞ ð13Þ
The procedure to obtain the receptor�ligand distribution

function is shown in Scheme 1. First, vv-DDF is evaluated
by vv-1D-RISM, where solvent includes water, electrolyte,
organic solvent, and so on. The vv-DDF is used in both uv-3D-
and in uv-1D-RISM calculations. The uv-3D- and uv-1D-RISM
calculations are carried out to obtain receptor�solvent and
ligand�solvent DDF, respectively. By inserting these two
DDFs, uu-3D-RISM can be solved to get receptor�ligand DDF.

Figure 4. The 3D-DDF of ethanol around and inside odorant binding protein, LUSH, obtained by (a) uu-3D- and (b) uv-3D-RISM with the threshold
gγ(r) > 2: blue, CH3; green, CH2; red, oxygen atom of hydroxyl group; yellow, hydrogen atom of hydroxyl group. The protein surfaces are represented as
a gray transparent surface. The location of ethanol in X-ray structure is depicted with a wire frame.
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From receptor�ligand DDF, a MR analysis, such as a binding
pocket search, can be performed.
2.3. Extracting Binding Mode of Ligand Inside Protein

from 3D-DDF. At this point, we would like to make a comment
on general difficulty to extract “binding mode,” or position and
orientation, of a ligand inside protein from 3D-DDF. The
problem is common to the experimental methodologies, such
as X-ray and neutron diffractions, since both the theory and the
experiments are observing essentially the same property, namely,
the density distribution of ligand atoms, which are atomic
positions statistically averaged over thermal motion. For the
purpose of comparing the results from 3D-DDF with that from
the experiment, it will be best if we can do it directly by defining a
measure for “distance” between the two distributions. However,
such a methodology has not been well developed yet. Moreover,
general measure for 3D-DDF is available neither in literature nor
in the Protein Data Bank. Instead, the most probable binding
mode of a ligand is presented, which of course depends on a way
of analyzing the 3D-DDF data.
Considering such a situation, we are developing twomethods

which provide us information concerning binding mode of
ligand inside a protein. One of those methods is based on the
radial distribution functions (RDF) of ligand atoms from atoms
in amino acid residues of protein. A position of the first peak in
RDF corresponds to an average distance between a pair of
atoms of a ligand and a protein. By making the analyses of
distances among the several atoms in ligand and protein, we
can extract the binding mode of a ligand inside of protein. When
the size of ligand is small enough, such as carbon monoxide
and ethanol, the method works quite well to determine the
binding mode.
The other method we are developing to abstract the binding

mode of a ligand inside a protein from 3D-DDF is similar

essentially to that used in the analysis of 3D-DDF from the
diffraction measurement. The method defines two “score” func-
tions, one corresponding to the position of ligand and the other
to its orientation, in terms of 3D-DDF and of trial geometry of a
ligand. The level of agreement between a trial geometry and 3D-
DDF is ranked according to the score functions.
2.4. Computational Detail. The approach proposed in this

article overcomes the difficulty associated with the uv-3D-RISM
approach, and it will provide a new tool for the rational drug
design. Here, we demonstrate robustness and capability of the
uu-3D-RISM theory by applying the approach to two systems
which are of great interest in biochemistry and pharmacology.
One is an odorant binding protein known as LUSH, and the
other is phospholipase A2. Table 1 shows the outline of
these works.
2.4.1. Odorant Binding Protein (PDB ID: 1OOF). In order to

examine robustness of the new approach, we consider binding of
an ethanol molecule to an odorant binding protein (LUSH), see
Figure 1. The ligand is small enough to be treated with the uv-3D-
RISM, so that one can compare the results from the methods
with that from the uu-3D-RISM theory. In the case of uv-3D-
RISM, the ligand is regarded as a component of solvent, while in
the case of uu-3D-RISM, it is considered as a solute. In both
cases, the odorant binding protein is treated as a solute receptor
protein.
The Amber-99 parameter set40 was employed for the protein,

and the general amber force field (GAFF)41 was employed for
the ligand ethanol and for the acetic acids, which is part of
receptor protein. TIP3P water42 was chosen as solvent at 298 K
and 0.9979 g/cm3. The uu-3D- and uv-3D-RISM equations were
solved on a grid of 1603 points in a cubic supercell of 80 Å3. The
density of ethanol was so chosen that the volume ratio of water to
ethanol becomes 99:1%.
2.4.2. Phospholipase A2 (PDB ID: 1OXR). In order to demon-

strate the capability of the new approach, we examine MR of
aspirin by PLA2 (Figure 2). Since aspirin is a rather large ligand,
having 14 specific interaction sites (Figure 3) in the neutral state,
it may not be treated readily with the ordinary uv-3D-RISM
due to the difficulty stated above. So, this is a good example
to demonstrate capability of the new method. The Amber-99
parameter set was employed for the protein, while GAFF was

Figure 5. RDFs of ethanol around hydroxyl groups of (a) Ser52 and (b) Thr57, respectively. Oxygen atoms in each hydroxyl groups were chosen as the
averaging center.

Table 2. Distance (Å) Matrix between the Specific Sites of
LUSH and Ethanol

sites Ser52-O Thr57-O

C1 3.0 4.6

C2 3.3 3.5

O3 3.3 2.3
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employed for aspirin with a united-atom modification concern-
ing hydrogen atoms. TIP3P water was chosen as solvent at 298 K

and 0.9979 g/cm3. The 3D-RISM equation was solved on a grid
of 2003 points in a cubic supercell of 100 Å3.

Figure 6. The 3D-DDF of protonated (neutral) aspirin around and inside phospholipase A2, obtained by uu-3D-RISM with the threshold gγ(r) > 2:
red, COOH; yellow, aromatic ring; and blue, OCOCH3. The protein surfaces are represented as a gray transparent surface. The location of aspirin in
X-ray structure is depicted with a wire frame.

Figure 7. The 3D-DDF of neutral aspirin around and inside phospholipase A2, obtained by uu-3D-RISM with the threshold gγ(r) > 2. (a) Carboxyl
group, COOH; (b) aromatic ring; and (c) acetoxy group, OCOCH3. The color code is assigned to oxygen (red), carbon (black), and hydrogen (cyan).
The protein surfaces are represented as a gray transparent surface.
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3. RESULTS AND DISCUSSION

3.1. Odorant binding protein, LUSH. 3.1.1. 3D-Distribution
Functions of Ethanol around and inside LUSH. In Figure 4, the
3D-DDFs of ethanol obtained by uu-3D- and uv-3D-RISM are
compared. The 3D-DDFs are depicted by isosurface representa-
tion with the threshold gγ(r) > 2. This threshold implies that the
probability of finding site γ at the position r is twice as large as
that in the bulk. The gray surface represents the protein, whereas
the blue, green, red, and yellow surfaces depict the distribution of
CH3, CH2, O, and H sites of alcohol, respectively. At a glance,
DDF from uu-3D-RISM, which is depicted in Figure 4a, shows
good agreement with that from uv-3D-RISM shown in Figure 4b,
especially nearby the binding site. Both 3D-DDFs are also in
accord with the results from X-ray crystallography.
It is clear from the formulation described in the previous

section that the uu-3D-DDF is equivalent to uv-3D-DDF in the
low density limit of ligand concentration. The difference of these
two 3D-DDFs are measured by the root-mean-square deviation
(rmsd) drmsd = (∑i=1

n (gγ
uu(xi) � gγ

uu(xi))/n)
1/2, xi denotes each

grid point); CH3 site, dmax = 0.0764 and drmsd = 0.0055; CH2 site,
dmax = 0.0433 and drmsd = 0.0066; O site, dmax = 0.1015 and drmsd

= 0.0099; and H site, dmax = 0.1362 and drmsd = 0.0079. These
differences are small enough for an actual application to systems
in which the ligand concentration is low. In reality, the difference
is well within a thermal fluctuation of the atomic position of
ligands at a binding site in protein. Therefore, the uu-3D-DDF
evaluated by uu-3D-RISM can be employed to molecular recog-
nition problem instead of uv-3D-DDF for ligands in a low-
concentration region.
3.1.2. Radial Distribution Functions of Ethanol fromHydroxyl

Groups in a Binding Site. The RDFs between atoms in a ligand
and those belonging to amino acids in protein allow us to
investigate binding modes, position and orientation, of ligands
inside protein. The RDFs can be obtained by averaging the 3D-
DDF over the direction around a specified center:

g1Dα ðr, r0Þ ¼ 1
4π

Z
gαðr0 þ rÞdr̂ ð14Þ

where r̂ is the direction of r, and r0 indicates a center for
averaging. The averaging centers were selected near the binding

sites. In the present case, we choose the oxygen atoms of
hydroxyl groups in Ser52 and Thr57 as an averaging center.
The RDFs around these sites are shown in Figure 5. For
comparing the peak positions of RDFs with those from the
X-ray structure, we refer to the distance between these specific
sites and each site of an ethanol molecule obtained from the
experiment (Table 2). The distances experimentally determined
are also marked by bars in the x-axis of the Figure 5a and 5b.
Although each peak of RDF is not very sharp reflecting thermal
fluctuation of the ligand inside the binding site, the positions of
peaks in RDFs are consistent with those deduced from the X-ray
crystallography.
The RDFs of hydrogen atoms, which are not treated by the

X-ray diffraction measurement, are also depicted in Figure 5. The
results may provide an orientation of hydrogen atom of the
ligand molecule. In the case of Ser52, any peak indicating such
orientation does not appear between two oxygen atoms, while a
discernible peak appears at r∼ 1.6 Å in the case of Thr57. It is not
clear at this moment whether the peak indicates the existence of a
hydrogen bond or not. However, it is clear that the hydroxyl
group is oriented toward Thr57, which is also consistent with the
result from the X-ray crystallography.
3.2. Phospholipase A2, PLA2. It is not a straightforward task

to apply the uv-3D-RISM method to the problem due to the
reason described in detail in the previous section: The ligand
molecule or aspirin is too large to get a convergent result of the
vv-RISM equation for the solvent mixture, including the ligand
molecules. Here, we only apply the uu-3D-RISM to the molec-
ular recognition of aspirin to PLA2.
Aspirin, acetylsalicylic acid, is a weak acid in aqueous solution.

We employed a neutral state, which was shown in Figure 3,
because the affinity of the neutral state to binding site is much
higher than a charged state.

Figure 8. Affinity of an aspirin molecule to binding site in the phospholipase A2 estimated by the function of DC based on local PMFwith the threshold
fDC(x) > 1.45. The protein surfaces are represented as a gray transparent surface. In the top view, the location of aspirin in X-ray structure is depicted with
blue sticks.

Table 3. Top Three Peaks List of Affinity Based on the
Overlap between the Ligand and Its Distribution Function

order α β γ overlap

(a) 1 10 330 50 2.33 � 105

(b) 2 40 260 40 2.02 � 105

(c) 3 60 220 50 1.83 � 105
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3.2.1. 3D-DDF of Aspirin Around and Inside Phospholipase
A2. The 3D-DDF of aspirin at the nonprotonated state is shown
in Figure 6 with the threshold gγ(r) > 2. The red, yellow, and blue
surfaces are the distributions of carboxyl group, COOH (number
of sites is 4), the aromatic ring (number of sites is 6), and the
acetoxy group, OCOCH3 (number of sites is 4), respectively.
We can easily observe these distributions not only inside the
binding site but also around the protein. Since the distributions
shown in Figure 6 are jumbled inside the biding site, the
contribution from each site group, COOH, aromatic ring, and
OCOCH3, is separately depicted in Figure 7. The color code
assigned to each atom in the figures is as follows: red, oxygen;
black, carbon; and blue, hydrogen.
As you can see in Figure 7a and c, the carboxyl and acetoxy

groups are widely distributed inside and around the binding site
region. On the other hand, the distribution of the aromatic ring is
seen only inside the binding site and is apparently accommo-
dated well within the pocket. Indeed, the binding pocket is
formed by hydrophobic amino acid residues, like leucine, phe-
nylalanine, and so on. In that sense, this result represents the case
in which the hydrophobic effect makes essential contributions to
the molecular recognition for the aromatic ligand.
3.2.2. Binding Mode of an Aspirin Molecule to Binding Site in

the Phospholipase A2. Since the final goal of our study is to
establish a method to probe a large ligand molecule recognized
by protein using 3D-RISM, we must determine the location of

binding site which has the highest affinity of ligand in target
protein. The 3D-DDFs or the potential of mean force (PMF)
are a good indicator to evaluate the affinity. Those have been
successfully applied tomeasure the affinity or selectivity of solvent
in protein.12�14 However, since 3D-DDF is the distribution
function of an individual site consisting a ligand molecule, it is
difficult to evaluate the affinity of whole ligand molecule directly.
In this section, we introduce a function for distribution center

(DC) of ligand to measure the affinity of ligand molecule. The
function of DC is defined as

fDCðxÞ ¼
QN
γ

1
Vbox � VproteinðxÞ

Z
VboxðxÞ

gγðrÞdr
 !1=N

for Vbox � VproteinðxÞ g Vligand

0 for Vbox � VproteinðxÞ < Vligand

8>>><
>>>:

ð15Þ
where x denotes the center of box, N is the total number of sites
of ligand molecule for normalization, Vbox is the volume of the
box, and Vprotein (x) is the excluding volume of the solute protein
in the box. Therefore,Vbox�Vprotein (x) denotes the space where
ligand can be distributed. Note that the integrations in right-hand
side of eq 15 are only performed inside Vbox centered at x. The
size of box is adjusted to the length of a ligand molecule. The
uu-3D-DDF is integrated in the box, and the result is projected to

Figure 9. Predicted structures of ligand from the top three peaks of affinity based on the overlap between the ligand and its distribution function
(Table 3). The protein surfaces are represented as a gray transparent surface. The location of aspirin in X-ray structure is depicted with blue sticks.
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the center of box. If the value is larger than one, the probability of
finding “an aspirin molecule” at the position is higher than bulk.
Although the DC only gives us the rough estimate of the location
of binding site, it is helpful to guide a further analysis concerning
the binding mode in more detail using information of RDFs,
which will be discussed later.
We preformed the calculation of DC based on eq 15 in order

to estimate the affinity of ligand to the binding site. The result
of DC is shown in Figure 8 with the threshold f > 1.45. The
maximum value is 1.56. The DC function does not take quite
a high value because it is averaged over the sites and volume.

Note that the result of DC is projected onto the center of the
calculated box. In Figure 8, we observe the highest peak at the
center of the binding site, which is determined by the X-ray
crystallography. The results demonstrate that the new method is
capable of locating the binding site in the protein and the affinity
of a ligand to the site properly.
In this paper, although we focused the highest peak on the

binding site, there is another important finding in Figure 8. One
may identify a long distribution stretched from the binding site to
the bulk. This peak may imply the pathway through which the
ligand is entering and escaping. Other peaks observed around the

Figure 10. RDFs of aspirin around (a) calcium ion, (b) Phe5, and (c) Asp49, respectively. In part b, CE2 atom was chosen as the averaging center. In
part c, OD1 atom was chosen as the averaging center. The distances between each specific site and the atom of predicted aspirin as top peak are marked
by upper bars in the x-axis (red indices). The distances between the sites and the atom of aspirin in X-ray structure are also marked by lower bars (blue
indices).
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surface of protein are of interest, because those peaks may be
related to the escaping and entering pathways of ligand in
diffusive motion. Further analysis of ligand distributions around
protein surface will be presented in future.
In order to understand a mechanism of molecular recognition

process, it is important to determine an explicit structure of the
ligand inside the specific binding site, because we need the
distinct structure to calculate some physiological properties, like
free energy. Actually, we can also investigate the orientation of
the ligand by calculating the overlap between the structure of the
ligand and the 3D distribution functions which are obtained by
uu-3D-RISM. We define the target function for the orientation
by the following equation:

foriðx,ΩÞ ¼
YN
γ

gγðx þ lγ 3 R̂ðΩÞÞ ð16Þ

where x denotes center of box which is obtained by eq 15, lγ
denotes the internal coordinate of site γ, and R̂(Ω) denotes

rotational matrix with the Euler angles to search the entire
orientational space. As we mentioned above, the ligand molecule
just fits the size of box. It means that the center of the box
coincides with the center of the molecule, which is the origin of
the rotational matrix at the same spatial point. The advantage of
this approach is that we can measure the affinity quantitatively as
the degree of overlap. The results of this searching are summar-
ized in Table 3 and Figure 9. In Table 3, the top three
orientations, ranked based on the degree of overlap, are listed
in terms of the Euler angles, α, β, and γ. Figure 9 shows the
explicit ligand structures corresponding to the top three orienta-
tions listed in Table 3. The location and orientation of aspirin in
the X-ray structure are depicted with blue sticks. It is worthwhile
to note that the structure corresponding to one with the greatest
overlaps has the same orientation with the X-ray structure,
concerning the molecular axis aligning C2, C4, and C7 atoms,
although the rotational angle around the axis is somewhat
different from each other. This orientation seems to be induced
by the calcium ion located at the binding site, since the carboxylic
group of aspirin faces to the calcium ion. In case of the other two
structures with lower score, the carboxylic groups are facing
toward His48, which is positively polarized as well.
3.2.3. RDFs of Aspirin around Specific Sites Inside or around

Binding Sites of PLA2. In order to find the orientation of aspirin
in the binding pocket, we examine the RDFs of each site of
aspirin using eq 14. Three specific sites of the residues around the
binding pocket are chosen as the averaging centers in order to
calculate RDFs. These are the calcium ion, the CE2 atom in
Phe5, and the OD2 atom in Asp49. The reasons why those atoms
are chosen as the averaging centers are because the calcium ion
and the OD2 atom in Asp49 help aspirin to bind in the pocket
through the carboxyl group and because the CE2 atom exists in
the side opposite to the calcium ion across the pocket. The RDFs
are shown in Figure 10. For the purpose of comparing the peaks
of RDFs with the corresponding information from the X-ray
structure, the distances between these specific sites of the amino
acid residue and each atomic site of the aspirin molecule,
determined by the X-ray crystallography, are summarized in
Table 4. The distances are marked by bars (blue) in the x-axis
of the Figure 10. The distances corresponding to the structure

Table 4. Distance (Å) between the Specific Sites of PLA2 and
the Atoms of Aspirin

Ca2+ Phe5�CE2 Asp49�OD1

sites theory exptl. theory exptl. theory exptl.

O1 2.4 2.8 6.7 5.8 3.1 3.0

C2 3.3 3.7 5.5 5.3 3.5 4.0

O3 3.4 3.7 5.2 6.0 3.0 4.2

C4 4.4 5.0 5.1 4.5 5.0 5.4

C5 4.9 5.5 6.0 4.1 5.9 5.8

C6 6.2 6.9 6.0 3.9 7.2 7.1

C7 7.0 7.7 5.3 4.0 7.8 8.0

C8 6.8 7.4 4.2 4.3 7.2 7.9

C9 5.6 6.2 4.0 4.5 5.9 6.6

O10 5.6 6.2 3.5 5.4 5.5 6.7

C11 5.9 6.3 4.4 6.9 5.8 7.3

O12 6.8 7.1 4.3 7.6 6.3 8.0

C13 5.6 6.1 5.9 7.8 6.1 7.6

Figure 11. The 3D-DDFs of water around and inside phospholipase A2 are obtained by uv-3D-RISM with the threshold gγ(r) > 3: red, oxygen atom of
water; and cyan, hydrogen atom of water. The 3D-DDF of calcium ion is also obtained with the threshold gCa2+ (r) > 40 as a green spot. The protein
surfaces are represented as a gray transparent surface. The location of aspirin in X-ray structure is depicted with a wire frame.
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(position and orientation) deduced from the spatial distribution
functions due to uu-3D-RISM, with the highest score (Figure 9a),
are also marked with red in the same figures. The position of each
peak in RDFs is in general consistent with corresponding distance
from the X-ray diffraction as well as from the 3D-RISM, except for
the distinct peaks in those corresponding to O12 and O10 in
Figure 10 (a-3) and to O10 and O12 in (c-3). Those peaks are
assigned to distributions of the corresponding atoms existing
outside the biding site, and they are irrelevant to the ligand bound
in the active site.
Especially interesting amongRDFs is the carboxyl group around

the calcium ion Figure 10 (a-1) and the aromatic ring around Phe5
(b-2). The peak positions of the RDFs coincide well with those
deduced from the orientation of ligands determined both by the
experiment and from the analysis of our spatial distribution
functions. These suggest strongly the importance of a role played
by the calcium ion in recognizing aspirin in the active site.We have
confirmed the distinct binding of a calcium ion (gCa2+ (r) > 40) at
the binding site bymeans of the 3D-RISM calculation in Figure 11.
The RDFs of carboxyl group around Asp49, shown in

Figure 10 (c-1), are worthwhile to draw special attention, since
they are suggestive of a mechanism concerning the recognition of
aspirin by the protein. According to the results, the ligand
molecule is forming a hydrogen bond with one of the carboxylic
oxygen atoms of Asp49 through its carboxylic hydrogen atom;
note the sharp peak around r = 1.8 Å in the RDF of hydrogen
(H14). Apparently, the carboxylic oxygen of Asp49 was sup-
posed to make a hydrogen bond with solvent water, if the
position was not invaded by the ligand.
Figure 11 shows the 3D-DDFs of water molecule at the

binding site without the ligand. The region of binding site is
constructed by hydrophobic residues, like phenylalanine, leucine,
isoleucine, and so on. However, water molecules can be bound
with main chain or with a charged residue, such as Asp49,
through hydrogen bonds. Water molecules are apparently mak-
ing a hydrogen-bond network or train inside the binding site. It
suggests that the dehydration penalty will be extremely high
when a ligand replaces those water molecules, and ordinary
docking algorithms might not be able to find the binding site.31

So, we can draw a hypothetical scheme concerning the
recognition mechanism of aspirin to PLA2. The recognition
process is largelymotivated by the calcium ion, which was already
bound at the active site before any aspirin is put in the solution.
The recognition process is initiated first by the coulomb inter-
action between the calcium ion and the carbonyl�oxygen
of the carboxyl group, which is followed by formation of the
hydrogen bond between the carboxyl�oxygen of Asp49 and the
carboxyl�hydrogen of the ligand. In the latter process, a water
molecule which was hydrogen bonded to the carboxyl�oxygen,
prior to the ligand invasion, is excluded from the binding site.
The ligand is further stabilized by the hydrophobic interaction
between the phenyl group of the ligand and the hydrophobic
residues consisting of the other side of the binding site.

4. CONCLUDING REMARK

We proposed a new approach, the uu-3D-RISM theory, to
investigate the molecular recognition in biological system. A
motivation to develop the new approach was that the ordinary
RISM/3D-RISM approach has difficulty in solving the solvent�
solvent RISM equation involving large ligand molecules, which of
course have vital importance in the rational drug design. The uu-

3D-RISM is formulated from the general equation of molecular
Ornstein�Zernike by considering both a receptor and a ligand as
“solutes” immersed in solvent at the infinite dilution limit.

In order to confirm the robustness of the new approach, we
calculated the spatial distribution of ethanol at the active site of an
odorant binding protein, LUSH, based on the two methods, the
ordinary RISM/3D-RISM theory and the uu-3D-RISM, since an
ethanol molecule is small enough to be handled with the old
method. The new approach reproduced the results from the old
method, with subtle difference expected from the discrepancy in
the concentration of ligand: one in a finite concentration and the
other in the infinite dilution. The analysis based on the radial
distribution function (RDF) indicates that the position and the
orientation of the ligand inside the binding pocket are consistent
with those from the experimental results due to the X-ray crystal-
lography. Robustness of the new approach was thus verified.

We then applied the new approach to an aspirin binding
protein, phospholipase A2 (PLA2), with aspirin as a ligand. The
process may not be tractable by the old method due to the reason
stated above. Since the size of aspirin is much larger and more
complex than previous application, or ethanol, analyzing the
spatial distribution (uu-DDF) of the ligand inside the binding
site, obtained from uu-3D-RISM, is not a trivial problem any-
more. So, we developed a new approach to analyze uu-DF,
defining a new function referred to as “distribution center (DC),”
which locates the center of the most probable distribution of
ligand. The position and orientation of aspirin inside the binding
site of PLA2 were determined fromDC and RDFs of atomic sites
of the ligand around particular residues consisting the binding
pocket. The binding configuration of the ligand inside the pocket
was in fair agreement with that determined from the X-ray
crystallography. We will report details about analyses for the
origin of binding affinity in a following paper.

The second application of the uu-3D-RISM method clearly
demonstrates that the theory is a prospective tool for discovering
or designing a new drug, because aspirin itself is already one of
the most popular drugs in the market.
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ABSTRACT:Many polyols and carbohydrates serve in different organisms as protective osmolytes that help to stabilize proteins in
their native, functional state, even under a variety of environmental stresses. However, despite their important role, much of the
molecular mechanism by which these osmolytes exert their action remains elusive. We have recently shown experimentally that,
although polyols and carbohydrates are excluded from protein and peptide interfaces, as also expected for the known entropic
“crowding” mechanism, the osmolyte folding action can in fact primarily be enthalpic in nature. To follow this newly resolved
enthalpically driven stabilization mechanism, we report here on molecular dynamics simulations of a model peptide that can fold in
solution into a β-hairpin. In agreement with experiments, our simulations indicate that sorbitol, a representative polyol, promotes
peptide folding by preferential exclusion. At the molecular level, simulations further show that peptide stabilization can be explained
by sorbitol’s perturbation of the solution hydrogen bonding network in the peptide first hydration shells. Consequently, fewer
hydrogen bonds between peptide and solvating water are lost upon folding, and additional internal peptide hydrogen bonds are
formed in the presence of sorbitol, while internal peptide and water-associated hydrogen bonds are strengthened, resulting in
stabilization of the peptide folded state. We further find that changes in water orientational entropy are reduced upon folding in
sorbitol solution, reflecting the struggle of water molecules to maintain optimal hydrogen bonding in the presence of competing
polyols. By providing first molecular underpinnings for enthalpically driven osmolyte stabilization of peptides and proteins, this
mechanism should allow a better understanding of the variety of physical forces by which protective osmolytes act in biologically
realistic solutions.

’ INTRODUCTION

Protein stability and activity sensitively depend on myriad
modulators of environmental solvent conditions, including hy-
dration levels, ion concentrations, and pH. In efforts to maintain
protein function and integrity, one of the important ways that
living organisms combat such environmental stresses involves
the accumulation of molecularly small cosolutes termed
osmolytes.1�3 Naturally occurring osmolytes are cosolutes that
can be typically grouped into three major classes: polyols, amino
acids, and combinations of methylamines with urea.1 Of these,
the addition of “protective” osmolytes to protein solutions shifts
the thermodynamic equilibrium of folding toward more com-
pact, native states. While protein folding by osmolytes has been a
subject of numerous investigations,4�13 much of the underlying
molecular mechanism remains unknown.

Protective osmolytes are generally excluded from protein�
water interfaces, and it is this preferential exclusion from macro-
molecular surfaces that necessarily confers thermodynamic sta-
bility to proteins.10,14�20 Molecular crowding due to excluded
volume interactions has been widely invoked to explain how
osmolytes can shift the folding equilibrium toward the more
folded state.21�25 According to this mechanism, the restriction of
protein conformations to allow larger free volume for the added
osmolytes destabilizes the unfolded state with respect to the
native conformation.23,26 Crowding has been useful in explaining
the protein stabilizing effect of macromolecular solutes, such as
polymers and other proteins, based on steric interactions that are
entropic in nature.27�30

In contrast to entropically driven steric “crowding”, recent
evidence indicates that, when molecularly small solutes are
involved, the stabilizing mechanism may be enthalpically
dominated.31,32 For example, our recent experiments indicate
that sugars and polyols can drive peptide folding primarily
through diminishing the enthalpic loss involved in the folding
process. Moreover, the added entropic contribution to folding
wrought by osmolytes is negative, and disfavors folding. Inter-
estingly, these effects are dependent on the molecular size of the
osmolytes, as also expected for a crowding mechanism. These
findings require newmolecular mechanisms that can explain how
osmolytes can confer a favorable enthalpic contribution to
folding, while concurrently remaining preferentially excluded
from the peptide�solution interface.

Here, we employ molecular dynamics (MD) simulations to
explore the molecular origins of the stabilizing mechanism of
protective osmolytes. We follow a model 16-residue peptide that
has been shown experimentally to fold into a β-hairpin from a
disordered state.32,33 At room temperature and pH 7, about half
of the peptide population is found in the folded state (ΔGfold ≈
0). In the presence of polyols and carbohydrates, however, the
equilibrium is shifted, and the peptide primarily adopts the folded
state. Our strategy was to separately simulate the folded and
unfolded states of the peptide in two different solvating solutions:
pure water and aqueous solutions of osmolyte. We focus on

Received: June 30, 2011
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sorbitol as an important representative of polyol osmolytes;
sorbitol is one of the largest polyols, is highly soluble, and has
been experimentally shown to have one of the strongest effects
on peptide folding in this group. Because the sorbitol and water
translational and orientational relaxation around the peptide (on
the order of hundreds of picoseconds) is much faster than the
peptide folding�unfolding times (estimated at several hundreds
of nanoseconds), we have been able to exploit this difference in
time scales to separately average the properties of solution
microstates around the folded and unfolded populations.

By analyzing the changes in the solvating environment of the
folded and unfolded states in the presence of osmolytes, and
comparing these to the differences in pure water found around
both states, we characterized a previously unknown enthalpy
drivenmechanism for polyol stabilization of peptides. Our results
reveal that the key driving forces for peptide stabilization by
osmolytes involve the reduced loss upon folding of the number of
hydrogen bonds located in the first and second solvation layers
around the peptide, the increased strength of the hydrogen
bonds that remain, and the larger number of internal peptide
hydrogen bonds created in the presence of the polyol.

’RESULTS

Changes in the model peptide’s secondary structure in both
water and sorbitol solution (at 3.9 Osm) can be followed by
tracking the solvent accessible surface area (ASA) for the folded
(F) and unfolded (U) states over the MD trajectory, as shown in
Figure 1 and detailed in the Methods. The U state undergoes
larger fluctuations in ASA than the F state (with a standard
deviation of 78 vs 68 Å2 in pure water, and 95 vs 59 Å2 in sorbitol
solution, respectively); however, on the basis of average ASA
alone, there is no discernible difference between the U states in
water and in the presence of sorbitol. Similarly, the F state also
showed no significant difference in ASA for the first 30 ns
simulated, but at longer times we find more compact structures
in the presence of sorbitol than in pure water (smaller ASA by, on
average, 100 Å2 over the last 20 ns). While these observations
already qualitatively match the known peptide stabilizing capa-
city of sorbitol, additional thermodynamic measures can provide
a direct link between solvation thermodynamics and sorbitol-
induced peptide stability, as we discuss in the following sections.
Sorbitol is Preferentially Excluded from Peptide Inter-

faces. In general, stabilizing cosolutes are found to be “excluded”
from the macromolecular peptide interfaces and thereby increase
the chemical potential of the macromolecule; in the limit of
infinite peptide dilution, this necessarily also implies that the
peptide is “preferentially hydrated”.19 To assess osmolyte exclu-
sion as well as the distance and size of different solvation layers
around the peptide in the F and U states, we follow the structure
of solution using the radial distribution function, gPx(r), repre-
senting the local densities with respect to the bulk of species x at a
distance r from the peptide (P), where x represents the chemical
species in solution: peptide (P), solute (S), or water (W) (see
also Methods). Figure 2a shows gPW(r) and gPS(r) for the local
densities of water’s oxygen and sorbitol’s center of mass, respec-
tively, where r represents the shortest distance from any atom of
the folded peptide states.
In contrast to the results often reported for proteins usingMD

simulations and neutron diffraction experiments,34,35 the pepti-
de�water distribution function gPW(r) shows not one, but two
prominent hydration peaks, Figure 2a. This apparent discrepancy

results from the way we calculate g(r): here, distances are
measured with respect to each peptide atom, rather than from
a single point (such as the peptide center of mass) that tends to
smear out these two hydration peaks. The first peak in gPW(r),
representing the first hydration layer, appears at r ≈ 2 Å and is
mainly associated with water molecules localized close to the
charged amino acid Lys, as well as Asn, Ser, and Thr, which show
the largest average number of neighboring water molecules with-
in this first hydration layer, see Supporting Information Figure S2.
These water molecules primarily orient with oxygen toward the

Figure 1. Solvent accessible surface area (ASA) calculated over 50 ns of
MD simulation for the peptide folded (F) and unfolded (U) states in
pure water (black line) and in the presence of sorbitol aqueous solutions
at a concentration of 3.9 Osm (red line). Each data point represents an
average ASA taken over the course of 1 ns. The upper panel shows a
schematic of the F and U states.

Figure 2. Solution structure around the folded state and preferential
interaction coefficients for the folded and unfolded states. (a) Radial
distribution function, g(r), of water oxygen’s and sorbitol’s centers of
mass around the peptide. (b) Preferential interaction coefficient, Γ, of
water near the peptide. The inset in b shows experimental data for the
folding free energy versus sorbitol’s osmolyte concentration at T = 298 K,
reproduced from ref 32. Both g(r) and Γ(R) are plotted versus the distance
from any peptide atom.
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peptide, Supporting Information Figure 3S. The second peak in
gPW(r) at r ≈ 3 Å corresponds to the second hydration layer and
shows a more random distribution of water molecules, with some
preference to waters pointing with hydrogens toward the peptide,
particularly in the U state, Supporting Information Figure 3S.
Interestingly, the peptide�sorbitol pair correlation function

gPS(r) shows a first peak at r ≈ 4 Å, further than the first two
hydration layers, representing sorbitol exclusion at these short
distances from the peptide interface, Figure 2a. This exclusion is
in agreement with other studies that have found that polyols are
preferentially excluded from protein interfaces.8,10,20 There are
only minor differences in gPW(r) for the U and F states (see
Supporting Information, Figure 4S), but for both states in the
presence of sorbitol, the local densities of water in the first
hydration layers relative to the bulk, seen as the height of the
gPW(r) peaks, are somewhat higher than in pure water. This
difference translates into ∼11 water molecules found in the
vicinity of the peptide folded state (re 3.6 Å) in the presence of
sorbitol compared with ∼10 in pure water.
The net exclusion or accumulation of water or osmolytes near

the solvated peptide (at infinite dilution) can be quantified either
by the preferential hydration coefficient Γ or the preferential
interaction coefficient for osmolyte ΓS because these two are
necessarily related.8,16,36 We focus here on the preferential
hydration Γ, which we have found in experiments to remain
constant over a wide range of concentrations.32,37 To find Γ in
simulations, we use the operational definition19,38

ΓðRÞ ¼ NW 1�NS=NW

nS=nW

� �
ð1Þ

Here, we have defined a vicinal volume surrounding the peptide
satisfying r <R, and a bulk domain for rgRwithin the simulation
box.9 The values NS and NW represent the number of sorbitol
and water molecules, respectively, within the vicinal volume,
whereas nS and nW are the number of sorbitol and water
molecules in the bulk domain. The preferential interaction
coefficient Γ emerges as the converged value of Γ(R) when R
is large enough. A positive value for Γ(R) represents preferential
accumulation of water (or equivalently, exclusion of sorbitol)
from the peptide interface, whereas a negative value indicates the
depletion of water or accumulation of sorbitol.
Determining Γ from simulations is notoriously difficult.39 Suffi-

cient statistical sampling requires trajectories of 10 ns or longer, and
convergence of values at a large enough R should be confirmed.
Even then, preferential interaction coefficients are highly sensitive
to the particular force fields used.40 Indeed, we found that due to
the overall sensitivity of Γ(R), the profiles do not usually reach
convergence for any single nanosecond segment along the MD
trajectory. However, when we average over 15 ns out of the final
20 ns in the trajectory, values ofΓ(R) werewell converged, as shown
in Figure 2b. To ensure that only conformations representative of
the U and F states are included in the averaging, the analysis of
Γ(R) was performed only on frames with a peptide ASA value
that was lower than the mean value plus one standard deviation
for the F state and higher than the mean value less one standard
deviation for the U state. For the analyzed trajectory, Γ(R) values
for the U state converge at a large R to a positive value, ΓU = 9,
indicating preferential hydration, while for the F state Γ is slightly
negative, ΓF=�5, Figure 2b. Convergence of Γ values for the U
state to a more positive value than for the F state indicates
stronger sorbitol exclusion from U versus F conformations.

Thermodynamically, preferential interaction coefficients are
directly related to the changes in peptide stability imposed by
osmolytes. Our previous experiments32 have shown that the
peptide folding free energy ΔGUF changes linearly with solute
Osmolal concentration cOsm, see inset in Figure 2b. Analogous
changes in protein folding free energy due to cosolute addition
are commonly described using the relation ΔGUF(cOsm) =
ΔGUF(cOsm = 0) + mcOsm, where the defined m value describes
the constant slope inΔGUF(cOsm).

19,41 Importantly, this linearity
in ΔGUF(cOsm) translates into a constant change in the number
of solute-excluding water molecules, ΔΓUF, upon folding.42

Thus, the Γ values evaluated in simulations for the different
peptide states, F and U, can be used to calculate the change
in peptide folding free energy upon the addition of solute,
ΔΔGUF(cOsm), as follows:

ΔΔGUFðcOsmÞ ¼ mcOsm ¼ RT
55:6

ðΓF � ΓUÞcOsm

¼ RT
55:6

ΔΓUFcOsm ð2Þ

where 55.6 is the number of moles of water in 1 kg and RT is
the thermal energy per mole. Experimentally, we have used
the variation in ΔGUF(cOsm) with sorbitol concentration,
Figure 2b inset, to determine ΔΓUF = �19 . This indicates that,
in the folding process, the preferential hydration of the peptide
drops by 19, or alternatively, that 19 water molecules on aver-
age are “released” upon peptide folding, independent of sorbi-
tol concentration.32 This number corresponds closely with
ΔΓUF = ΓF� ΓU =�14 that we find in simulations, as described
above. We note that our simulations use a somewhat higher
concentration of sorbitol than in experiments, allowing us to
observe larger changes in solution structure and to gain statisti-
cally significant and convergent results. Because experiments
show a highly constant preferential hydration over a very large
concentration regime, we expect the same trends to be valid also
for the concentrations used in simulations.
An additional validation of the peptide simulations can be

made by using the “transfer model” formalism.13,36,43 It has been
shown experimentally that changes in peptide free energy upon
transfer from water to solutions containing cosolutes can be
dissected into a sum of contributions from different amino acid
side chains and backbone. These changes due to solvation can be
translated into changes in folding free energy due to the presence
of cosolutes, as long as values of accessible surface areas are
available for both U and F states. Using the experimental values
reported by Bolen and Auton,36 we estimated the changes in
solvation energies for the simulated folded and unfolded
states. Specifically, using the exposed surface areas of side
chains and the backbone in the different conformations of
the U and F states of the peptide in water, we determine
the average ensemble difference ΔΔGUF(cOsm), see Figure 5S
(Supporting Information). This procedure allowed us to derive
the averagem value using eq 2. Using the transfer model, we find
m = �646.14 J mol�1, which, is close to the experimental value
of �841.36 J mol�1.
Taken together, the correspondence of experimental and

predicted m values, as well as the close match that we find in
the experimental and simulated ΔΓUF, further support our MD
simulation as good models for the peptide in its solvating
environment, allowing us to explore additional properties that
are hardly accessible in experiments. Specifically, whileΔΓUF lets
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us quantify the changes in preferential hydration upon folding in
sorbitol solution, further analysis is required to reveal the under-
lying molecular origins for the exclusion. In the next sections, we
proceed to the principal findings from our work to follow the
possible molecular mechanism of peptide stabilization.
Hydrogen Bonding Plays a Major Role in Peptide Stabili-

zation by Osmolyte. The experimentally determined enthalpic
contribution to peptide folding in the presence of sorbitol32

(ΔΔHUF = �3.3 kJ mol�1 for the folding in 1 Osm sorbitol
solutions) could originate from a variety of forces acting in
solution, such as altered van der Waals (vdW) interactions,
electrostatic forces within media of an altered dielectric constant,
and variations in hydrogen bonding. To begin to unravel the
important contributions to the system enthalpy in simulations,
we first calculated the total force-field energies, arising
from Coulomb (UEl) and Lennard-Jones (UvdW) contributions,
Table 1. Examining the differences in the force field energies
between the F and U states, we find a positive value for ΔUvdW

representing a Lennard-Jones contribution to the potential
energy that disfavors folding, Table 1. In contrast to ΔUvdW,
ΔUEl shows a much larger, negative contribution and hence
favors folding. The same trend is observed in the presence of
sorbitol; however, the contributions ofΔUvdW, as well asΔUEl to
the potential energy are smaller than in pure water. We conclude,
therefore, that the dominating forces in the simulations leading
to favorable folding are electrostatic. Importantly, hydrogen
bonding is represented within the empirical force field primarily
by electrostatic interactions, making it a potential source that
drives folding.

We also report in Table 1 values of ΔUTot representing the
sum ofΔUvdW andΔUEl to the potential energy, as well as PΔV,
where P is the pressure (1 atm in the simulation) and ΔV is the
difference in the volume that includes the same amount of water
molecules around F and U states. Under the simulation isobaric
conditions, this PΔV term represents the difference between the
enthalpy and the energy of the system. We find that this
difference is very small relative to ΔUTot, Table 1, and is also
very small compared to the experimental value of ΔΔHUF. This
allows us in the following discussion to equally speak about
differences in the energy and the enthalpy.
To isolate the hydrogen bonding contribution to the changes

in energy, we further analyzed changes to the hydrogen bonding
network upon peptide folding in pure water and in the presence
of sorbitol. Specifically, we enumerate the total number of
hydrogen (H) bonds in the peptide solution and the number
of internal peptide (PP) hydrogen bonds that are formed or lost
upon folding. We use a geometric H bond definition, so that a
hydrogen bond exists between two molecules if the oxygen�
oxygen distance is less than d = 3.5 Å, and the O 3 3 3O�H angle
is smaller than θ = 30�, as previously suggested.44�46 This
definition, as originally described for pure water, conveniently
delineates contacts that form a prominent peak in the probability
density of water�water nearest-neighbors as mapped in the d�θ
plane. We have further verified that this definition is applicable to
these contacts in the presence of polyols and sugars, as well as for
water�sorbitol H bond interactions,46 and that it also applies for
the ternary system that includes the peptide, see the Supporting
Information Figure 6S. The H bonds accounted for in the
peptide environment include contributions from the different
pairs of chemical species: water�water (WW), water�sorbitol
(WS), water�peptide (WP), sorbitol�sorbitol (SS), and sorbitol�
peptide (SP). For PP contacts, which also include nonhydroxyl
types of H bonds, we use a slightly different definition described
and evaluated by Thornton and McDonald.47

To evaluate changes in the number of H bonds in the different
peptide states and solution conditions, we compared differences
in numbers of bonds with respect to the average number of the
same type of H bond in the bulk. By only counting the excess or
deficit of bonds with respect to the bulk, nHB, we are able to
compare simulated systems that are slightly different in size or
density. For this purpose, the bulk was defined as the volume
satisfying 7.4 > r > 8.8 Å from the peptide, where we find
convergence in the difference in excess or deficit of bonds,
for both the F and U states. Figure 3a indicates the difference

Table 1. Differences between F and U States in Force Field
Energies Arising from van der Waals or Coulomb Interac-
tions, As Well As the PV Work Involved

ΔUνdW
a

(kJ/mol)

ΔUEl
b

(kJ/mol)

ΔUTot
c

(kJ/mol)

PΔVd

(kJ/mol)

water 212.86 �1562.37 �1349.51 �1.56 � 10�3

sorbitol 3.9 Osm 171.34 �765.35 �594.01 163.00� 10�3

aTotal force-field energies arising from Lennard-Jones contributions.
bTotal force-field energies arising from Coulomb contributions. cTotal
force-field energies arising from Lennard-Jones and Coulomb contribu-
tions. d PV work calculated from the simulation for the transition from
the U to the F state at a constant pressure of 1 atm and a volume
corresponding to the same amount of water molecules around F and U
states.

Figure 3. Difference in the number of hydrogen bonds in the folded and unfolded states in pure water and in the presence of sorbitol. (a) Hydrogen
bonds in the peptide environment calculated with respect to the bulk versus the distance from any peptide atom. Hydrogen bonds in the peptide
environment include water�water, water�sorbitol, water�peptide, sorbitol�sorbitol, and sorbitol�peptide hydrogen bonds. (b) Number of internal
peptide hydrogen bonds.
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between F andU states in non-PPH bonds (non-PPΔnHB(r)) in
the peptide environment, plotted versus the distance r from any
peptide atom. Negative values represent a loss of H bonds, while
positive values represent gains in the number of hydrogen bonds
upon folding.
Surprisingly, our analysis shows that by folding, the solvating

environment loses hydrogen bonds in both pure water and in the
presence of sorbitol. However, the loss is smaller in the presence
of sorbitol, Figure 3a. Concomitantly, the number of internal
peptide H bonds added in the UfF transition (PPΔnHB) is also
larger than in pure water, Figure 3b. We further dissected the
number of internal peptide H bonds into backbone�backbone
hydrogen bonds and all other PP H bonds. While the number of
backbone�backbone H bonds is significantly larger in the
presence of sorbitol, there is only a small difference in the
corresponding numbers of nonbackbone�backbone H bonds.
The trend for the changes in non-PP ΔnHB(r) upon sorbitol
addition is consistent with our experimental results that show a
diminished unfavorable enthalpic contribution to folding in the
presence of polyols.32 This finding suggests an important con-
tribution of H bonds in solution to the stabilizing effect of
sorbitol.
To fully appreciate the effect of sorbitol requires that we not

only follow the change in the numbers of H bonds but also
account for variations in the strength of hydrogen bonds in the
presence and absence of the osmolyte. Energies of each hydrogen
bond (EHB) were estimated using the correlation between H
bond length and its strength, parametrized by Espinosa et al.,48

and expressed as EHB = 2.5 � 104 exp(�3.6 � d(H 3 3 3O)),
where d denotes the distance between the hydrogen atom and
acceptor atom and EHB is bond energy given in kilojoules per
mole. We note that phenomenological energies derived using
this parametrization are used here, as in other studies, only to
provide a semiquantitative measure for the strength of H
bonds.49�51 Our analysis, therefore, relies only on the relative
strength of the hydrogen bonds and not on their absolute values.
With the exception of PP hydrogen bonds, we find only small

differences in H bond energies between the folded and unfolded
states. Figure 4 shows the average energies for each class of H
bond that are in close proximity to the peptide (re 4 Å), both in
pure water and in the presence of sorbitol. The small number of
internal peptide H bonds that form in the U state, as well as the
fact that these hydrogen bonds are relatively weak (compare 11.3
kJ/mol for U with 20.9 kJ/mol for F state in water) indicate an
advantage to folding both in pure water and in the presence of
sorbitol. In both states (U and F), we find that the WP contacts
form the strongest H bonds (27.6 kJ/mol for F and 27.1 kJ/mol
for U state in water). The relative strength of these H bonds

grows in the presence of sorbitol (28.1 kJ/mol for F and 27.8 kJ/
mol for U state in sorbitol). These WP H bonds are much
stronger than PS hydrogen bonds (24.5 kJ/mol for both states).
These rather weak PS bondsmay, at least partly, explain sorbitol’s
exclusion from the peptide surface, and its preference to remain
hydrated in the bulk solution, where the water�sorbitol hydro-
gen bond energy is ∼23.8 kJ/mol.
Interestingly, WW and PP hydrogen bonds are stronger in the

presence of sorbitol than in pure water. This implies that water
molecules released upon folding in the presence of sorbitol create
hydrogen bonds with other water molecules in the bulk that are
stronger than those that they form in pure water. In fact, every
WW and WP hydrogen bond created in the presence of sorbitol
gains an additional 0.5�0.8 kJ/mol over that formed in
pure water.
Generally, hydrogen bond energies in simulations that use

empirical force fields are not uniquely defined, as they arise in
these models from electrostatic forces that originate from
collective particle-charge interactions of many water molecules.
We have, however, verified that another possible measure of
hydrogen bond strength confirms our conclusions, as derived
from the phenomenological estimates of Espinosa et al.48 Spe-
cifically, we evaluated the force-field energy distribution for WW
and WS contact pairs defined as H bonded, measured with
respect to their energy at infinite separation. Using this alternate
definition, we find that, in agreement with our conclusions from
Figure 4, WW contacts are strengthened in the presence of
sorbitol and that WW contacts are overall stronger than WS
contacts, see Table 1S (Supporting Information).
To properly compound changes in H bond strength and

changes in their numbers, we weigh the number of hydrogen
bonds by the estimated energy of each hydrogen bond at each
distance from the peptide. The resulting sum of hydrogen bond
energies that includes all perturbations in H bonds around the
peptide up to a distance r are compiled in Figure 5 for differences
between the U and F states (ΔEHB

Tot) in the presence and absence
of sorbitol. We find that despite the loss in H bonds upon folding
in the peptide environment, the peptide is overall enthalpically
stabilized by changes inH bonding due to folding. In addition, we
find larger peptide stabilization as a result of folding in the
presence of the osmolyte, so that the H bond energy contribu-
tions converge to a value of ∼�72 kJ/mol in sorbitol versus
∼�48 kJ/mol in pure water.
While the choice of water and osmolyte model and force field

may affect our results, particularly the hydrogen bond energies
and solvation entropies, we do not expect other empirical force
fields to yield qualitatively different results. Specifically, several
studies using a variety of force fields for aqueous carbohydrate

Figure 4. Average energies of each hydrogen bond in pure water and in the presence of sorbitol in the folded (a) and unfolded (b) states. All hydrogen
bonds considered are within r e 4 Å, where r is the shortest distance from any peptide atom.
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binary solutions, including our own tests of additional force fields,
have found similar effects of polyols on water structuring.5 More-
over, another MD study of polyol interaction with large folded
proteins that used a different force field (GROMOS96) has found
several trends that are in common with our analysis, including a
polyols-induced increase in the number of PP H bonds with a
concomitant decrease in the number of PW bonds, increased
protein hydration numbers, and stronger PW hydrogen bonds.20

Entropic Contributions and Water Orientational Order.
An important and perhaps counterintuitive experimental result is
that, in the presence of sorbitol, folding becomes less entropically
favored (ΔΔS =� 9 J/mol K for folding at 1 Osm sorbitol).32 To
follow the possible sources of this decrease in the entropic
contribution, we first studied the water tetrahedral structural
order parameter q(r), in pure water and in the presence of
sorbitol, at distance r around folded and unfolded peptide
conformations. This order parameter is a metric that has been
used to quantify the tendency of a water molecule and its four
nearest neighbors to adopt a tetrahedral arrangement46,52 and is
defined for the ith water molecule as

qi ¼ 1� 3
8 ∑j > k

cos ψijk þ 1
3

� �2

ð3Þ

whereψijk is the angle formed between the central oxygen atom i
and two neighboring atoms j and k (belonging to either water,
polyol, or peptide hydroxyl oxygen or nitrogen), and the sum
extends over four nearest neighbors. If oxygens (or nitrogens) are
arranged in a perfect tetrahedral arrangement, then q = 1, while
for an uncorrelated distribution of oxygens/nitrogens, q = 0.
We find a lower average value of q for sorbitol solutions relative

to pure water, see Figure 6. We have also found a similar trend for
the ordering of water around other polyol osmolytes in binary
solutions in the absence of a peptide.46 The decrease in q(r) values
for r < 4 Å indicates that the peptide further imposes a destructur-
ing effect on hydrating waters found in its close proximity. A
similar conclusion was reported previously by Czapiewski and
Zielkiewicz, who investigated the structural and dynamic proper-
ties of water in the solvation shell formed around different
conformations of a polypeptide chain in pure water.53 By following
the two-particle entropy around the peptide core, they concluded
that water around the peptide is (locally) less structured than in
the bulk.

The order parameter further indicates that water is less
tetrahedrally structured around F than U conformations, Figure 6.
Moreover, the difference between q values in the peptide’s
vicinity for F and U states in pure water is larger than in the
presence of sorbitol. These findings suggest that the presence of
sorbitol imposes a disordering effect on water, so that both the
peptide F and U states no longer alter water structuring to the
same extent as in pure water.
To further investigate the structural properties of water within

the first solvation layers, we determine the water angular prob-
ability distribution in term of cos θ and ϕ, corresponding to the
two angles that describe the orientation of water molecules with
respect to the peptide within 4 Å from any peptide atom, as
described in the Methods. Figure 7 shows the difference in the
water angular probability distribution between folded and un-
folded states, in pure water and in the presence of sorbitol.
The difference in water’s angular distribution is very close to

zero in the presence of sorbitol, indicating a similar distribution
of water molecules’ orientations in close vicinity to F and U
states. However, in pure water, we find a considerably larger
difference, for example, in the population of water orientations
with�0.6 < cos θ <�0.9 and 45 < |ϕ| < 90. Semiquantitatively,
this larger probability difference in water orientations translates
to a larger orientational entropy decrease for folding in pure
water through the known expression for information entropy,54

S =�kB ∑i Pi ln Pi that relates the probability of accessible states
i to the entropy S. These results also correlate well with the
difference in q values around F and U states, as discussed above.
There are, in fact, many potential sources of entropy in this

three-component system. As we have shown, an important
entropic contribution relates to the changes in water orientation
due to the addition of a peptide to solution. Therefore, to
accurately evaluate the part of the solvation entropy that is due
to the orientational degree of freedom of water molecules with
respect to the peptide (sPW

2 ), we calculate sPW,o
2 and sPW,r

2 that
describe the orientational and radial parts of the solvation
entropy, respectively (see Methods for details). Summarized in
Table 2, we show sPW,o

2 and sPW,r
2 calculated for the F and U

states and compare the differences between folded and unfolded
states, ΔsPW,o

2 and ΔsPW,r
2 , to the experimentally determined

entropy of folding.
In water, the values of the orientational entropy sPW,o

2 for the
folded (�807.50 J/mol K) and unfolded (�1152.87 J/mol K)
states are much lower than in the presence of sorbitol (�89.06 J/
mol K and �131.99 J/mol K for F and U states, respectively).
The larger orientational freedom in water may be explained by
our previous findings, indicating that, even in the absence of

Figure 6. Tetrahedral structural order parameter, q, plotted as a
function of distance r from the peptide. Order parameter q(r) is shown
in pure water (black) and in the presence of sorbitol (red) for folded (full
lines) and unfolded (dashed lines) states.

Figure 5. Cumulative hydrogen bond energy differences between the
folded and unfolded states in pure water (black line) and in the presence
of sorbitol (red line) calculated as the product of the number of
hydrogen bonds and the estimated energy of each type of hydrogen
bond. Summation is performed as a function of distance r from the
peptide.
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peptide, the binary sorbitol solution is more disordered than pure
water.46 Thus, the addition of the peptide to the binary solution
cannot further increase water’s orientational disorder to the same
extent as it does in pure water.
It has been established that the solvation entropy sPW

2 is
typically strongly dominated by the orientational part.55 Accord-
ingly, we find that the orientational entropy gain for folding in
water (ΔsPW,o

2 = 345.37 J/mol K) is larger than in the presence of
sorbitol (ΔsPW,o

2 = 42.93 J/mol K), while changes in the radial
part are significantly smaller, Table 2. This result is also in good
qualitative agreement with our experimental results that show
diminished favorable entropy for folding once osmolytes
(including sorbitol) are added.32 These findings point to water
orientational degree of freedom as an important contribution
that should be considered, together with additional possible
entropic contributions to the folding free energy of the peptide.

’DISCUSSION

Recently, the mechanism by which polyols and sugar osmolytes
impact peptide stability has been shown to be enthalpically driven.32

The current study aims to resolve the molecular origins of this
enthalpic mechanism, by simulating the folded (β-hairpin, F state)
and unfolded (U) states of a model peptide in pure water and in the
presence of sorbitol.33,56,57 Sorbitol was shown experimentally to
significantly shift the thermodynamic equilibrium of the peptide,
making it a convenient model for stabilizing polyol osmolytes.

Using molecular dynamics simulations, we find that solution
structure is modified upon peptide addition, but these changes
are somewhat different in the presence and absence of sorbitol. In
the following sections, we describe these differences and show
how these modulations can explain the additional enthalpic
peptide stabilization found in the presence of sorbitol.

Sorbitol Alters thePeptideHydration Layer.Whereas recent
works have argued that the presence of osmolytes alters protein
stability indirectly by affecting water structure,5�7,20 a case has also
been made that it is the direct interaction between osmolyte and
protein, or steric (excluded volume) interactions, that mediate the
osmolyte effect.9,12,58,59 The interplay of direct interactions and
hydration has been particularly important in explaining the action of
various solutes such as urea51,60 or TMAO.61 Our simulations
indicate that while polyols remain excluded from the first solvation
layer around peptide, they drive peptide stabilization primarily by
impacting that first hydration layer. Specifically, local changes in
concentrations and in hydrogen bonding relative to the bulk upon
sorbitol addition are all shown to be limited to the peptide’s first
hydration layers, see Figures 2, 3a, 5, and 6.
The higher values of peptide�water g(r) hydration peaks in

the presence of sorbitol compared with their value in pure water
suggest a larger accumulation of water molecules around the
peptide when sorbitol is present, see Figure 2. It may be tempting
to speculate that this accumulation will result in an increase in the
number of available hydrogen bonds for peptide�water interac-
tions in the presence of sorbitol; however, in simulations we find
an opposite trend, as further discussed in the following.
The overall change in the number of sorbitol-excluding water

molecules (preferential hydration) upon peptide folding from the
U to F states in our simulations is close to the values derived
experimentally (ΔΓUF ≈ �14 and �19 in simulation and
experiments, respectively).32 This release of sorbitol-excluding
waters should inevitably incur an enthalpic contribution, ana-
logous to the heat of dilution associated with adding pure water to
a binary aqueous sorbitol solution, ΔHm

dil.62�64 Interestingly,
ΔHm

dil for the corresponding number of waters released into 1 m
sorbitol solution is∼�0.225 kJ/mol.64 This value can account for
only ∼10% of the peptide folding enthalpy change found experi-
mentally in the presence of sorbitol. This result highlights the stark
difference between the released osmolyte-excluding waters and
pure bulk water. Specifically, the peptide interfacial waters can be
expected to be much different than bulk waters, both structurally
and in their interactions with peptide and solution.
Solution�Peptide and Internal Peptide Hydrogen Bonds

Drive Peptide Stabilization. It is instructive to dissect the
converged cumulative hydrogen bond energies, shown in Fig-
ure 5, into solution�peptide H bonds (including WP and SP),
solution H bonds (including WW, WS, and SS), and internal

Figure 7. Difference in water angular probability distribution between folded and unfolded states in pure water (a) and in the presence of sorbitol (b).

Table 2. Different Contributions to the Solvation Entropya

sPW,o
2 sPW,r

2 ΔsPW,o
2 ΔsPW,r

2 ΔSexp

pure water folded �807.50 �3.78
345.37 0.45 44

unfolded �1152.87 �4.23

sorbitol 3.9 Osm folded �89.06 1.49
42.93 2.07 35

unfolded �131.99 �0.58
aAll contributions are given in units of J/mol K. sPW,o

2 denotes the
orientational parts and sPW,r

2 , the radial parts.
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peptide H bonds. Figure 8a shows the energy differences
between folded and unfolded states ΔEHB

Tot in each of these
categories. Solution H bond energy differences are almost the
same in pure water and aqueous sorbitol solution. However, the
energies of solution�peptide and internal peptide hydrogen
bonds significantly change in the presence of sorbitol. These
changes are manifested in reduced solution�peptide hydrogen
bond energy losses, as well as an increased internal peptide
hydrogen bond energy gain upon folding in the presence of
sorbitol, Figure 8.
Changes in Cumulative Hydrogen Bond Energies Track

the Changes in Number of Hydrogen Bonds. Figure 8b shows
the dissected cumulative hydrogen bond energies for the U and F
peptide states in pure water and in the presence of sorbitol. While
we found an increase in the energy of all H bond types in the
presence of sorbitol (Figure 4), we concurrently found lower
total solution�peptide H bond energies in the presence of
sorbitol for both F and U states, Figure 8b. This finding reflects
the smaller overall number of solution�peptide hydrogen bonds
that form in the presence of sorbitol. This smaller number of
bonds is also responsible for the decrease in the number of
hydrogen bonds lost upon folding in sorbitol, see Figure 3a.
Some of these H bonds lost are peptide�water hydrogen bonds
that are the strongest H bonds formed in this system. To
compensate for the loss of these H bonds as a result of folding,
the system tends to increase the number of internal peptide
hydrogen bonds, significantly strengthens these (seen as shorter
bond length d), and in addition creates stronger hydrogen bonds
between peptide and water (27.8 and 28.1 kJ/mol for U and F
states, respectively). We further find that the increase in internal
peptide hydrogen bond enthalpy upon folding in the presence of
sorbitol, Figure 8a,b, is mostly due to the higher number of
backbone�backbone H bonds, see Figure 3b. This finding is also
consistent with the work of Bolen and co-workers,4 who have
recently shown an enhancement of protein backbone�backbone
hydrogen bonding interactions upon dilution from a good
solvent (urea solution) to poorer (osmolytes containing) sol-
vents, such as sarcosine or TMAO aqueous solutions.
Reduced Numbers of Available Hydrogen Bonds in the

Presence of Sorbitol Arise from Polyol’s Ability to Form H
Bonds. Polyols are known to compete with water’s own tendency
to create optimal hydrogen bonds, thereby leading to a smaller
number of solution�peptide hydrogen bonds that can form in
their presence.46,53 The smaller number of potential hydrogen
bonds in the peptide vicinity in the presence of sorbitol also
results in a smaller number of these bonds that can be lost as a
result of folding. Overall, we have previously shown that polyols
tend to participate in forming weaker, more distorted hydrogen

bonds, in this way disrupting the water hydrogen bonding
network and allowing less tetrahedral arrangements.20,32,52 In
concert, water molecules tend to optimize remaining water�
water H bonds by creating more linear and shorter contacts
leading to stronger interactions.20,46 Indeed, we find here that
sorbitol strengthens water�water as well as water�peptide
hydrogen bonds, Figure 4. This impact of osmolytes on solution
structure is somewhat similar to that shown in previous simulation
studies of another known protective osmolyte, TMAO, showing a
modest enhancement of the water structure near TMAO as well
as an increase in water�water hydrogen bonding.7

The emerging picture of solution structure can be summarized in
a typical simulation snapshot, Figure 9. The image shows a water
molecule in the peptide’s first hydration layer that forms a weak
hydrogen bond contact with sorbitol that is located further from the
peptide butmakes threemuch stronger hydrogen bonds with water
molecules within that solvation layer. These H bonds with neigh-
boring waters are even closer to optimal than water in the bulk, see
Figure 7S. We find that this type of configuration is statistically
favored and that sorbitol tends to reduce the number of hydrogen
bonds with which the peptide can potentially interact. Sorbitol
addition may, therefore, be viewed as introducing a competition
between peptide and osmolyte for hydrogen bonding with water.
Due to this competition, some potential H bonds to the peptide are
lost, forcing the peptide to optimize remaining H bonds with water
or within itself. This view also explains how water accumulation in
the peptide solvation shell, discussed in Results, coincides with fewer
yet stronger H bonds between water and peptide in the presence of
sorbitol. Interestingly, Collins andWashbaugh65 suggested an analo-
gous mechanism for the alteration of water structuring at interfaces
due to solutes to describe the action of different salt solutes.

Figure 8. Cumulative hydrogen bond energies dissected into internal peptide, solution�peptide, and solution hydrogen bonds. (a) Differences
between F and U states in pure water and in 3.9 Osm sorbitol. (b) F and U states in pure water and in the presence of sorbitol. Solution�peptide
hydrogen bonds include WP and SP hydrogen bonds. Solution hydrogen bonds include WW, WS, and SS hydrogen bonds.

Figure 9. Typical snapshot from MD simulation of peptide in sorbitol
solution, showing a water molecule that forms a weak H bond contact
with sorbitol but three strong, optimized H bonds with waters around it.
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Our results indicate that peptide-sorbitol H bonds are weaker
and less favorable than other H bonds that can form in the
ternary mixtures. This weaker interaction leads to sorbitol’s
exclusion and to preferential hydration of the peptide. In terms
of polymer theory, polyol solutions are poorer solvents to the
peptide than water, and therefore promote its collapse.66,67 This
forces the peptide to optimize internal (primarily backbone�
backbone) hydrogen bonds. These findings gain support from
the experimental studies of Bolen and coauthors,4,12,68 showing
that the unfavorable interactions between osmolytes and the
peptide backbone raise the free energy of the U state, thereby
shifting the thermodynamic equilibrium toward the native state.
Non-hydrogen bonded “hydrophobic” interactions between
nonpolar parts of the peptide are important for the collapse,
but seem to be less altered by the presence of sorbitol than the
hydrogen bonding network.
Hydrogen Bond Optimization Is Consistent with a De-

crease in Peptide Solvation Entropy in the Presence of
Sorbitol. To follow the contribution of water structural proper-
ties within the peptide hydration shell to the solvation entropy,
we used the two-particle approximation to configurational
entropy. We focused here on two terms of the water solvation
entropy, the orientational and radial entropy contributions, and
followed changes in peptide solvation entropy as a result of
folding in sorbitol solution. This analysis revealed restriction in
water orientations in the presence of sorbitol and a dominant
contribution of orientational entropy (ΔΔsPW,o

2 =�302.44 J/molK
compared with ΔΔsPW,r

2 = 1.62 J/mol K). The decrease in
solvation entropy results from the optimization of hydrogen
bonds wrought by the presence of sorbitol that concomitantly
restricts the orientational freedom of water. This entropic
contribution agrees with the trends found experimentally,
showing a decrease in the total favorable entropic contribution
to folding as a result of sorbitol addition (ΔΔS =�9 J/mol K for
folding at 1 Osm sorbitol).32

Other terms in the total entropy that are more hardly
accessible computationally could be important, but previous
studies have shown that their contribution is typically limited.
For example, estimates of the term depending on water�water
interactions, sWW

2 , were calculated by Zielkiewicz and Czapiewski
for water within a peptide solvation layer;53 the study concluded
that the local structure of the solvating water changes only
slightly compared to that of bulk water. We suggest, therefore,
that this term is expected to have a smaller influence also on the
solvation entropy in the presence of sorbitol.
The Possible Contribution of Crowding. In addition to

these entropic contributions, there are other sorbitol-related
entropic terms that have not been explicitly determined here.
For example, a calculation of depletion entropy can be made on
the basis of the number of water molecules released as a result of
peptide folding in sorbitol solution32 according to Asakura�
Oosawa theory.69 A simple estimate results inΔΔSdep =ΠΔV =
ΠΔΓUFvNAv ≈ 10 J/mol K for a solution osmotic pressure of
Π = 3.9 Osm at T = 298 K, where ΔV is the change in the
osmolyte’s free volume due to folding, as determined in ref 32,
and v is the volume of a water molecule. This value can account
only for a small part of the total change in entropy
and would suggest that the folded state is entropically more
favored in the presence of sorbitol, contrary to what we found
experimentally. This suggests that mechanisms that rely purely
on steric interactions do not play the dominant role in sorbitol’s
action.

Experiments further showed that the enthalpically driven
mechanism together with the entropic penalty associated with
the native state stabilization are strongly osmolyte size-dependent.32

Thus, the entropic penalty grows as cosolute is varied from smaller
polyols to the larger carbohydrates in the order glycerol < sorbitol <
trehalose. This, again, is in contrast to a pure volume exclusion
mechanism that would dictate a stronger but more favorable
entropic contribution to folding when larger molecular crowders
are present at the same mole concentration. These findings are,
however, in agreement with recent experiments on the stabilization
(or destabilization) of DNA in the presence of polyethylene glycols
of various molecular weights.70 These experiments showed a size-
dependent exclusion that could be dissected into the extent of
monomer�macromolecule “chemical interaction” effect and a
steric effect. Interestingly, the steric effect becomes stronger with
the volume of the crowdermolecule, while the chemical interaction
contribution is proportional to macromolecule and cosolute inter-
acting surface areas. In agreement, we find that for the polyols we
have tested,32 the entropic penalty grows with cosolute size but that
the slope of this changebecomes less steep as cosolute size becomes
larger, possibly suggesting a larger entropically favorable steric
contribution for the larger cosolutes.

’CONCLUSION

We have used MD simulations to analyze the mechanism of
peptide stabilization by sorbitol. Contrary to common wisdom, the
peptide stabilization imposed by polyols was found experimentally
to be enthalpically and not entropically driven. The emerging
molecular mechanism shows that sorbitol stabilizes the native
folded state of peptides by changing their immediate solvation layer.
These changes lead to a decrease in the number of hydrogen bonds
lost as a result of folding, optimization of existing hydrogen bonds,
and an increase in the number of internal peptide hydrogen bonds.
While the effects of sorbitol described in this study for a short
16-amino-acid-long peptide are relatively small, the significant
accumulation of small contributions from solute�peptide interac-
tions over extended macromolecular interfaces should have a
profound effect on stabilization of the larger proteins typically found
in cellular environments. It will be interesting to find out if the
described mechanism is common to all peptides with different
sequences and secondary structures, as well as to proteins, in
solutions that contain polyols or other osmolytes.

’METHODS

All-Atom Molecular Dynamics Simulations. To compare
with our previous experimental work,32 we simulate here a model
16-residue peptide (sequence: Ac-KKYTVSINGKKITVSI) that
can fold to a β-hairpin structure. Unfolded and folded peptide
states were simulated in purewater and in the presence of sorbitol.
To select initial configurations for subsequent MD simulations,
we first employed the CHARMM empirical force field with
implicitly included water to distinguish between the two primary
states: folded and unfolded. An all-atom representation of the
peptide was used in these simulations together with the SASA
implicit water parameters, at two temperatures: 300 K and 400 K.
Statistics of peptide dynamics showed two major peptide con-
formational populations when dissected by their accessible sur-
face area (ASA), see Supporting Information Figure 1S. These
results indicate conformations and changes in peptide folding that
are similar to those found usingNMRmeasurements,33 indicating
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that for different effective temperatures, the peptide occupies a
different set of accessible conformations, changing from a more
compact and folded β-hairpin structure at low temperatures to
more extended “unfolded” structures with a larger ASA at high
temperatures. One of the most probable structures from each
state was used for further all-atom MD simulations with explicit
water performed using NAMD.71

Table 3 lists the entire set of the MD simulations performed.
Conformations of the folded and unfolded states were placed in a
cubic box of TIP3P water molecules and three chloride coun-
terions (representing pure water solvent solutions). In addition,
each state was also immersed in osmolyte solutions by inserting
sorbitol molecules in a cubic box of TIP3P water molecules with
a single peptide molecule, corresponding to concentrations of
approximately 3.9 Osm (3.86 m), as detailed in Table 3. All
interactions were subject to the CHARMM27 force field72,73 and
used without further modifications. Bonds were kept at a
constant length for solutes and solvent molecules using the
SHAKE algorithm. All simulations were performed within the
NPT ensemble, at T = 298 K (using Langevin dynamics algorithm
as implemented in NAMD) and P = 1 bar (maintained using the
Nose�Hoover Langevin piston method), within a cubic box
with fluctuating length of ca. L = 48 Å and periodic boundary
conditions. After initial energy minimization of 1000 steps
and 100 ps of MD equilibration, 50 ns MD simulation
trajectories were collected. Of these, the last 13�15 ns were
used for further analysis, with collection steps every 0.5 ps,
resulting in well converged averages for all calculated dis-
tributions. The time step in all simulations was 2 fs. Electro-
static calculations were performed using the Ewald particle-
mesh summation with 1 Å grid spacing. The van der Waals
interactions were truncated smoothly with a cutoff of 12 Å
and a switching distance of 10 Å. MD trajectory analysis was
performed using VMD.74

Radial Distribution Functions. Radial distribution functions,
gxy(r), assess local densities of atom type y at a distance r from an
atom of type x. This gxy(r) is calculated as

gxyðrÞ ¼ yðr0, rÞ
Fy, bulkδVðr0, rÞ

ð4Þ

where r is the radius of the solvation shell, y(r0,r) is the
number of y molecules found between r0 and r, δV(r0,r) is the
volume of the shell ranging from r0 to r, and Fy,bulk is the bulk
density of y. The volume δV(r0,r) was calculated using the
Monte Carlo method for determining volume by randomly
placing 1000 points in the simulation box and computing
the ratio of hits within a shell to the total number of points.
Unless otherwise stated, in all of our reported calculations,
we have evaluated local densities of water oxygen’s and
sorbitol’s center of mass at a distance r, corresponding to the

shortest distance from any atom of folded or unfolded peptide
states.
Osmolyte Force-Field Validation. We have previously

validated the sorbitol parameter set used here46 by comparing
densities from binary mixture simulations of sorbitol at
2.4 M to the densities extrapolated from experimental data75

(1.14 gr/cm3). The experimental value differs by 3% from the
value found in our simulations (1.11 gr/cm3). In addition, we
have calculated another experimentally available thermodynamic
property, theKirwood�Buff integral for sorbitol46GSS =

R
(gss� 1)

dv, where S stands for solute, and gSS is the solute�solute
pair correlation function, measured as a function of the distance
between a central polyol hydroxyl oxygen and an osmolyte-
representing atom. We found that in simulations GSS = �0.2,
very close to the previously published experimental value
of �0.23.76

Calculation of the Two-Body Peptide�Water Contribu-
tion to the Solvation Entropy. The position and orientation of
each water molecule with respect to the peptide were determined
from the MD trajectories and used within the two-particle
approximation to find the contribution of the local structure of
water to the solvation entropy, as has been previously developed
and described in detail (see refs 53, 55, 77). Within this
approximation, the two-particle contribution to entropy evalu-
ated relative to a completely random orientation of water
molecules for a two-component system has the form:55,77,78

s2 ¼ s2PP þ s2PW þ s2WW ð5Þ

where sPP
2 describes peptide�peptide interactions and therefore

is irrelevant in our one-peptide simulations. The sWW
2 term is

harder to access and is expected to be less important for the
differences between solutions with and without peptides, as
further detailed in the Discussion. Finally, sPW

2 describes the
protein�water interactions given by

s2PW ¼ � kBNWF
Z

g2PW ln g2PW dr̅

þ kNWF
Z

ðg2PW � 1Þ dr̅ ð6Þ

where F denotes the number density of the peptide, taking into
account the volume within 4 Å from each peptide atom, gPW

2 is
the two-body peptide�water distribution function, NW is the
number of water molecules within the same volume, and kB is
Boltzmann’s constant.
The two-body contribution to the solvation entropy can be

further separated into an orientational sPW,o
2 and a radial (or

“non-orientational”) sPW,r
2 part by writing gPW

2 as a product,
gPW
2 = g(r) a(r,θ,ϕ), of the radial distribution function g(r) and
a function a(r,θ,ϕ) that describes the orientation of water
molecules (the angular distribution function), normalized to
4π. The angles θ and ϕ determine the position of the
surrounding water molecules relative to the closest peptide
atom.78 The angle θ describes the angle between the dipole
moment of the water molecule, d, and the vector originating
at the water molecule’s oxygen atom and ending at the closest
peptide atom, rOP. The angle ϕ is formed between the plane
spanned by the water molecule and the plane spanned by
the d and rOP vectors.

78 Using the product that gives gPW
2 in

the expression for sPW
2 , we thus obtain sPW

2 = sPW,o
2 + sPW,r

2 ,

Table 3. Parameters for Simulation Runs

peptide state

sorbitol

(Osm)

number of sorbitol

molecules

number of water

molecules

folded (F) 0 0 3769

3.9 150 2174

unfolded (U) 0 0 3747

3.9 150 2169
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where

s2PW, r ¼ � 4πkNWF
Z ∞

0
½gðrÞ ln gðrÞ � gðrÞ þ 1�r2 dr

ð7Þ
s2PW, o ¼ � kNWF

Z ∞

0
r2 gðrÞ dr

�
Z π

0

Z 2π

0
aðr,θ, ϕÞ ln aðr, θ, ϕÞ sin θ dθ dϕ ð8Þ

In our evaluations of these quantities, we used the following
integration steps: δr = 0.2 Å and δθ = δϕ = π/36.

’ASSOCIATED CONTENT

bS Supporting Information. Figures for the probability dis-
tribution of accessible surface area of the peptide under different
conditions, the average number of water molecules around the
different peptide amino acids, radial distribution functions for water
oxygens in the peptide vicinity, properties of hydrogen bonds and
their probability distributions, and the average energy of hydrogen
bonds in the bulk. This material is available free of charge via the
Internet at http://pubs.acs.org.
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ABSTRACT:Accurate prediction of drugmetabolism is crucial for drug design. Since a largemajority of drugs’metabolism involves
P450 enzymes, we herein describe a computational approach, IDSite, to predict P450-mediated drug metabolism. To model
induced-fit effects, IDSite samples the conformational space with flexible docking in Glide followed by two refinement stages using
the Protein Local Optimization Program (PLOP). Sites of metabolism (SOMs) are predicted according to a physical-based score
that evaluates the potential of atoms to react with the catalytic iron center. As a preliminary test, we present in this paper the
prediction of hydroxylation and O-dealkylation sites mediated by CYP2D6 using two different models: a physical-based simulation
model and amodification of this model in which a small number of parameters are fit to a training set.Without fitting any parameters
to experimental data, the physical IDSite scoring recovers 83% of the experimental observations for 56 compounds with a very low
false positive rate. With only four fitted parameters, the fitted IDSite was trained with a subset of 36 compounds and successfully
applied to the other 20 compounds, recovering 94% of the experimental observations with high sensitivity and specificity for
both sets.

’ INTRODUCTION

It is crucial to understand how potential drugs are metabolized
in the body, because human metabolism has profound impacts
on the bioactivity and the safety profiles of drug candidates. On
one hand, metabolism can convert these compounds into their
active forms, which interact with the therapeutic targets; on the
other hand, metabolism eliminates the compounds by converting
them into inactive excretable metabolites. Sometimes the meta-
bolic modifications also lead to toxicity, which can cause un-
expected failures in the later phases of drug development.
Furthermore, the metabolic behavior of drug compounds is also
highly related to other critical issues such as food�drug interac-
tions, drug�drug interactions, and personalized medication.1�3

Given the enormous impact of metabolism on drug bioavail-
ability and toxicity, it is important to determinemetabolites in the
early stage of the drug discovery process. However, to obtain
such information experimentally is often a very lengthy and
expensive process. Therefore, it would be extremely useful if one
could use computational methods to predict the metabolic
decomposition of drug candidates.

Since cytochrome P450 enzymes (CYP) are involved in a large
majority of drug metabolism pathways, many computational
studies have been published attempting to predict P450-
mediated metabolism using a variety of methods and models.
For a recent review, see the work of Afzelius et al.4 These
previous studies mainly focused on the important P450 isoforms
2D6, 2C9, and 3A4, aiming to predict the primary metabolites of
drug compounds. Several ligand-based methods have been
developed during the past decade, making predictions based on
hydrogen abstraction energies estimated with semiempirical quan-
tum mechanics5 or DFT methods.6 Although such ligand-based

methods are very fast, it is often necessary to consider the
interaction between the enzyme and the substrate in order to
reach high accuracy (for example, >80% agreement with experi-
ments) in the predictions. It is possible to include a limited amount
of enzyme-specific information by making descriptors of ligand-
based models dependent on the nature of the enzyme.7�9 Such
approaches have been successfully implemented in software
packages such as MetaSite, and some were reported to recover
up to 86% of the experimental observations.10 On the other hand,
molecular dynamics (MD) or induced-fit docking simulations in
combination with transition state calculations at the QM/MM or
semiempirical quantum level were used to predictmetabolites for a
few ligands.11,12 Other promising methods based on molecular
docking have been implemented aswell,13�17which determine the
predictions using a reactivity model and/or distance cutoffs from
the reactive iron center.

Traditional empirical ligand-based approaches to the predic-
tion of P450 SOMs rely primarily on implicit estimation of the
intrinsic site reactivity to the compound I oxo species, coupled
with a heuristic attempt to take into account the ability of the
ligand to bind to the P450 active site. While such methods can
yield some discrimination of true positives from false positives
when a sufficiently large training set is employed,5,8,18 the
precision of the approach is fundamentally limited, as the treat-
ment of protein�ligand binding is highly approximate. Methods
such as MetaSite10 provide some incorporation of P450 structur-
al information but employ a much smaller training set and fewer
empirical parameters; the overall results appear to actually be less

Received: July 5, 2011
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accurate than a ligand-based approach employing an extensive
data set. The problem is again that the MetaSite algorithm for
modeling the reactive protein�ligand complex does not rigor-
ously evaluate the binding energy or perform a thorough con-
formational search, severely limiting the predictive capability that
can be attained.

The method described in the present work (IDSite) repre-
sents a qualitatively different approach from those discussed
above, as well as from other efforts in the literature.6,8�10 First,
the goal is to actually generate an accurate structure for the
protein�ligand complex that enables reactivity at a specified site;
this requires construction of a good approximation to a transition
state structure for both aliphatic and aromatic sites of reaction.
Second, the relative binding affinity, as compared to alternative
structures for both the site in question and for other sites, has to
be computed with a respectable degree of precision, on the order
of a few kilocalories per mole. Finally, the relative intrinsic barrier
height of the reaction (combinedwith the relative binding affinity
to produce an overall relative barrier), as compared to other
possible reactions of the molecule, must be estimated, to within
∼1 kcal/mol. These are extraordinarily daunting tasks, given that
the P450 isoforms present large, complex active site regions with
substantial capability for induced-fit conformational changes, a
necessary condition for them to accommodate the wide range of
exogenous ligands with which they need to interact to perform
their biological function.

The algorithms in IDSite employ a novel model for the total
energy of the protein�ligand complex, which has recently been
shown to provide remarkably accurate predictions for side chains
and loops,19 and a sophisticated algorithm for generating con-
verged induced-fit structures which combines docking, confor-
mational search, and hybrid Monte Carlo (MC) methods based
on MD trajectories. The algorithm enables a hierarchical search
which addresses the various length scales of the problem, in-
cluding the small correlated motions provided by the MD
trajectories which we have found are absolutely necessary to
produce useful rank ordering of structures, particularly for larger
ligands. Constraints are employed in conjunction with these
simulation algorithms to enforce appropriate transition state
structures. The energy model enables the targets of a few
kilocalories per mole accuracy in relative binding affinity to be
reached. Finally, a quantum chemically based model is employed
to calculate relative intrinsic reactivities and again is shown below
to yield outstanding performance. On the basis of such a high
level of success, it is documented below in predicting true
positive SOMs versus false positives.

To our knowledge, these results represent the first reliable and
accurate computation of binding poses and transition states for a
wide range of drug-like molecules interacting with an important
human P450 isoform. There are a few previous papers in which
structures are generated via QM/MM calculations.12,20,21 How-
ever, these typically address a very small number of ligands
(usually one); the ligands are typically simpler and smaller than
those treated here; and the sampling algorithms are much less
extensive. We believe that these structures can be very useful in
practical drug design applications, in situations where modifica-
tion of P450 metabolic properties for candidates in later stages of
lead optimization is required. The availability of an atomic level
three-dimensional structure, as well as the ability to predict the
structural and energetic effects of chemical modification of the
molecule, provides a new tool for chemists to rationally engineer
desirable metabolic properties into clinical candidates. Extension

of our methods to other P450 isoforms such as 1A2, 2C9, and
3A4, which is currently in progress, will enhance the utility of our
approach for this important application.

’METHODS AND MATERIALS

IDSite Methodology. IDSite combines the docking program
Glide22 and the protein structure modeling program PLOP
(Protein Local Optimization Program, available as the protein
refinement module in the protein modeling package Prime of
Schr€odinger, Inc.23) to model induced-fit effects and to predict
sites of metabolism. IDSite consists of three hierarchical sam-
pling stages and one final scoring stage (Figure 1). It begins with
flexible Glide docking calculations, which place the ligand into
the active site. Following the docking stage, two refinement
stages in PLOP are carried out to refine the protein side-chain
and ligand orientations. At the end of each sampling stage, the
generated/refined poses are screened on the basis of their
structures and energies and clustered according to the similarity
of the ligand conformation. Finally, the refined lowest energy
poses are used to predict the sites of metabolism on the basis of a
physical score, which is dependent on the energies of the poses as
well as the intrinsic chemical reactivities of the potential sites of
metabolism.

Figure 1. IDSite workflow.
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IDSite is able to use knowledge about specific conserved
interactions to perform efficient sampling and accelerate the
calculations. For example, in the case of CYP2D6, a typical
substrate always contains a basic center (e.g., an amine nitrogen)
that binds to one of the two acidic residues, Glu216 or Asp301.
IDSite constrains such salt bridges to reduce the sampling cost
associated with the docking and refinement stages. Filters are
applied during the screening at the end of each stage in IDSite to
reduce the number of poses passed to further refinement or
evaluation (Table 1). The following is a detailed description of
each stage of IDSite.
We have constructed our sampling and scoring algorithms

with the intention of approximating the correct transition state
structure of the protein�ligand complex and associated activa-
tion energy, which would lead to reactivity of the target atom of
the ligand. There are two components of the problem: finding
the transition state in reasonable CPU time (a daunting task for a
large, complex ligand when induced fit effects are important) and
estimating the free energy of activation associated with the
transition state. The VSGB 2.0 energy function, with constraints
to enforce a suitable geometry for the reaction to take place (and
some other constraints as well to facilitate sampling, as described
in the text below), is minimized to generate these structures for
the various possible candidate reactant heavy atoms. We use the
classical force field and solvation model to produce a “reactant”
structure which is optimally positioned for the targeted chemical
reactivity. The activation barrier from a precomputed quantum
chemical fragment calculation, as described in the following text,
is then added to the VSGB 2.0 energy to estimate the relative
energy barrier for converting such a structure into products. This
is an approximation to a more rigorous approach such as using
QM/MMmethods to generate the reactant, transition state, and
product structures. Note that it is only important that relative free
energies of the various potential sites of reaction are calculated

with reasonable accuracy, as the most reactive (lowest activation
free energy) site is always used as a reference point (i.e., the
energy function for this site is subtracted from the energy
function for the candidate site) in our assessment of the meta-
bolic contribution of each site. Finally, in applying the above
protocol, the VSGB 2.0 energy must be calculated using a
structure with the constraints in place; otherwise the structure
would minimize to something that is not a suitable starting point
for reaction. The constraints introduce some strain energy into
the structure, but this strain energy is an appropriate component
of the activation free energy as it does cost energy to create a
suitable reactive structure.
1. Glide Docking. Starting from the ligand and the protein

receptor structures, IDSite carries out flexible ligand docking
with Glide.24,25 The flexible ligand docking protocol generates a
large number of ligand conformations that are then docked into
the rigid receptor. The first step in Glide docking is to define the
binding box and calculate the receptor grid. As inGlide, in IDSite
the binding site is defined as a box centered at the center of
selected residues or a ligand (if the structure contains a ligand).
Because we start from the apo structure of CYP2D6 (PDB ID:
2F9Q; see below for details about the protein preparation), the
center of the binding box is selected as the centroid of the
residues Glu216, Asp301, Thr309, and Phe483. The box dimen-
sion on each side is set to 10 Å for the inner box and 20 Å for the
outer box. After the grid generation, IDSite samples the conforma-
tions of freely rotatable bonds and rings with Glide Standard
Precision (SP). In order to increase sampling, IDSite uses
reduced van der Waals (VDW) radii and skips the default
filtering with a rough score within Glide (also referred to as
expanded sampling). Similar poses are clustered according to
their RMSD (cutoff 2.0 Å). Finally, a postdocking minimization
is performed, and the top 60 minimized poses according to the
Glide SP score are retained. These poses are then screened to

Table 1. IDSite Filters in the Screening for CYP2D6

stage filters applied in the screening at the end of the stage

Glide Docking and PLOP Refinement 1 Poses that fulfill any of the criteria below are removed:

(1) The distance of the basic nitrogen to the ferryl oxygen is less than 5.0 Å

(2) The distance of the basic nitrogen to the negative charged oxygen (in Glu216 or Asp301)

is greater than 5.5 Å

(3) More than two heavy atoms from the ligands are further than 16.0 Å away from the heme iron

(4) More than one heavy atom from the ligand is closer than 1.0 Å to the receptor

(5) More than six heavy atoms from the ligand are closer than 1.8 Å to the receptor

(6) No heavy atom in the ligand is within 5.0 Å to the heme iron

For PLOP refinement 1: All of the poses are ranked with PLOP energies. Poses with energy higher than

35 kcal/mol compared to the lowest energy pose are removed.

PLOP refinement 2 Poses that fulfill any of the criteria below are removed:

(1) The distance between the constrained atom and the ferryl oxygen is outside the optimal range,

which is from 1.65 to 2.60 Å for sp3 atoms and from 1.60 to 2.08 Å for sp2 atoms

(2) The distance of the basic nitrogen to the ferryl oxygen is less than 4.8 Å

(3) The distance of any polar atom to the ferryl oxygen is less than 3.2 Å

(4) The distance of the constrained salt bridge (between the basic nitrogen and the oxygen from Glu216

or Asp301) is greater than 3.6 Å; the angle of the salt bridge (N�H�O) is less than 140�
(5) More than two heavy atoms from the ligands are either further than 14.5 Å or closer than

1.6 Å from the heme iron

(6) The pose has at least one distorted cyclohexane ring.
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remove the poses with obvious steric clashes, with too many
atoms outside the inner binding box, or without atoms close to
the heme iron (Table 1). The remaining poses are then passed to
the first refinement stage.
IDSite uses reduced VDW radii for nonpolar atoms both in the

protein receptor and the ligand, so that slight steric clashes are
tolerated during the docking stage. For the protein receptor, the
VDW scaling factor is fixed at 0.40, while for the ligand, the
scaling factor starting from 0.80 is adaptively adjusted until at
least four valid poses are found. With highly flexible ligands and
relatively high scaling factors, Glide often finds only a handful of
valid poses, and even fewer survive after IDSite screening.
However, if the scaling factor is set too low, the docked poses
may contain too many serious steric clashes, which can cause
problems in the subsequent minimization. If IDSite fails to find
enough valid poses, the scaling factor is adjusted, and the number
of poses to pass the initial docking phase in Glide is increased
accordingly to augment sampling.
Since a typical CYP2D6 substrate forms a highly conserved

salt bridge with either Glu216 or Asp301,26 IDSite employs this
conserved interaction to reduce the sampling cost of the
CYP2D6 docking in the following way: IDSite adds a positional
constraint to ensure that the generated poses fulfill at least part of
the preferred conserved interactions. The positional constraint
defines a spherical region in the receptor that is within 4.0 Å
of the center of the Glu216, Asp301, and Ser304 residues
(Figure 2). It is required that during docking and postdocking

minimization each pose should maintain at least one hydrogen-
bond donor inside the spherical region. If the ligand contains
other hydrogen-bond donors except for the basic nitrogen, the
constrained docking is likely to generate poses that form hydro-
gen bonds instead of the salt bridge to Glu216 or Asp301.
However, IDSite is able to distinguish these poses and filter
them via an additional salt bridge filter in the pose screening
(Table 1), so that only the poses with a stable salt bridge are
allowed to pass to the refinement stage.
2. PLOP Refinements. The refinement of the docked poses

includes multiple parallel Monte Carlo Minimization (MCM)
simulations in PLOP. For each pose from the previous stage (the
docking or first refinement stage), IDSite finds all of the heavy
atoms in the ligand close to the heme iron. For each of these
atoms, distance and angular harmonic constraints are applied in
order to force sampling of the conformations that potentially lead
to metabolism. The optimal distances and angles of the con-
straints were obtained from hydroxylation transition state geo-
metries with a heme model system at the B3LYP/LACVP* level
using Jaguar.27 The detailed nature of the employed constraints is
shown for both sp3 and sp2 type carbons in Figures 3 and 4. The
constraints are then employed in the minimization step but were
not included in the energy used for the acceptance step of the
MCM simulations. PLOP uses the overlap factor (the ratio of
distance between two atom centers to the sum of their atomic
radii) to quickly reject randomized structures with serious steric
clashes (defined as the overlap factor being lower than a specific
cutoff). PLOP repeats the random attempts until a structure with
tolerable clashes is generated, after which a constrained mini-
mization using the truncated Newton method is performed. The
acceptance or rejection of the minimized structure is decided by
the Metropolis criteria based on the energy calculated in the
VSGB 2.0 model. (Performing the minimization step before
testing the acceptance criteria violates detail balance, but this is
not an issue, as we are interested only in low energy structures
and not the population/ensemble distribution.) The simulations
run until a certain number of accepted structures are collected.
In order to sample the various degrees of freedom in the

conformational space, IDSite employs three types of randomized
moves in the MCM simulations: side-chain rotation, rigid body
translation/rotation, and hybrid moves.
Side-Chain Moves. By varying the dihedral angles of the

rotatable bonds, IDSite uses side chain MC moves in PLOP to
sample the selected side-chain conformations of the protein and

Figure 2. Definition of the binding box (yellow cube) and the positional
constraint (yellow dotted sphere) in IDSite for CYP2D6.

Figure 3. Constraints applied to the heme region in the first refinement
stage. The ferryl oxygen is a “dummy” atom (1.6 Å above the heme iron),
only used to define the constraints in the IDSite calculations. (a) Con-
straints for sp3 carbons. (b) Constraints for sp2 carbons.

Figure 4. Constraints applied to the heme region in the second
refinement stage. The ferryl oxygen is a “dummy” atom (1.6 Å above
the heme iron), only used to define the constraints in the IDSite
calculations. (a) Constraints for sp3 carbons. (b) Constraints for sp2

carbons.
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of the ligand. Up to three close residues (Cβ distance within 6 Å)
are allowed to rotate collectively, but the moves of the protein
residues and those of the ligand are separated. In each attempted
movement, the conformations of the selected side chains (from
the protein/ligand) are either changed by random perturbations
or assigned to a randomly selected rotamers from a library. For an
attempt with a random perturbation, the displacement of each
dihedral angle is the sum of a large rotation (N times 60� with N
as a random integer between 1 and 5) and a random perturbation
from 0 to 30�. For a rotamer library attempt, a side-chain con-
formation is updated with a random rotamer from a high
resolution side-chain library for protein residues,28 and from a
homogeneous library at 10� resolution for the ligand. If a
structure with tolerable overlaps is generated in an attempt, it
is minimized and sent to subsequent stages for judgment of
acceptance. Each side-chain move takes less than 15 s and is the
fastest among all of the three move types.
Rigid Body Moves. Rigid body moves are used to sample the

translational and rotational space of the ligand.Multiple attempts

with reduced VDW radii are applied, as it is quite common to fail
in searching for a clash-free conformation in a single rigid body
moving attempt (especially when the ligand is large and flexible
and the binding pocket is relatively small). Each rigid body move
includes 1000 attempts, and each attempt performs a translation
along a random vector and a rotation around a random axis, with
less than 0.5 Å and 60� displacement, respectively. In addition,
the VDW radii are reduced (scaling factor 0.8) to soften the
Lennard-Jones potential, so that mild steric clashes are allowed,
which are likely to be resolved by the subsequent minimization.
The rigid body move usually takes 20 to 40 s per move.
Hybrid Monte Carlo Moves. The hybrid Monte Carlo

(HMC) move29 in PLOP performs simultaneous sampling for
the selected residues in the protein side chains and backbone as
well as the ligand. Each HMC move performs a 5 ps, constant
energymolecular dynamic simulation (starting at 900 K) on all of
the atoms in the selected residues. The molecular dynamics
simulation uses a RESPA based integration of short-range forces
with a time step of 1 fs and updates long-range forces with a
Verlet integration every fifth step.30 Taking up to 15 min per
move, the HMC is the most expensive among all three types of
moves in PLOP.
Considering the different costs for the three types of moves,

the frequency of deployment of each move type in the various
refinement stages is adjustable according to the sampling re-
quirements. Two stages of refinement with different combina-
tions of moves and constraints are carried out in the hierarchical
sampling. Using more HMC moves, the first refinement stage
applies loose distance constraints between an atom in question

Table 2. Comparison of Settings in the First and Second Refinement Stages

PLOP refinement 1 PLOP refinement 2

number of residues to sample (including the ligand) 12 40

number of accepted structures for each job maximum of 8 times the number

of rotatable bonds and 24

maximum of 20 times the number of

rotatable bonds and 60

types and probabilities of MCM moves side chain: 0.50 side chain: 0.70

rigid body: 0.10 rigid body: 0.10

hybrid: 0.40 hybrid: 0.20

Figure 6. Constraints applied to the salt bridge region of CYP2D6 in
the second refinement stage.

Figure 7. Correlation between the intrinsic reactivities calculated with
the methoxy radical model and the hememodel (17 sites from 9 selected
fragment compounds; details are shown in Supporting Information).

Figure 5. Constraints applied to the salt bridge region of CYP2D6 in
the first refinement stage.
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(from the ligand) to the ferryl oxygen. It is designed to “pull” the
close atom (identified from the docking poses) toward the heme
iron, to estimate the likelihood that the atom can approach the iron
and react with the ferryl oxygen. When an atom in the ligand is
forced to be proximate to the ferryl oxygen under the constraints,
the rest of the ligand and the surrounding protein residues have to
adjust their conformations accordingly. The adjustments for some
poses are easy and for some others are difficult, depending upon
the specific geometrical issues and energetics of the protein�
ligand interactions for the trajectory connecting particular starting
and target poses. Resulting poses with steric clashes or distorted
structures can be identified by their high energies and discarded in
the IDSite energy and structure screening. (Table 1). The low
energy poses after screening, mostly with favorable interactions

between the protein and the ligand, are passed to the second
refinement stage. Mainly focusing on side-chain sampling, the
second refinement stage applies tight constraints that force
the structure to form special conformations similar to that of the
transition states obtained from DFT calculations of model sys-
tems. The second refinement stage is used to further refine the
poses and distinguish the potential of each atom in question to be
oxidized. The comparison of the settings for these two refinement
stages with PLOP are shown in Table 2, while the constraints
are illustrated in Figures 3 and 4. There are approximately 39
protein residues, identified to be important for ligand binding by
mutagenesis experiments31 or are adjacent to these key residues,
that are sampled during the refinement stages. At the end of each
refinement stage, all of the poses sampled in that stage are screened
and clustered for further refinement or evaluation (Table 1).
For CYP2D6, harmonic constraints are also applied to force

the basic nitrogen to interact with the acidic residues, Glu216
and Asp301 (Figures 5 and 6), as they are believed to play im-
portant roles in substrate binding to CYP2D6 from mutagenesis
experiments.26,32,33

3. Evaluation. Herein, we present two scoring models to
evaluate the potential sites of metabolism and to determine the
predictions. Our first scoring model (referred to as physical
IDSite) is based on the following assumptions: (1) For hydro-
xylation of an aliphatic chain carbon, the P450-hydrogen abstrac-
tion step is rate determining.34,35 (2) For hydroxylation of
aromatic rings, the electrophilic attack of compound I on the
aromatic ring is rate determining.34,35(3) All reaction intermedi-
ates before the rate determining step are in equilibrium.36 Given
these assumptions, the relative rates of product formation
depend only on the relative transition state free energies of the
rate determining (RD) transition states (ΔGq) according to the

Table 3. Summary of Results for the Training Set

physical IDSite fitted IDSite

symbol compound name TP FP FN TP FP FN

1 4-methoxyamphetamine 1 0 0 1 0 0

2 amitriptyline 2 2 0 2 0 0

3 aprindine 4 0 1 5 0 0

4 brofaromine 1 0 0 1 0 0

5 bufuralol 0 1 1 1 0 0

6 carvedilol 1 0 2 2 0 1

7 cinnarizine 0 2 1 0 2 1

8 clomipramine 1 0 1 1 0 1

9 codeine 1 0 0 1 0 0

10 desipramine 2 0 0 2 0 0

11 dextromethorphan 1 0 0 1 0 0

12 dihydrocodeine 1 1 0 1 0 0

13 ethylmorphine 1 0 0 1 0 0

14 flunarizine 1 0 0 1 0 0

15 fluperlapine 1 0 0 1 0 0

16 hydrocodone 1 0 0 1 0 0

17 imipramine 2 0 0 2 0 0

18 indoramine 1 0 0 1 0 0

19 MDMA 1 0 0 1 0 0

20 methamphetamine 1 0 0 1 2 0

21 methoxyphenamine 2 0 0 2 0 0

22 metoprolol 1 0 1 2 0 0

23 mexiletine 2 0 1 2 0 1

24 mianserin 1 0 0 1 0 0

25 mirtazapine 0 1 1 1 1 0

26 nortriptyline 1 1 0 1 0 0

27 ondansetron 2 0 0 1 0 1

28 paroxetine 1 0 0 1 0 0

29 perhexiline 2 0 0 2 0 0

30 propafenone 1 1 0 1 1 0

31 propranolol 2 2 0 2 1 0

32 tamoxifen 1 0 0 1 0 0

33 terfenadine 3 0 0 3 0 0

34 tiracizine 1 2 0 1 1 0

35 tropisetron 2 0 1 3 0 0

36 venlafaxine 1 0 0 1 0 0

total 47 13 10 52 8 5

Table 4. Result Summary for the Test Set

physical IDSite fitted IDSite

symbol compound name TP FP FN TP FP FN

37 atomoxetine 0 1 1 1 2 0

38 bicifadine 1 2 0 1 0 0

39 bupranolol 1 0 0 1 0 0

40 carteolol 1 1 0 1 0 0

41 chlorpromazine 1 0 0 1 0 0

42 EMAMC 1 0 0 1 0 0

43 encainide 1 1 0 1 1 0

44 harmaline 1 0 0 1 0 0

45 harmine 1 1 0 1 1 0

46 ibogaine 1 0 0 1 0 0

47 MAMC 1 0 0 1 0 0

48 MMAMC 1 0 0 1 0 0

49 MOPPP 1 0 0 1 0 0

50 oxycodone 1 0 0 1 0 0

51 spirosulfonamide 2 0 0 2 0 0

52 timolol 2 0 2 4 0 0

53 tolterodine 0 1 1 1 1 0

54 tramadol 1 1 0 1 1 0

55 tyramine 2 0 0 2 0 0

56 zotepine 1 0 0 1 0 0

total 21 8 4 25 6 0
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Curtin�Hammett principle. These can then simply be written as

ΔGq ¼ ΔGbind þ ΔGq
RD-step ð1Þ

where ΔGbind is the binding free energy of the substrate into the
reactive conformation in the P450 active site andΔGRD-step

q is the
activation barrier of the RD step.

Figure 8. Continued
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In the present application of IDSite, we attempt to calculate
only relative, as opposed to absolute, site reactivity for a given
ligand. Absolute site reactivity for the ligand can typically
be obtained via inexpensive experiments. However, detailed
metabolic chemistry is often more difficult to determine, and
an accurate three-dimensional structure leading to reactions at
each metabolic site is not available given the severe challenge of
obtaining a crystal structure of a P450 isozyme with the ligand
bound in the reactive conformation. Prediction of the most
highly reactive site, followed by the identification of all sites with
relative reactivities sufficiently large to be experimentally de-
tected along the dominant metabolic pathway, coupled to
structural prediction for each relevant reactive geometry, com-
plements current experimental practice and facilitates compound
modification in situations where P450 metabolism needs to be
altered to confer improved metabolic properties on a candidate
drug molecule.

In the physical IDSite model, the relative binding energies of
various docked poses are calculated from the PLOP VSBG 2.0
energies of these poses, while the barriers for the RD steps are
estimated from the corresponding activation barriers of model
compounds with a methoxy radical (calculated at the DFT level).
Epose in eq 3, calculated in PLOP, estimates the protein�ligand
interactions when a potential site is forced to approach the
catalytic center in a certain pose with a transition state-like
conformation. On the basis of the linear correlation (Figure 7)
between themethoxy radical activation barriers and the correspond-
ing activation barriers with the heme system, we approximated the
real activation barrier for each potential site of metabolism from the
intrinsic reactivity calculated with the methoxy radical model
according to eq 2.

IRðhemeÞ ¼ 1:117� IRðmethoxyradicalÞ þ constant ð2Þ

Figure 8. IDSite predicted results for the training set.
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With the constant from eq 2 ignored, the relative ΔGq for each
potential site (approximated as the score E) is then calculated as the
Boltzmann weighted average over the energies of all contributing

poses, where angle brackets represent the Boltzmann averages
(eq 3). A term describing the configurational entropy of equivalent
hydrogen atoms at 298 K, proportional to the logarithm of the

Figure 9. IDSite predicted results for the test set.
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number of symmetrically equivalent hydrogen atoms, was also
included. The ΔGq values for all symmetrically equivalent sites
were set to the lowest ΔGq of the sites.

E ¼ 1:117� IRðmethoxyradicalÞ þ Epose
� �� kT ln NH ð3Þ

Since (as a rule of thumb) it is difficult to observe aminormetabolite
experimentally if it is formed in less than ca. 0.1% yield (which
corresponds to ca. 4.75 kcal/mol increase in relativeΔGq compared
to the free energy of the most favored product), we used 4.75 kcal/
mol as a cutoff for the prediction; with physical IDSite, any potential
sites of metabolism having a relativeΔGq lower than 4.75 kcal/mol
is predicted to be a site of metabolism.
The second scoring model represents an empirically opti-

mized version of the physical model described above with the
following changes: (1) The PLOP energy (Epose) is not used
directly but rescaled with two parameters as described below,
which are fitted to a training set of 36 compounds. (2) Instead of
obtaining the scaling coefficient for the methoxy radical intrinsic
reactivities from the correlation in Figure 7, we fit it to the
training set of 36 compounds. Note that the fitted value for the
latter of 1.071 (eq 4) is very similar to the value obtained by
correlating the DFT-activation energies (1.117), which further
highlights the physical nature of this parameter. (3) The final
selection criteria for predictions (score cutoff) were fit to the
training set as well. All four fitted parameters were obtained
from a fitting algorithm by maximizing the number of true
positives over the sum of the numbers of false positives and false
negatives.

E ¼ 1:071� IRðmethoxyradicalÞ þ Escoreh i � kT ln NH ð4Þ
As introduced above, instead of directly using the PLOP

energy (Epose), eq 4 recalculates the binding contribution
(Escore) with a linear energy score; the angle brackets again
represent Boltzmann averages. If a pose has a PLOP energy
(Epose) within 5.26 kcal/mol from the lowest one, the energy
score (Escore) is zero; otherwise, it is 0.58 times the relative
energy. The potential sites that have a relative score within 1.46
kcal/mol of a site predicted to have the highest reactivity are
considered to be a site of metabolism.
Reactivity Model.The sites at which a ligand gets metabolized

by a P450 enzyme depends not only on whether the atom in
question can approach the heme iron center with the correct
geometry but also on the intrinsic chemical reactivity of the site.
Assuming that the intrinsic chemical reactivities of the ligand
sites are independent of the presence of the enzyme, we
estimated the intrinsic reactivities from activation energies of a
library of model systems using QM. Since DFT with the B3LYP
functional and the 6-31G* basis set has been shown to give high
accuracy for relative energies of transitions states,37 while still
allowing for fast calculations, we employed that level of theory for
our intrinsic reactivity model. It has been shown that in general,
an accurate linear correlation exists between the QM activation
energies of hydrogen abstraction reactions with a methoxy
radical and the corresponding hydrogen abstraction barriers with
an iron�oxo porphyrin species, generally referred to as com-
pound I in the P450 literature.34 In agreement with previous
reports,38,39 we herein investigated the above-mentioned corre-
lation including aliphatic hydrogen abstraction barriers as well as
aromatic ones. As shown in Figure 7, we find good correlation
between the methoxy radical and the compound I based activa-
tion barriers for both sp2 and sp3 hybridized systems (R2 = 0.94),

which validates the use of the methoxy radical model to estimate
the intrinsic reactivities. Therefore, transition states for methoxy
radical based hydrogen abstraction reactions were optimized at
the B3LYP/LACVP* level of theory with Jaguar27 for a fragment
library consisting of 150 model compounds, 483 distinct hydro-
gen atoms, and more than 2000 conformations, in order to
accurately model all distinct chemical environments. Carbon
atom based intrinsic reactivities were then assigned as the
Boltzmann weighted activation energies over different transition
state conformations. Intrinsic reactivities of the ligand sites were
assigned using a simple SMARTS string matching algorithm of
the fragment library. Thereby the best matching fragment was
determined as the one with (1) the largest number of heavy
atoms, (2) the most hydrogen atoms, and (3) the largest sum of
atomic numbers.
Preparation of Protein and Ligands. The X-ray crystal-

lographic structure of CYP2D6 was obtained from the Protein
Data Bank (PDB ID: 2F9Q; 3.0 Å resolution) and contains a
well-defined active site above the heme group.40 We applied the

Figure 10. (A) ROC curves comparing the full IDSite method to the
reduced methods. (B) ROC curves superimposed on the results of
Sheridan et al.8
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Protein Preparation Wizard (PPW) of Schr€odinger, Inc. to add
hydrogen atoms, optimize the hydroxyl orientation, correct the
Gln/Asn/His side-chain orientations, and determine the pro-
tonation states of titratable residues. PPW also assigned the bond
order of the heme group and the iron oxidation state, which
defines the iron atom as Fe3+ covalently bonded to the side chain
of Cys443. The positions of all hydrogen atoms were optimized
with a constraint of 0.3 Å with the OPLS 2005 force field.
A training set of 36 compounds and a test set of 20 com-

pounds were collected from the experimental literature.31,41

These compounds mainly undergo O-dealkylation and hydro-
xylation by CYP2D6. The training and test sets contain 774 and
383 heavy atoms, respectively. Details about the data selection
are explained in the Supporting Information. All stereoisomers
used in the experiments were enumerated, as were the proton-
ation states at pH = 7.0. All structures were minimized in vacuum
using the OPLS 2005 force field, prior to the IDSite calculations.

’RESULTS AND DISCUSSION

Tables 3 and 4 present the summary of our predicted results
with the training set and the test set. The data show that IDSite
has high sensitivity and specificity with both IDSite scoring
models in predicting the 2D6-mediated metabolism of the 56

compounds: using the physical IDSite scoring, we achieve high
sensitivity (0.83) and high specificity (0.98); using the fitted
IDSite scoring, we can achieve even higher sensitivity (0.94) and
similarly high specificity (0.99). With the fitted IDSite scoring,
the results for the training set (sensitivity 0.91 and specificity
0.99) and test set (sensitivity 1.0 and specificity 0.98) are very
similar, indicating that for the fitted model, no overfitting to the
training set can be detected (see Figures 8 and 9 for IDSite
predicted results for the training and test sets).

It is interesting to note that the principal effect of the
parameter fitting is to reduce the number of false negatives; the
reduction is of similar magnitude in both the training and test sets
(there is also some reduction of false positives in the training set,
but this is a less prominent result). The principal effect of
the parametrization is to take into account the fact that there is
some noise in the induced fit calculation energetics, reflected in
the 5.26 kcal/mol energy window and scaling factor of 0.58. The
noise is a combination of imperfect sampling and residual errors
in the continuum solvent free energy model; the parameters
suggest that there is a slight overestimation of the relative
energetics of poses close in energy. Buffering and scaling the
contribution from this term enables a (small) number of secondary
sites to be recognized by the model as contributing to the
reactivity, without increasing the number of false positives. As

Figure 11. The energy and distance (constrained atom to the ferryl oxygen) changes during the MCM simulation during the first (A) and the second
(B) refinement stages for 4-methoxyaphetamine.

Figure 12. The energy and distance (constrained atom to the ferryl oxygen) changes during the MCM simulation during the first (A) and the second
(B) refinement stages for dextromethorphan.
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noted above, the intrinsic reactivity appears to have less noise
associated with it, which is not surprising in view of the fact that it
poses a much less demanding sampling challenge.

A second question of interest is whether the various intensive
sampling components of the algorithm actually improve the
predictive capability. In order to analyze the importance of each
sampling stage in IDSite, ROC (Receiver Operating Chara-
cteristic) curves were calculated (Figure 10A) to compare three
reduced methods using the fitted score to the full method using
physical and fitted scores. As mentioned in the Methods and
Materials section, each refinement stage performs a constrained
minimization, followed by sampling with MCM simulations.
After Glide docking, the prediction can be made after mini-
mization in the first refinement stage (referred to as “docking+
minimization”), after the sampling in the first refinement stage

(referred to as “no Ref2”), or after theminimization in the second
refinement stage (referred to as “no sampling in Ref2”). A higher
energy cutoff (150 kcal/mol, instead of 24 kcal/mol) and
distance cutoff (8.0 Å, instead of 2.6 Å for sp3 and 2.08 Å for
sp2 hybridized atoms) are adjusted for the methods of “docking+
minimization” and “no Ref2”. To draw the ROC curves, the
scoring cutoff (4.75 and 1.46 kcal/mol are used for the results
shown in Table 3 and 4 for the physical and fitted scores,
respectively) is varied at a 0.5 kcal/mol interval from 0.0 to
100 kcal/mol, which represents the true positive rate (y axis) and
the corresponding false positive rate (x axis) of the methods. The
true positive rate and false positive rate are calculated according
to eq 5,

true positive rate ¼ number of true positives
numberof SOMs observed in experiments

ð5aÞ

false positive rate ¼ number of false positives
number of non� SOMs observed in experiments

ð5bÞ
where true positives are the SOMs (sp2 and sp3 carbon atoms
which undergo hydroxylation or O-dealkylation) identified by
experiments as well as predicted correctly by IDSite, and the false
positives are non-SOMs (nonhydrogen atoms) but mispredicted
by IDSite as hydroxylated/dealkylated by CYP2D6. As currently
we mainly focus on the typical CYP2D6-mediated hydroxylation
andO-dealkylation involving sp2 and sp3 carbon atomswith bonded
hydrogen atoms, those sites (carbon atoms or heteoatoms) which
potentially undergo other metabolic reactions such as N-dealkyla-
tion and oxidation are currently considered non-SOMs in our
preliminary study.

The ROC curves in Figure 10A indicate that at the same false
positive rate (sensitivity), the false negative rate decreases with
more sampling, and the full IDSite method always has the lowest
false negative rate (the highest specificity) with both scoring
models. It is interesting that the physical score derived from the
basic physical chemistry model is very close to the fitted score.
For the reduced methods, there is an obvious trend that increas-
ing the sampling efforts yields substantially higher specificity at
each stage. This means that using the IDSite scoring models in
conjunction with binding requirements, sufficient sampling in

Figure 13. The energy and distance (constrained atom to the ferryl oxygen) changes during the MCM simulation during the first (A) and the second
(B) refinement stages for fluperlapine.

Figure 14. Illustration of the induced-fit effects modeled by IDSite. The
cyan�white�red scheme is used to show the side chains from the least
changed to the most changed, defined as the maximum mean absolute
dihedral angle change for each residue.
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IDSite can specifically identify the sites metabolism observed by
the experiments.

In Figure 10B, we compare the physical IDSite and fitted
IDSite results to results from Sheridan et al.,8 who evaluated true
positive and false positive rates, using the same ROC metric that
we employ, for their test set of CYP2D6 ligands. The test set
employed in ref 8 is different in detail from the one we use here,
but the types of ligands in both test sets are similar on the basis of
examples of test set molecules given in ref 8. Hence, while the
comparison is not completely rigorous, it is a reasonable way to
estimate relative performance. It can be seen that given the caveat
above, both physical IDSite and fitted IDSite substantially outper-
form both MetaSite and the in-house Merck QSAR-based ap-
proached plotted in Figure 10B. To recover 90% of true positives,
the QSAR method included roughly 20% false positives, whereas
MetaSite included 40% false positives. In contrast, IDSite incor-
porated only∼1% false positives. This is a qualitative transforma-
tion of performance that has significant implications for use in drug
discovery applications, as does the availability of a predicted three-
dimensional structure that is likely to be quite accurate.

So far, only the apo enzyme structure of CYP2D6 has been
determined by X-ray crystallography. In order to investigate the
capability of IDSite in modeling the induced-fit effects and to
understand the effects of the hierarchical sampling, several
compounds of various sizes and flexibility were selected to
analyze the structural and energetic changes at each stage.

It is very common that the poses from docking that have the
SOM close to the ferryl oxygen are not among the top poses
considered by Glide SP scoring. For example, the pose with the
shortest distance (1.8 Å) is ranked sixth in the case of 4-methox-
yaphetamine; the pose (1.4 Å) that leads to the prediction of
O-demethylation is ranked 20th for the case of metoprolol. Further,
it is also possible for some cases (e.g., fluperlapine) that none of the
poses have the SOMclose enough to the ferryl oxygen. Therefore, it
is very difficult to make specific predictions with only a small
distance cutoff and a few top poses from docking. In order to
improve the sensitivity aswell as the specificity of the predictions, it
appears to be necessary to employ the refinement stages.

Focusing on the distance between the site(s) of metabolism
observed experimentally, we investigated the Boltzmann averaged

Figure 15. (A) The lowest energy pose in the second refinement stage for 4-methoxyaphetamine. Orange sphere = “dummy” ferryl oxygen, green
sphere = experimental and predicted SOM. (B) Comparison of side chains important for induced-fit effects. Crystal structure (green, PDB ID: 2F9Q)
minimized with the VSGB 2.0model and superimposed onto the lowest energy pose with 4-methoxyamphetamine (salmon). Large dihedral changes are
seen for Asp301 (Δχ2, 121�), Met374 (Δχ3, 114�), and Phe483 (Δχ1, 60�).

Figure 16. (A) The lowest energy pose in the second refinement stage for fluperlapine. Orange sphere = “dummy” ferryl oxygen, green sphere =
experimental and predicted SOM. (B) Comparison of side chains important for induced fit effects. Crystal structure (green, PDB ID: 2F9Q) minimized
with the VSGB 2.0 model and superimposed onto the lowest energy pose with fluperlapine (salmon). Large dihedral changes are seen for Phe120 (Δχ2,
73�), Glu216 (Δχ1, 60�), Asp301 (Δχ2, 64�), Met374 (Δχ3, 105�), and Phe483 (Δχ2, 94�).
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energy and distance from the site(s) to the ferryl oxygen over
all of the poses sampled at any even numbered step (see
Figures 11�13). Given the strong harmonic constraints applied
in the refinement stages, the distance change is generally
relatively small, as expected. The energy change in the first
refinement is usually small ranging from 4 to 25 kcal/mol.
However, the energy change during the second refinement stage
is quite different for small ligands as compared to large ligands.
For ligands as small as 4-methoxyaphetamine, the energy of the
poses fluctuated within the range of 12 kcal/mol, and the lowest
energy structure was obtained at the early steps. In contrast, the
energy can decrease by more than 60 kcal/mol during the
sampling of the second refinement stage for flexible or bulky
ligands such as fluperlapine. For such cases, it is often not until the
end of the simulation that the low energy structure is sampled.

This implies that the second refinement plays an important role in
optimizing the structure for bulky or flexible compounds.

Skipping the second refinement, about 40% of the compounds
(24/56) in the training set have the same results as obtained from
the full protocol, and most of them are small compounds like
4-methoxyaphetamine, MDMA,MAMC, etc. This observation is
consistent with our discussion above that links the need for
extended refinement to the presence of large, bulky ligands where
protein induced-fit effects are significant, and where optimization
of the free energy of the reactive binding complex can pose great
difficulties due to various types of energy barriers and additional
degrees of freedom to explore in the ligand.
Analysis of Induced-Fit Effects. P450 enzymes are believed

to have high flexibility in adjusting their active site to accom-
modate a large variety of substrates.42 In order to model such

Figure 17. (A) The lowest energy poses in the second refinement stage for metoprolol benzylic hydroxylation. (B) Comparison of side chains
important for induced fit effects for metoprolol benzylic hydroxylation. (C) The lowest energy poses in the second refinement stage for metoprolol
O-dealkylation. (D) Comparison of side chains important for induced fit effects for metoprolol O-dealkylation. For A and C, orange spheres = “dummy”
ferryl oxygen, green spheres = experimental and predicted SOMs. For B and D, crystal structure (green, PDB ID: 2F9Q) minimized with the VSGB 2.0
model and superimposed onto the lowest energy poses with metoprolol (salmon). For benzylic hydroxylation, large dihedral changes are seen for
Glu216 (Δχ1, 60�), Asp301 (Δχ2, 66�), Met374 (Δχ3, 112�), and Phe483 (Δχ1, 40�); for O-dealkylation, large dihedral changes are seen for Phe120
(Δχ2, 67�), Glu216 (Δχ2, 50�), and Phe483 (Δχ2, 194�).
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induced fit effects, sufficient sampling provided by the two
refinement stages of IDSite is critical, as demonstrated in the
previous section. In order to further investigate the capability of
IDSite in modeling induced-fit effects, we calculated the average
absolute change for each dihedral angle of the protein side chains
in the binding box in comparison to the minimized crystal struc-
ture of CYP2D6. The largest change of all the χ angles for each
residue is used to represent the change for that residue. Figure 14
illustrates the induced-fit effects by showing the largest change
for each residue. Ten of the 18 residues in the binding box have
changes greater than 30�. This shows that IDSite is able to model
induced-fit effects required to correctly identify the “bio-active”
conformation of the ligands by changing the side-chain orienta-
tions in the active site. Phe120 and Phe483 with bulky side chains
have changes as large as 40� and 60�, respectively. However, the
magnitude of their induced fit effects depends highly on the ligand
size. Between these two Phe residues in the binding box, Met374
has the most significant change (108�) because a small rotation in
the Phe side chains can cause a big adjustment in Met374.
Compared to the large change of Glu216 (88�), the change of
Aps301 (38�) is relatively smaller due to the shorter side chain.
The above-mentioned trends are illustrated in Figures 15�17,

which compare the docked structures leading to the SOM of
4-methoxyamphetamine (PMA), fluperlapine, andmetoprolol to

the crystal structure of the apoenzymeminimized with the VSGB
2.0 energy model. Analogous figures can be found for all of our
predictions in the Supporting Information. One striking example of
induced-fit effects involves Phe120. For small ligands such as PMA,
the benzene ring conformation of Phe120 changes only slightly
(Figure 15), while it has to move out of the way for larger ligands
such as fluperlapine (Figure 16) or metoprolol (Figure 17), there-
fore rotating by almost 90�. Interestingly, for compounds with
multiple sites of metabolism, such as metoprolol (Figure 17),
different binding modes leading to different SOMs have very
different conformations of the Phe120 side chain as well. Our
IDSite docked structures clearly highlight the importance of induced
fit effects for CYP2D6 metabolism and therefore explain why it is
difficult to accurately predict SOMs with a rigid receptor model.
The Importance of Structural Effects in Determining

SOMs. The two main competing factors in determining the
SOMs with P450 enzymes are the intrinsic reactivities of the
ligand sites and the geometric fit of the ligand in the active site. As
mentioned in the Methods and Materials section, IDSite con-
siders both of these effects in determining the SOMs, which
enables it to select the correct SOM even for difficult cases, where
the intrinsic reactivity favors the nonsite of metabolism. For these
cases, the structural fit of the ligand with the receptor, i.e.. how
easily the ligand site can reach the ferryl oxygen, mainly determines

Figure 18. (A) The lowest energy pose in the second refinement stage for brofaromine. Orange sphere = “dummy” ferryl oxygen, green sphere =
experimental and predicted SOM. (B) Intrinsic reactivities (red) for each site and the relative energy (blue) of the poses with the corresponding site
constrained to the ferryl oxygen. The SOM observed experimentally is marked with a green circle.

Figure 19. (A) The lowest energy pose in the second refinement stage for nortriptyline. Orange sphere = “dummy” ferryl oxygen, green sphere =
experimental and predicted SOM. (B) Intrinsic reactivities (red) for each site and the relative energy (blue) of the poses with the corresponding site
constrained to the ferryl oxygen. The SOM observed experimentally is marked with a green circle.
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the SOM. Therefore, the structures and energies of the poses,
with consideration of the receptor, have to be utilized. Three
cases are used here to demonstrate the role of a receptor (CYP2D6)
in determining the sites of metabolism.
The first case we discuss is brofaromine, for which experiments

show that the major metabolic pathway is O-demethylation
mediated by CYP2D6.43 The intrinsic reactivity of the site of
metabolism (4.7 kcal/mol) is very close to those of sites on the
aromatic rings (nonsites of metabolism, 3.3�4.9 kcal/mol;
Figure 18). Due to the receptor geometry, it is impossible for
the atoms on the furan ring to get close to the ferryl oxygen while
still attaining the salt bridge with either Glu216 or Asp301.
Therefore, no qualified poses were found leading to a reaction on
the furan ring. Although we found qualified poses for all of the
sites on the benzene ring, those poses are all strongly disfavored
energetically by more than 20 kcal/mol. This indicates that
taking the interactions between the ligand and the receptor
into account, IDSite is able to make the prediction of the
SOM for brofaromine in good agreement with the experi-
mental observation.
A second interesting case is nortriptyline (Figure 19), since the

two sites on the seven-membered aliphatic ring are difficult to
distinguish only with their intrinsic reactivity, as they are almost
equally reactive. However, experiments show that only the (E)-
10 site of nortriptyline is metabolized.44 In IDSite, the poses
with the (Z)-10 site close to the ferryl oxygen are all at least
10 kcal/mol higher in energy compared to the poses with the
(E)-10 atom close to the ferryl oxygen. Such an energy gap is
large enough for IDSite to correctly determine the (E)-isomer as
the only metabolite. While structural effects are therefore clearly
very important to determine nortriptylene’s SOM, the intrinsic
reactivities also play a key role. This is again nicely illustrated with
the example of nortriptyline, where a simply structure based
method (without considering intrinsic reactivities) would predict
the SOM as being an aromatic hydroxylation due to the favorable
energy of the corresponding poses. Therefore, IDSite is able to
correctly balance the subtle effects stemming from intrinsic
reactivity and structural fit.
Methoxyphenamine is another case where the joint effects of

intrinsic reactivity and the structural fit lead to the correct
predictions. Methoxyphetamine is metabolized through O-de-
methylation and aromatic hydroxylation mediated by CYP2D6.45

These two sites not only have very close intrinsic reactivities
(5.7 and 6.3 kcal/mol, Figure 20), but their lowest energy poses

also have very similar energies. The non-SOMs are not selected
by IDSite, either because of disfavorable intrinsic reactivity or
because of high pose energies.
Computational Times. On a single 2.2 GHz AMD Opteron

Processor 6174, the average CPU time required for a typical
IDSite calculation (e.g., with a compound with three rotatable
bonds) is about 448 h, of which about 11% of the time is spent on
the first refinement stage and 89% on the second refinement. On
20 such processors, the calculation takes 22 h. The initial Glide
docking step on a single processor takes about 10 min. The
computational cost of PLOP refinement is proportional to the
number of rotatable bonds in the compound.

’CONCLUSION

We have developed a novel approach for the prediction of
experimentally observable cytochrome P450 sites of metabolism,
IDSite, and applied it to a data set for the 2D6 P450 isoform. We
obtain remarkably high sensitivity and specificity using a struc-
ture-based model, representing a major advance as compared to
alternatives in the literature, including various types of ligand-
based models. The method delivers not only accurate SOM
predictions but also three-dimensional structures of the protein�
ligand complex, including induced fit effects (which are quite
significant), for every SOM identified by the algorithm.

We selected 2D6 as our initial target because the binding of
a ligand positive nitrogen to an acidic group in the protein
created an additional constraint that was useful in limiting
sampling and achieving reliable poses in the induced fit
docking effort. Other important P450 isoforms, such as 1A2,
2C9, and 3A4, may be more difficult to model in this fashion,
as they lack such a salt bridge constraint; nevertheless, even if
additional sampling effort is required, it should be possible to
obtain successful results given the performance of the con-
formational energy and reactivity models that we have seen in
the present work. The development of models for additional
isoforms, and additional ligand test sets, is ongoing in our
laboratory. Ultimately, predictive use in an active drug dis-
covery project will be required for validation; we look forward
to engaging in such tests in the near future.

’ASSOCIATED CONTENT

bS Supporting Information. Details about our data set selection,
figures of all docked structures leading to our predictions, tables with

Figure 20. The lowest energy pose in the second refinement stage for methoxyphenamine. Orange sphere = “dummy” ferryl oxygen, green sphere =
experimental and predicted SOM. (A) Aromatic hydroxylation. (B)O-demethylation. (C) Intrinsic reactivities (red) for each site and the relative energy
(blue) of the poses with the corresponding site constrained to the ferryl oxygen. The SOM observed experimentally is marked with a green circle.
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the activation barriers used to draw Figure 7, and tables with detailed
dihedral angle changes due to induced-fit effects. This information is
available free of charge via the Internet at http://pubs.acs.org.
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ABSTRACT: Osmolytes are small organic compounds that confer to the cell an enhanced adaptability to external conditions.
Many osmolytes not only protect the cell from osmotic stress but also stabilize the native structure of proteins. While simplified
models able to predict changes to protein stability are available, a general physicochemical explanation of the underlying
microscopic mechanism is still missing. Here, we address this issue by performing very long all-atomMD simulations, free energy
calculations, and experiments on a well-characterized mini-protein, the villin headpiece. Comparisons between the folding free
energy landscapes in pure water and osmolyte solutions, together with experimental validation by means of circular dichroism,
unfolding experiments, and NMR, led us to formulate a simple hypothesis for the protecting mechanism. Taken together, our
results support a novel mechanistic explanation according to which the main driving force behind native state protection is a
change in the solvent rotational diffusion.

’ INTRODUCTION

Severe environmental conditions, such as extreme tempera-
tures, high osmotic pressure, or high concentrations of urea tend
to cause cellular water stress. Many organisms have evolved to
respond to these conditions regulating the level of small organic
compounds, called osmolytes.1 Osmolytes have been observed in
a wide range of organisms2 and have been found to accumulate in
some species able to survive under harsh conditions,3,4 such as
the so-called “resurrection plants”, able to survive under severe
drought.5 In addition to their ability to control cell water loss or
gain,6�8 some osmolytes are also able to stabilize the native fold
of proteins.9 Bolen and co-workers carefully characterized osmo-
lyte-induced thermotolerance,10,11 due to the alteration of folded�
unfolded equilibria. They also demonstrated that trimethylamine
N-oxide (TMAO)11 can fold natively unfolded proteins. Despite
the wide variety of proteins in living organisms, only a few,
generally interchangeable,12 osmolyte molecules exist,1,13 sug-
gesting a universal underlying mechanism. Contrasting theories
have been proposed involving either direct14,15 or indirect inter-
actions with proteins,16,17 with the latter one recently prevailing
due to the observed exclusion of osmolytes, with the exception of
the denaturing urea,18 from the protein surface, a phenomenon
coined the “osmophobic effect”.19 Recently, we used simulations
and free energy methods to study the effect of the osmolyte
glycine betaine (GB) on a small β-hairpin peptide, observing the
expected increased stability of the native fold.20,21 Nevertheless, a
simple yet universal explanation of the microscopic mechanism
of osmoprotection has not been found. In the search for such a
general explanation, here, we combine simulations and experi-
ments to study the effect of osmolytes on a more realistic and

well-characterized mini-protein, the human villin headpiece
C-terminal helical subdomain (HP35).22 HP35 has a well-
defined secondary and tertiary structure and is one of the smallest
peptides that folds cooperatively.23 It has been the subject of
several computational24,25 and experimental26�29 studies. In the
following, the effect of two different osmoprotectants and urea
on the folding of HP35 were investigated using 1.5-μs-long
unbiased all-atoms MD simulations and massive bias exchange
molecular dynamics simulations (BEMD),30 as well as calorim-
etry, circular dichroism (CD), and NMR experiments. The
experimentally validated free energies, together with a careful
structural analysis, allowed us to outline a clear and simple
picture of the osmolyte protecting mechanism.

’MATERIALS AND METHODS

TheHP35 structure was retrieved from the Protein Data Bank
(PDB code: 1UNC).22 The protein was solvated with TIP3P
water molecules31 in a 50 Å cubic box and neutralized with Cl�

ions. To obtain the mixed-solvent systems, an appropriate
number of water molecules was replaced with GB or TMAO
molecules to obtain a 1 M solution. Simulations were run using
the GROMACS32 package combined with the PLUMED33 plug-
in, which implements BEMD. As in other collective variables
(CV)-based techniques, biasing the evolution of the system along
a few variables approximating the reaction coordinate, the
convergence of metadynamics can be severely affected by
neglecting slow CVs. The BEMD method complements the
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metadynamics technique introducing a replica exchange algo-
rithm, compensating for this eventual neglect and allowing for a
larger number of CVs with respect to standard metadynamics.
Albeit BEMD, at difference with the more computationally
expensive PTmetaD,21 might have convergence problems in
complex systems, it has already been shown to converge well
in the case of HP35 folding.34 What is more, we have carefully
checked the convergence of the free energy profiles recon-
structed from the blank replica as a function of simulation time.
The Amber99SB*-ILDN35,36 force field was used, including
backbone corrections.37 Particle-mesh Ewald was used with a
cutoff of 0.8 nm. All bond lengths were constrained to equilib-
rium distances using the LINCS38 algorithm. After minimization,
the systems were relaxed with 1 ns NPT dynamics, at 320 K and
1 atm, using the V-Rescale39 algorithm for temperature coupling
and a Berendsen barostat.40 The BEMD runs were performed
with the same collective variables (CVs) used in ref 34, i.e., the
number of backbone hydrogen bonds, salt bridges, and hydro-
phobic contacts; the correlation of the backbone dihedral angles;
and the fraction of secondary structure, and a neutral replica, on
which no bias was applied. Each BEMD simulation required
considerably longer simulations than those used in ref 34 to
converge (>300 ns). This is most probably due to the different
version of the Amber force-field used. Analyses were performed
on the neutral replica, whose free energy profiles along the CV
were reconstructed from the unbiased probability distribution of
the states. The free energy of unfolding was calculated by
integrating the density of the folded (F) and unfolded (U) states
according to

ΔGunfold ¼ kBT log

Z
F
ds exp � GðsÞ

kBT

� �
Z
U
ds exp � GðsÞ

kBT

� �
0
BBB@

1
CCCA ð1Þ

Preferential coefficients (ΓXP) were calculated using the ap-
proach developed by Baynes and Trout.41 According to this
approach, ΓXP can be evaluated defining two domains, a bulk
domain (I) and a protein domain (II), and calculating

ΓXP ¼ nIIX � nIIW
nIX
nIW

 !* +
ð2Þ

where nX,W
I,II is the number of water (W) or osmolyte (X)

molecules in the I and II domains. The solvent density function
(SDF) that describes how the molecules of osmolyte are
distributed around the protein is, in principle, equivalent to the
radial distribution function but takes into account the shape and
volume of the protein. The SDF for a generic molecule X is
computed as

FXðrÞ ¼ Xðr, r0Þ
Vðr, r0Þ ð3Þ

where r is the radius of the solvation shell,X(r,r0) is the number of
X molecules found from rr to r0, and V(r,r0) is the volume of the
shell from r to r0. The number of molecules X(r,r0) was obtained
calculating nX

II for different r values. The volume V(r,r0) was
calculated on the basis of the grid-based solvent-accessible
methodology of ref 42. Bulk dielectric constants were calculated,
according to Neumann’s formulation,43 from the fluctuations of
the total dipole moment ÆM2æ following the approach reported in
ref 44. Three different systems, comprising only themixed-solvent,

were simulated by standard MD with the same parameters as
described before, for a total production phase of 55 ns. The
rotational correlation function was calculated using the same
systems, following the derivation of Lipari and Szabo for
NMR relaxation times45,46 with a first-order Legendre polynomial.
A detailed explanation of the procedure is reported in ref 44 and
the references therein.

Human villin headpiece subdomain HP35, LSIED FTQAF
GMTPA AFSAL PKWKQ QNLKK EKGLF, was synthesized
by Proteogenix (France) with a purity >95%. All CD measure-
ments were performed on a JASCO-810 dichrograph equipped
with a Peltier thermoelectric temperature controller. CD spec-
tra of HP35 in water at a concentration of 70 μMwere recorded
between 190 and 260 nm, with a 0.1-cm-path-length quartz
cuvette (Hellma), a 50 nm/min scanning speed, an averaging
time of 4 s, and a bandwidth of 1 nm. The spectra shown are the
averages of three scans. Thermal denaturation experiments
were performed at constant heating rates of 1 �C/min by
following the ellipticity at 222 nm from 5 to 90 �C with a total
sample concentration of 50 μM. The analysis of the thermal
unfolding curve was performed by nonlinear least-squares
fitting according to a two-state model.47 Equilibrium urea
denaturation was monitored by CD in the wavelength range
of 210�260 nm and at seven different temperatures between 10
and 40 �C. HP35 solutions at a 50 μM concentration were
mixed with varying amounts of stock solution containing 8 M
urea. Unfolding was monitored in the range of 0�7M urea. The
urea unfolding profile of HP35 is described by the change of the
dichroic signal at 222 nm as a function of denaturant concen-
tration. Chemical denaturation data were analyzed by nonlinear
least-squares fitting of the observed CD signal [θ]t to a two-
state model of a single unfolding transition between folded (F)
and unfolded (U) states:48

½θ�t ¼ αið½θ�U � ½θ�FÞ þ ½θ�F ð4Þ
where [θ]F is the ellipticity at which the molecule is fully folded
and [θ]U is the ellipticity of the fully unfolded molecule. The
fractional population of the unfolded form (αi) is determined
from the equilibrium constant for unfolding:

KUi ¼ exp �ΔGi

RT

� �
ð5Þ

where R is the gas constant, which equals 1.98 cal/mol, and T is
the absolute temperature. ΔGi is calculated using the linear
extrapolation model (LEM):49

ΔGi ¼ ΔG0 �murea½urea� ð6Þ
where ΔG0 is the standard free energy of unfolding in the
absence of denaturant and murea is the slope, which charac-
terizes the change in ΔGi with [urea]. The denaturant concen-
tration midpoint of the transition, [urea](1/2), is equal to ΔG0/
m. The combined effect of urea and the osmolyte TMAO (or
GB) on unfolding free energies was modeled as being linear in
both cosolvents:50

ΔGi ¼ ΔG0 �murea½urea� �mosmolyte½osmolyte� ð7Þ
Equation 7 was globally fitted to unfolding transitions in
mixtures of urea and osmolyte to yield the free energy of
unfolding in the absence of both cosolvents. In order to
correctly determine the ΔG in the presence of osmolyte, the
unfolded fraction was calculated by using the [θ]U value derived
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in the absence of osmolytes with urea.51 Heat capacity change
(ΔCp) for HP35 unfolding was measured by globally fitting
the thermal and chemical denaturation data to the Gibbs�
Helmholtz equation:52

ΔGðTÞ ¼ ΔHm 1� T
Tm

� �
�ΔCp ðTm � TÞ þ T ln

T
Tm

� �� �

ð8Þ
whereΔG(T) isΔG at temperature T,Tm is the midpoint of the
thermal unfolding curve, and ΔHm is the enthalpy change for
unfolding measured at Tm.

’RESULTS AND DISCUSSION

The availability of high-resolution experiments on HP35
folding enables a careful validation of the computational results.

Here, we use previously reported simulations of HP35 in pure
water53 in good agreement with experiments as a reference for
the simulations of the osmolyte solutions: a 1.5-μs-long fully
atomistic MD simulation at 298 K starting from the lowest
energy NMR structure (PDB code: 1UNC)22 and massive
BEMD simulations at 298 K and 320 K, close to the experimental
melting temperature (see the Supporting Information), were
used to reconstruct a fully converged free-energy landscape of
HP35 folding. We used the recently described Amber99SB*-
ILDN35 force field, including several improvements.36,37

We repeated the BEMD simulations in the presence of 1 M
GB, 1 M TMAO, and, for comparison, 1 M urea, a denaturant.
The folded minimum in water (Figure 1) is, in every case, narrow
and centered around the values typical of the native structure.
The minima in osmolyte solutions are generally broader, and it
can be seen (Figure 1c,d) that the osmolytes weaken the
hydrophobic core and strengthen the salt bridges. The weaken-
ing of the hydrophobic core corresponds to a slight increase of

the exposed surface in the folded state and amore sizable increase
in the unfolded ensemble, leading to a ΔSASA in good agree-
ment with the observed increase of the heat capacity ΔCp (see
Supporting Information Table S1). The protein in osmolyte
solutions adopts more helical conformations, as can be seen from
the free energy profiles (Figure 1a,b) showing lower minima at
higher helical values (∼14). Since the typical value for the native
state is ∼8, the higher helical content is found mainly in the
unfolded ensemble. From 2D FES (Figure S1, Supporting
Information), it is clear that the N and N0 free energy basins
observed in the pure water simulations53 are merged in the
presence of the osmolytes and that HP35 is more flexible.
Another alternative explanation is that the N0 state becomes
the most stable native structure over the more rigid N state.

As expected, the free energy profiles of HP35 in urea are
significantly different. The FE profiles (Figure S3, Supporting
Information) show a narrower minimum corresponding to the
folded state, while cluster analysis of the main structures indicates
that in urea a partial disruption of the hydrophobic core takes
place, with a strong destabilization of helix 3, in contrast to the
effect observed for the stabilizing osmolytes. Using 3D FES
(Figure S4 and S5, Supporting Information), the unfolding free
energy (ΔGunfold) was calculated by integrating the densities of
the folded and unfolded states. The resulting values are �0.04
kcal/mol for the simulation in water, 0.61 and 0.69 kcal/mol,
respectively, for 1MGB and TMAO (Table 1), and�0.5 kcal/mol
for urea. As expected, the ΔGunfold is lower for the urea solution,
since unfolding is favored with respect to water, and positive for
the two protecting osmolytes.

In order to assess whether or not GB and TMAO engage in
direct interactions with the protein backbone, we analyzed the
distribution of osmolyte molecules around the protein. Calculat-
ing the solvent density function (SDF) for GB and TMAO
molecules, no relevant peak was observed, suggesting the

Figure 1. Free energy profile as a function of the helical content of residues 1�17 (a) and residues 18�35 (b) of the protein. Free energy profile as a
function of the strength of hydrophobic contacts (c) and the strength of salt bridges (d). When the osmolyte is added to the solution, structures with a
higher helical content become more populated as conformations with a higher number of salt bridges and less hydrophobic contacts. See ref 34 for the
exact definition of the CVs. The typical error due to the convergence of the free energy profiles is reported in Supporting Information Figure S2.
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absence of direct contacts between the osmolytes and the protein
(Figure 2a), in agreement with refs 16 and 20. The preferential
coefficient ΓXP is calculated to confirm the proposed osmopho-
bic effect16,19 (see Figure 2b). Choosing a cutoff of 4 Å for the
boundary between protein and bulk domains, we obtained a
value of�0.52 for GB and�1.08 for TMAO, in agreement with
the suggested osmophobic effect. As a comparison, the corre-
sponding value for HP35 in 1M urea solution is 5.22, confirming
urea contacts with the protein.54 For all molecules, the most
relevant contribution to ΓXP came from the backbone, in
agreement with previous results.55

The observed differences in the FE profiles due to the
osmolytes and the lack of direct interactions with the protein
are in agreement with the “indirect” hypothesis. This, together

with the proposed changes in the water structure16,56 due to the
osmolytes, led us to investigate whether or not a shift of the
dielectric constant would explain the protecting effects. An
increase of the ε value was reported for several osmolytes,
including TMAO, GB, taurine, and sarcosine.57,58 We calcu-
lated the static dielectric constant ε according to Neumann’s
formulation,43,44 obtaining a value of 98.0 ((0.2) for TIP3P
water and significantly higher values for the 1 M osmolyte
solutions: 106.4 ((0.2) for GB and 103.0 ((0.2) for TMAO, in
agreement with the experiments. For comparison, the ε for the
1M urea solution was 95.2 ((0.2), similar to that of pure water.
These results, suggesting an increased polarity of the solution,
are not consistent with the observed increase of salt bridges and
hydrophobic core relaxation. However, when we examined
more in detail the properties of the solution in the previously
defined protein domain, we found a possible explanation to the
discrepancy. Osmolytes also affect the rotational dynamics of
water molecules both in the bulk and in the protein domain.
Indeed, the rotational diffusion is significantly reduced, as
shown by the calculated rotational correlation function, show-
ing higher correlation times for water molecules in both 1MGB
and TMAO (Figure 3).

Thus, the high dipole moment of the osmolyte molecules has
two different effects on the solution: on the one hand, it causes a
considerable increase in the overall dielectric constant; on the
other hand, it tends to align the water dipoles. Since, as we have
seen the osmolytes are excluded from the protein surface, the
lower rotational diffiusion of water in the protein first solvation
shells has the effect of reducing the local ε of the solution. The
calculated ε around the protein is significantly smaller, even
compared to that of pure water, 83.0 for GB and 90.3 for TMAO.

These results are in agreement with both NMR59 and IR60

observations. 1H NMR data59 demonstrate a decrease of T1

relaxation time (i.e., an increase of the rotational correlation time
τC

61) for several osmolytes, including TMAO, GB, sarcosine,
sorbitol, and trehalose. Lower T1 relaxation times have been
ascribed to a more “ice-like” behavior of water (it is to be noted
that the ε0 of ice is 3.1962), confirmed by the shifts in NIR
spectra.59 Very recently a similar observation was obtained by 2D
infrared spectroscopy on TMAO solutions.60 Bakulin and co-
workers demonstrate the slower rotational reorientation of water
molecules around TMAO molecules, supporting the results of
our calculations. Much slighter variations, occasionally in the
same direction of those observed for protecting osmolytes, are
registered for urea, suggesting that the source of the different
effect of urea resides mainly in its interactions with the protein.
Most of the reported features of osmolyte behavior (e.g., folded
state protection, osmophobic effect and backbone repulsion) can
be solidly explained in the context of an “ice-like” shift in the
aqueous solvent dynamical behavior, due to GB or TMAO
addition. The slowing down of water rotational diffusion is highly

Table 1. Thermodynamic Parameters for HP 35 in Pure Water and in NaCl or Osmolite Solutionsa

ΔH ΔCp Tm ΔG47�C
b ΔΔG47�C ΔG47�C

calcdc ΔΔG47�C
calcd

H2O 24.8 ( 0.9 0.37 ( 0.06 44 ( 0.1 �0.24 �0.04

NaCl 0.66 M 26.7 ( 0.8 0.44 ( 0.05 49 ( 0.1 0.16 0.40 0.69 0.73

GB 1 M 30.7 ( 3.7 0.72 ( 0.22 49 ( 0.1 0.19 0.43 0.61 0.65

TMAO 1 M 33.4 ( 1.5 0.96 ( 0.09 51 ( 0.1 0.39 0.63 0.69 0.73
aValues are in kcal mol�1 for ΔH, kcal mol�1 K�1 for ΔCp, �C for Tm, and kcal mol�1 for ΔG. bObtained from the experiments employing the
Gibbs�Helmholtz equation. cObtained from the calculated free energy surfaces.

Figure 2. (a) Solvent density function for GB, TMAO, and urea. Only a
very slight increase with respect to the bulk limit is observable for the
osmolytes with a preferred distance of 3.8 Å. The absence of a well-
defined prominent peak suggests that GB and TMAO are excluded from
the protein surface, as demonstrated experimentally. The typical 2.8 Å
peak is clearly recognizable for urea, confirming its proximity to the
protein surface. (b) Preferential coefficient for HP35 in 1 M solutions of
GB, TMAO, and urea: total (T), side chain contribution (S), and
backbone contribution (B). The negative values in the region 3�5 Å
clearly show a preference of the two osmolytes for the bulk domain.
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consistent with previous hypotheses describing the osmolytes
effect as a “water-structuring” effect.63,64 The water molecules’
rotational diffusion slowdown is perceived as an average effect by
the protein itself, and the change in water rotational properties
affects the thermodynamic and electrostatic response properties
of the solvent.

To confirm this new formulation of the “indirect hypothesis”,
we performed a BEMD simulation of HP35 in modified TIP3P
water molecules (W79), whose charges were scaled down to
reproduce the decreased dielectric constant of water in the 1 M
GB solution. The FE profiles were strikingly similar to those
obtained for the osmolyte solutions (Figure S6 and S7, Support-
ing Information). Cluster analysis revealed a high similarity of the
most populated conformers in 1 M GB and W79, with a RMSD
within 2.1 Å; the salt bridge previously observed in 1 M GB was
also observed in W79 (Figure S8, Supporting Information).
Hence, the W79 simulation provided further evidence that a

dielectric constant shift (i.e., a rotational diffusion slowdown) in
the protein domain can explain most of the features of the
osmolyte solution.16

To validate computational results, we exploited thermal and
chemical denaturation to gain an in-depth thermodynamic descrip-
tion of the effects due to the osmolytes. Equilibrium thermal
unfolding measurements were performed on HP35 in water and
in 1MTMAOorGB solutions. The stability was also investigated in
a 0.66MNaCl solution.This salt concentration reduces the dielectric
constant to 67.2,65 similar to the shift observed for water in a 1MGB
solution. HP35 showed a cooperative, sigmoidal transition
(Supporting Information Figure S9), and the data fit a two-state
model.HP35 inwater shows a transition temperature (Tm) of 44 �C.
TMAO or GB increases the Tm to 51 and 49 �C, respectively.
Similarly, HP35 in 0.66 M NaCl unfolds with a Tm of 49 �C. At
25 �C, the midpoint of the urea-induced chemical denaturation is
2.9 M in water, 3.6 M in NaCl, and 3.5 M in GB or TMAO. These
results indicate a clear stabilization of the native state and are in
excellent agreement with the predictions of the simulations. The
unfolding reaction of HP35 showed similarm values in all solutions,
suggesting similar cooperativity (Supporting Information Table S2).
One explanation is that osmolytes are not directly in contact with the
protein backbone, in agreement with the results of the simulations.
Consistent with this, proton NMR cross-relaxation (ROESY)
experiments were unable to detect any TMAO-HP35 contact (see
Supporting Information Figures S12 and S13), indicating the
absence of direct and persistent (ms time scale) interactions between
osmolyte and protein. From the combination of thermal and
chemical denaturation, we obtained the stability plot of HP35 and
calculated the unfoldingΔG. It is evident (Figure 4 andTable 1) that
the osmolytes determine an increase of stability with respect to pure
water, in agreement with the calculated values.

’CONCLUSIONS

The pursuit of a universal explanation for the osmoprotectant
effect has drawn considerable attention in recent decades, due to

Figure 3. Rotational correlation function for the simulated systems: pure water and 1M solutions of TMAO, GB, and urea. An increase of the rotational
correlation time can be observed for the two protecting osmolytes.

Figure 4. Protein stability curves for HP35 in water (black), 0.66 M
NaCl (red), 1 M GB (green), or 1 M TMAO (blue). Squares represent
unfolding free energies measured directly from the transition zones of
the thermal denaturation curves shown in Figure 2 at an HP 35
concentration of 50 μM. Circles represent ΔGU

H2O values determined
from an analysis of urea denaturation curves determined at various
temperatures. Solid lines show the best fit to the Gibbs�Helmholtz
equation.
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its significant importance for both fundamental and applied
science. In recent years, the studies of Bolen and co-
workers11,19,55 have succeeded in the defining a simplified model,
based on transfer free energies, with considerable predictive
power. However, despite multiple efforts and ever increasing
interest, a simple yet general microscopic explanation of the
mechanism underlying osmolyte-mediated protein protection
mainly remains an open issue. State-of-the-art in silico simula-
tions and experiments allowed us to make a significant step
forward toward this goal. Our results support a new flavor of the
previously reported “indirect hypothesis” and put forward a very
simple explanation: the main driving force behind native state
protection is a slowdown of the solvent rotational dynamics. The
“slower” solvent behaves around the protein, where the osmo-
lytes are excluded, as a colder or lower dielectric aqueous solvent.
This local reduction is consistent with, and explanatory of, all
reported theoretical and experimental results.11,16,19,55 Indeed,
the alteration of the solvent is translated into a decreased
denaturing power of the water molecules that, acting as a less
polar media with the dynamical behavior of a lower temperature
solvent, is less effective in interfering with the intraprotein
interactions sustaining the native fold. This, in turn, explains
not only the osmoprotecting effect and the increase of the
melting temperature of proteins but also the significant role of
backbone interactions, whose importance was systematically
predicted by transfer models.

’ASSOCIATED CONTENT

bS Supporting Information. Additional free energy profiles
of HP35 in water and in 1 M solutions, 2D and 3D free energy
maps, CD and NMR spectra, and thermal denaturation curves.
This information is available free of charge via the Internet at
http://pubs.acs.org/.
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